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PKEFACE.

AMONG the many advances in the progress of mathematical

JTJl science during the last forty years, not the least remarkable

are those in the theory of functions. The contributions that are

still being made to it testify to its vitality : all the evidence points

to the continuance of its growth. And, indeed, this need cause no

surprise. Few subjects can boast such varied processes, based

upon methods so distinct from one another as are those originated

by Cauchy, by Weierstrass, and by Riemann, Each of these

methods is sufficient in itself to provide a complete development

;

combined, they exhibit an unusual wealth of ideas and furnish

unsurpassed resources in attacking new problems.

It is difficult to keep pace with the rapid growth of the

literature which is due to the activity of mathematicians,

especially of continental mathematicians : and there is, in con-

sequence, sufficient reason for considering that some marshalling

of the main results is at least desirable and is, perhaps, necessary.

Not that there is any dearth of treatises in French and in

German : but, for the most part, they either expound the pro-

cesses based upon some single method or they deal with the

discussion of some particular branch of the theory.
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The present treatise is an attempt to give a consecutive

account of what may fairly be deemed the principal branches of

the whole subject. It may be that the next few years will see

additions as important as those of the last few years : this account

would then be insufficient for its purpose, notwithstanding the

breadth of range over which it may seem at present to extend.

My hope is that the book, so far as it goes, may assist mathe-

maticians, by lessening the labour of acquiring a proper knowledge

of the subject, and by indicating the main lines, on which recent

progress has been achieved.

No apology is offered for the size of the book. Indeed, if

there were to be an apology, it would rather be on the ground

of the too brief treatment of some portions and the omissions

of others. The detail in the exposition of the elements of several

important branches has prevented a completeness of treatment

of those branches : but this fulness of initial explanations is

deliberate, my opinion being that students will thereby become

better qualified to read the great classical memoirs, by the study

of which effective progress can best be made. And limitations of

space have compelled me to exclude some branches which other-

wise would have found a place. Thus the theory of functions of

a real variable is left undiscussed : happily, the treatises of Dini,

Stolz, Tannery and Chrystal are sufficient to supply the omission.

Again, the theory of functions of more than one complex variable

receives only a passing mention ; but in this case, as in most

cases, where the consideration is brief, references are given

which will enable the student to follow the development to

such extent as he may desire. Limitation in one other direction

has been imposed : the treatise aims at dealing with the general

theory of functions and it does not profess to deal with special

classes of functions. I have not hesitated to use examples of

special classes : but they are used merely as illustrations of the

general theory, and references are given to other treatises for

the detailed exposition of their properties.
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The general method which is adopted is not hmited so that

it may conform to any single one of the three principal inde-

pendent methods, due to Cauchy, to Weierstrass and to Riemann

respectively : where it has been convenient to do so, I have

combined ideas and processes derived from different methods.

The book may be considered as composed of five parts.

The first part, consisting of Chapters I—VII, contains the

theory of uniform functions : the discussion is based upon power-

series, initially connected with Cauchy's theorems in integration,

and the properties established are chiefly those which are con-

tained in the memoirs of Weierstrass and Mittag-Leffler.

The second part, consisting of Chapters VIII—XIII, contains

the theory of multiform functions, and of uniform periodic

functions which are derived through the inversion of integrals

of algebraic functions. The method adopted in this part is

Cauchy's, as used by Briot and Bouquet in their three memoirs

and in their treatise on elliptic functions : it is the method that

has been followed by Hermite and others to obtain the properties

of various kinds of periodic functions. A chapter has been

devoted to the proof of Weierstrass's results relating to functions

that possess an addition-theorem.

The third part, consisting of Chapters XIV—XVIII, contains

the development of the theory of functions according to the

method initiated by Riemann in his memoirs. The proof which

is given of the existence-theorem is substantially due to Schwarz

;

in the rest of this part of the book, I have derived great assist-

ance from Neumann's treatise on Abelian functions, from Fricke's

treatise on Klein's theory of modular functions, and from many
memoirs by Klein.

The fourth part, consisting of Chapters XIX and XX, treats

of conformal representation. The fundamental theorem, as to the

possibility of the conformal representation of surfaces upon one

another, is derived from the existence-theorem : it is a curious fact

that the actual solution, which has been proved to exist in general,

F. b
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has been obtained only for cases in which there is distinct

limitation.

The fifth part, consisting of Chapters XXI and XXII, contains

an introduction to the theory of Fuchsian or automorphic functions,

based upon the researches of Poincare and Klein : the discussion is

restricted to the elements of this newly-developed theory.

The arrangement of the subject-matter, as indicated in this

abstract of the contents, has been adopted as being the most

convenient for the continuous exposition of the theory. But the

arrangement does not provide an order best adapted to one who is

reading the subject for the first time. I have therefore ventured

to prefix to the Table of Contents a selection of Chapters that

will probably form a more suitable introduction to the subject for

such a reader ; the remaining Chapters can then be taken in an

order determined by the branch of the subject which he wishes

to follow out.

In the course of the preparation of this book, I have consulted

many treatises and memoirs. References to them, both general

and particular, are freely made : without making precise reserva-

tions as to independent contributions of my own, I wish in this

place to make a comprehensive acknowledgement of ray obligations

to such works. A number of examples occur in the book : most of

them are extracted from memoirs, which do not lie close to the

direct line of development of the general theory but contain

results that provide interesting special illustrations. My inten-

tion lias been to give the author's name in every case where a

result has been extracted from a memoir : any omission to do so

is due to inadvertence.

Substantial as has been the aid provided by the treatises and

memoirs to which reference has just been made, the completion of

the book in the correction of the proof-sheets has been rendered

easier to me by the unstinted and untiring help rendered by

two friends. To Mr William Burnside, M.A., formerly Fellow of
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Pembroke College, Cambridge, and now Professor of Mathematics

at the E-oyal Naval College, Greenwich, I am under a deep debt

of gratitude : he has used his great knowledge of the subject in

the most generous manner, making suggestions and criticisms that

have enabled me to correct errors and to improve the book in

many respects. Mr H. M. Taylor, M. A., Fellow of Trinity College,

Cambridge, has read the proofs with great care : the kind assist-

ance that he has given me in this way has proved of substantial

service and usefulness in correcting the sheets. I desire to

recognise most gratefully my sense of the value of the work which

these gentlemen have done.

It is but just on my part to state that the willing and active

co-operation of the Staff of the University Press during the pro-

gress of printing has done much to lighten my labour.

It is, perhaps, too ambitious to hope that, on ground which

is relatively new to English mathematics, there will be freedom

from error or obscurity and that the mode of presentation in this

treatise will command general approbation. In any case, my aim

has been to produce a book that will assist mathematicians in

acquiring a knowledge of the theory of functions : in proportion

as it may prove of real service to them, will be my reward.

A. R. FORSYTH.

Trinity College, Cambridge.

25 February, 1893.

62
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CHAPTER I.

General Introduction.

1. Algebraical operations are either direct or inverse. Without
entering into a general discussion of the nature of irrational and of imaginary

quantities, it will be sufficient to point out that direct algebraical operations

on numbers that are positive and integral lead to numbers of the same

character; and that inverse algebraical operations on numbers that are

positive and integral lead to numbers, which may be negative or fractional

or irrational, or to numbers which may not even fall within the class of real

quantities. The simplest case of occurrence of a quantity, which is not

real, is that which arises when the square root of a negative quantity is

required.

Combinations of the various kinds of quantities that may occur are of

the form x + iy, where a; and y are real and i, the non-real element of the

quantity, denotes the square root of — 1. It is found that, when cjuantities

of this character are subjected to algebraical operations, they always lead to

quantities of the same formal character; and it is therefore inferred that

the most general form of algebraical quantity is x + iy.

Such a quantity x + iy, for brevity denoted by 2, is usually called a

complex variable*; it therefore appears that the complex variable is the

most general form of algebraical quantity which obeys the fundamental laws

of ordinary algebra.

2. The most general complex variable is that, in which the constituents

X and y are independent of one another and (being real quantities) ai-e

separately capable of assuming all values from — go to + 00 ; thus a doubly-

infinite variation is possible for the variable. In the case of a real variable,

it is convenient to use the customary geometrical representation by measure-

ment of distance along a straight line ; so also in the case of a complex

* The conjugate complex, viz. x - iy, is frequently denoted by 3^.
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variable, it is convenient to associate a geometrical representation with

the algebraical expression ; and this is the well-known representation of

the variable cc + iy by means of a point with coordinates cc and y referred

to rectangular axes*. The complete variation of the complex variable z

is represented by the aggregate of all possible positions of the associated

point, which is often called the point z; the special case of real variables

being evidently included in it because, when y = 0, the aggregate of

possible points is the line which is the range of geometrical variation of

the real variable.

The variation of z is said to be continuous when the variations of x and y
are continuous. Continuous variation of z between two given values will

thus be represented by continuous variation in the position of the point z,

that is, by a continuous curve (not necessarily of continuous curvature)

between the points corresponding to the two values. But since an infinite

number of curves can be drawn between two points in a plane, continuity of

line is not sufficient to specify the variation of the complex variable ; and, in

order to indicate any special mode of variation, it is necessary to assign,

either explicitly or implicitly, some determinate law connecting the variations

of X and y or, what is the same thing, some determinate law connecting oc

and y. The analytical expression of this law is the equation of the curve

which represents the aggregate of values assumed by the variable between

the two given values.

In such a case the variable is often said to describe the part of the curve

between the two points. In particular, if the variable resume its initial

value, the representative point must return to its initial position ; and then

the variable is said to describe the whole curve "f.

When a given closed curve is continuously described by the variable,

there are two directions in which the description can take place. From

the analogy of the description of a straight line by a point representing a

real variable, one of these directions is considered as positive and the other

* This method of geometrical representation of imaginary quantities, ordinarily assigned to

Gauss, was originally developed by Argand who, in 1806, published his '' Essai sur une maniere

(le reprcscnter Ics quanUtes Imaginaires dans les coiistructions geo7iietriques." This tract was

republished in 1874 as a second edition (Gauthier-Villars) ; an interesting preface is added

to it by Hoiiel, who gives an account of the earlier history of the publications associated with

the theory.

Other references to the historical development are given in Chrystal's Text-book of Algebra,

vol. i, pp. 248, 249; in Holzmiiller's Einfiihrung in die Theorie der isogonalen Verwandschaften

und der conformen Abbildungen, verbunden mit Amoendungen auf mathematische Fhysik, pp. 1—10,

21—23; in Schlomilch's Compendium der hoheren Analysis, vol. ii, p. 38 (note); and in Casorati,

Teorica delle funzioni di variabili complesse, only one volume of which was published. In this

connection, an article by Cayley {Quart. Journ. of Math., vol. xxii, pp. 270—308) may be

consulted with advantage.

+ In these elementary explanations, it is unnecessary to enter into any discussion of

the effects caused by the occurrence of singularities in the curve.
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Fig. 1.

as negative. The usual convention under which one of the directions is

selected as the positive direction depends upon the conception that the curve

is the boundary, partial or complete, of some area ; under it, that direction is

taken to be positive which is such that the bounded area lies to the left of

the direction of description. It is easy to see that the same direction is taken

to be positive under an equivalent convention

which makes it related to the normal drawn

outwards from the bounded area in the same

way as the positive direction of the axis of y
is to the positive direction of the axis of x

in plane coordinate geometry.

Thus in the figure (fig. 1), the positive

direction of description of the outer curve

for the area included by it is DEF; the

positive direction of description of the inner

curve for the area without it (say, the area

excluded by it) is AGB; and for the area

between the curves the positive direction of description of the boundary,

which consists of two parts, is DEF, AGB.

3. Since the position of a point in a plane can be determined by means

of polar coordinates, it is convenient in the discussion of complex variables

to introduce two quantities corresponding to polar coordinates.

In the case of the variable z, one of these quantities is (.^•- + ?/'-)-> the

positive sign being always associated with it ; it is called the modulus* of

the variable and it is denoted, sometimes by mod. z, sometimes by l^r].

The other is 0, the angular coordinate of the point z ; it is called the

argument (and, less frequently, the amplitude) of the variable. It is

measured in the trigonometrical ly positive sense, and is determined by

the equations

x = \z\cob6, y — \z\^\\\d,

so that z = \z\e^^. The actual value depends upon the way in which the

variable has acquired its value ; when variation

of the argument is considered, its initial value

is usually taken to lie between and 27r or, less

frequently, between — tt and +7r.

As z varies in position, the values of \z\

and 6 vary. When z has completed a positive

description of a closed curve, the modulus of z

returns to the initial value whether the origin j'ig. 2.

Dcr (ihsolufc lU'trat] is often used by German writers.

1—2
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be ^vithout, within or on the curve. The argument of z resumes its initial

value, if the origin 0' (fig. 2) be without the curve ; but, if the origin be

M-ithin the curve, the value of the argument is increased by Itt when z

returns to its initial position.

If the origin be on the curve, the argument of z undergoes an abrupt

change by tt as ^^ passes through the origin ; and the change is an increase

or a decrease according as the variable approaches its limiting position on the

curve from without or from within. No choice need be made between these

alternatives ; for care is always exercised to choose curves which do not

introduce this element of doubt.

4. Representation on a plane is obviously more effective for points at a

finite distance from the origin than for points at a very great distance.

One method of meeting the difficulty of representing great values is to

introduce a new variable z given by z'z = \: the part of the new plane for

z which lies quite near the origin corresponds to the part of the old plane

for z which is very distant. The two planes combined give a complete

representation of variation of the complex variable.

Another method, in many ways more advantageous, is as follows. Draw
a sphere of unit diameter, touching the ^-plane at the origin (fig. 3) on

the under side : join a point z in the plane to 0' , the other extremity of

the diameter through 0, by a straight line cutting the sphere in Z.

Then Z is a unique representative of z, that is, a single point on the

sphere corresponds to a single point on the plane : and therefore the variable

can be represented on the surface of the sphere. With this mode of

Fig. 3

representation, 0' evidently corresponds to an infinite value of z : and points

at a very great distance in the 2^-plane are represented by points in the

immediate vicinity of 0' on the sphere. The sphere thus has the advantage

of putting in evidence a part of the surface on which the variations of
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great values of z can be traced*, and of exhibiting the uniciueuess of

z = <X) as a value of the variable, a fact that is obscured in the represen-

tation on a plane.

The former method of representation can be deduced by means of the

sphere. At 0' draw a plane touching the sphere : and let the straight line

OZ cut this plane in z'. Then z is a point uniquely determined by Z
and therefore uniquely determined by z. In this new /-plane take axes

parallel to the axes in the ^-plane.

The points z and / move in the same direction in space round 00'

as an axis. If we make the upper side of the ^•-plane correspond to the

lower side of the /-plane, and take the usual positive directions in the

planes, being the positive trigonometrical directions for a spectator looking

at the surface of the plane in which the description takes place, we have

these directions indicated by the arrows at and at 0' respectively, so

that the senses of positive rotations in the two planes are opposite in

space. Now it is evident from the geometry that Oz and O'z are

parallel ; hence, if 6 be the argument of the point z and 6' that of the

point / so that 6 is the angle from Ox to Oz and 6' the angle from O'x'

to O'z', we have
e+e' = 27r.

Further, by similar triangles, >. ^' = ry^ >

that is, Oz . O'z' = 00"" = 1.

Now, if z and z be the variables, we have

z = Oz.e^\ z' = 0'z'.e^\

so that zz'=Oz.O'z' .e<^^^^^

= 1,

which is the former relation.

The /-plane can therefore be taken as the lower side of a plane touching

the sphere at 0' when the 2;-plane is the upper side of a plane touching

it at 0. The part of the 2^-plane at a veiy great distance is represented on

the sphere by the part in the immediate vicinity of 0'
: and this part of

the sphere is represented on the /-plane by its portion in the immediate

vicinity of 0', which therefore is a space wherein the variations of infinitely

great values of z can be traced.

But it need hardly be pointed out that any special method of represent-

ation of the variable is not essential to the development of the theory of

functions ; and, in particular, the foregoing representation of the variable,

when it has very great values, merely provides a convenient method of

dealing with quantities that tend to become infinite in magnitude.

* This sphere is sometimes called Neumann's sphere; it is used by him for the representation

of the complex variable throuj^hout his treatise Yovlmnujcn iiber RiemaiDi's Tlieorie der Ali'Vaclu'ii

Intcfjrale (Leipzig, Teubner, 2nd edition, 1884).
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5. The siin])le8t propositions relating to complex variables will be

assumed known. Among these are, the geometrical interpretation of opera-

tions such as addition, multiplication, root-extraction ; some of the relations

of complex variables occurring as roots of algebraical equations with real

coefficients; the elementary properties of functions of complex variables

which are algebraical and integral, or exponential, or circular functions

;

and simple tests of convergence of infinite series and of infinite products *

6. All ordinary operations effected on a complex variable lead, as already

remarked, to other comjjlex variables ; and any definite quantity, thus

obtained by operations on z, is necessarily a function of z.

But if a complex variable id be given as a complex function of x

and y without any indication of its source, the question as to whether

vj is or is not a function of z requires a consideration of the general idea

of functionality.

It is convenient to postulate u -\- iv as a form of the complex variable w,

where u and v are real. Since w is initially unrestricted in variation, we

may so far regard the quantities u and v as independent and therefore as

any functions of x and y, the elements involved in z. But more explicit

expressions for these functions are neither assigned nor supposed.

The earliest occurrence of the idea of functionality is in connection with

functions of real variables ; and then it is coextensive with the idea of

dependence. Thus, if the value of A^ depends on that of x and on no other

variable magnitude, it is customary to regard X as a function of x; and

there is usually an implication that A"^ is derived from x by some series of

operations f.

A detailed knowledge of z determines x and y uniquely ; hence the values

of u and v may be considered as known and therefore also w. Thus the

value of w is dependent on that of z, and is independent of the values

of variables unconnected with z; therefore, with the foregoing view of

functionality, w is a function of z.

It is, however, equally consistent with that view to regard tv as a complex

function of the two independent elements from which z is constituted ; and

we are then led merely to the consideration of functions of two real

independent variables with (possibly) imaginary coefficients.

* These and other introductory parts of the subject are discussed in Chrystal's Text-book of

Algebra and in Hobson's Treatise on Plane Trigonometry,

They are also discussed at some length in the recently published translation, by G. L.

Cathcart, of Harnack's Elements of the differential and integral calculus (Williams and Norgate,

1891), the second and the fourth books of which contain developments that should be consulted

in special relation with the first few chapters of the present treatise.

These books, together with Neumann's treatise cited in the note on p. 5, will hereafter be cited

by the names of their respective authors.

t It is not important for the jiresent purjDose to keep in view such mathematical expressions

as have intelligible meanings only when the independent variable is confined within limits.
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Both of these aspects of the dependence of w on z requiie that z be

regarded as a composite quantity involving two independent elements which

can be considered separately. Our purpose, however, is to regard z as the

most general form of algebraical variable and therefore as an irrcsoluble

entity ; so that, as this preliminary requirement in regard to z is unsatisfied,

neither of the aspects can be adopted.

7. Suppose that w is regarded as a function of z in the sense that it can

be constructed by definite operations on z regarded as an irrcsoluble

magnitude, the quantities u and v arising subsecjuently to these operations

by the separation of the real and the imaginary parts when z is replaced by

X + iy. It is thereby assumed that one series of operations is sufficient for

the simultaneous construction of u and v, instead of one series for u and

another series for v as in the general case of a complex function in § 6.

If this assumption be justified by the same forms resulting from the two

different methods of construction, it follows that the two series of opera-

tions, which lead in the general case to u and to v, must be equivalent to

the single series and must therefore be coiniected by conditions ; that is, u

and V as functions of x and y must have their functional forms related.

We thus take

u + iv =w= f(z)=f(x-\- iy)

without any specification of the form of /. When this postulated equation

is valid, we have
dw _ dtu dz _ ^, dw
dx dz dx J ^ ' dz

'

dto _dwdz _ . ., .dw

d^j~dzdy~'^ ^'^~''Tz'

, ^1 p dw Idw dw
and therefore -— = -_— = —-

( 1

)

ox I ay dz

equations from which the functional form has disappeared. Inserting the

value of w, we have

whence, after equating real and imaginary parts,

dv _du du _ dv
,^

dx dy' dx dy

These are necessary relations between the functional forms of u and v.

These relations are easily seen to be sufficient to ensure the reijuired

functionality. For, on taking w = u-\- iv, the equations (2) at once lead to

diu _ 1 diu

dx i dy
'

, , , . , dw .diu ^
that IS, to ,r

—

\- 1 ^ = 0,
dx dy
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a linear partial differential equation of the first order. To obtain the most

general solution, we form a subsidiary system

dx _dy _ dw

It possesses the integrals lu, x + iy ; and then from the known theory of

such equations we infer that every quantity w satisfying the equation can be

expressed as a function of x + ii/, i.e., of z. The conditions (2) are thus

proved to be sufficient, as well as necessary.

8. The preceding determination of the necessary and sufficient conditions

of functional dependence is based upon the existence of a functional form

;

and yet that form is not essential, for, as already remarked, it disappears from

the equations of condition. Now the postulation of such a form is equivalent

to an assumption that the function can be numerically calculated for each

particular value of the independent variable, though the immediate expres-

sion of the assumption has disappeared in the present case. Experience of

functions of real variables shews that it is often more convenient to use

their properties than to possess their numerical values. This experience is

confirmed by what has preceded. The essential conditions of functional

dependence are the equations (1), and they express a property of the function

w, viz., that the value of the ratio -r- is the same as that of ^ , or, in other

words, it is independent of the manner in which dz ultimately vanishes by

the approach of the point z -^-dz to coincidence with the point z. We are

thus led to an entirely different definition of functionality, viz.

:

A complex quantity lu is a function of another complex quantity z, luhen

they change together in such a manner that the value of ,- is independent of

the value of the differential element dz.

This is Riemann's definition*; we proceed to consider its significance.

We have

dw _ dn + idv

dz dx + idy

^da .dv\ dx fdu .dv\ dyfoil .dv\ dx /du .dv\ dy

\dx dxJ dx + idy \dy dy/ dx + idy'

Let
(f>

be the argument of dz ;
then

dx cos (ji

dx + idy cos ^ + i sin </>

idy = in -p.--^<i'i\= Hi
dx + idy

Ges. Wcrke, p. 5; a moflified definition is adopted by him, ib., p. 81.
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and therefore

dw _ ^
idu .dv .dii dv\ _,^^.(du.dv.du dv

dz~^ \dx dec dy dy) '^ \dx dx dy dy

Since j- is to be independent of the value of the differential element dz,

it must be independent of ^ the argument of dz\ hence the coefficient

of e~'^' in the preceding expression must vanish, which can happen only if

du _dv dv _ du

dx dy' dx dy

These are necessary conditions ; they are evidently also sufficient to make

-y— independent of the value of dz and therefore, by the definition, to secure

that w is a function of z.

By means of the conditions (2), we have

diu _da . dv dw

dz dx dx dx
'

. . dw .du dv 1 dw
and also j- = — i;r- + — =-—-,

dz dy dy i oy

agreeing with the former equations (1) and immediately derivable from the

present definition by noticing that dx and idy are possible forms of dz.

It should be remarked that equations (2) are the conditions necessary

and sufficient to ensure that each of the expressions

2idx — vdy and vdx + udy

is a perfect differential—a result of great importance in many investigations

in the region of mathematical physics.

When the conditions (2) are expressed, as is sometimes convenient, in

terms of derivatives with regard to the modulus of z, say ;, and the

argument of z, say 6, they take the new forms

du _\dv dv _ 1 9;/. ,^y

d^~rde' dr~~rdd ^ ''

We have so far assumed that the function has a differential coefficient

—

an assumption justified in the case of functions which oi'dinarily occur. But

functions do occur which have different values in different regions of the

2;-plane, and there is then a difficulty in regard to the quantity ^' at the

boundaries of such regions ; and functions do occur which, though themselves

definite in value in a given region, do not possess a differential coefficient at

all points in that region. The consideration of such functions is not of

substantial importance at present : it belongs to another part of our subject.
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It must not be inferred that, because -j- is independent of the direction

in which dz vanishes when w is a function of z, therefore -j-~ has only one

vakie. The number of its values is dependent on the number of values of w :

no one of its values is dependent on dz.

A quantity, defined as a function by Riemann on the basis of this

property, is sometimes* called an analytical function; but it seems pre-

ferable to reserve the term analytical in order that it may be associated

hereafter (§ 34) with an additional quality of the functions.

9. The geometrical interpretation of complex variability leads to impor-

tant results when applied to two variables w and z which are functionally

related.

Let P and p be two points in different planes, or in different parts of

the same plane, representing lo and z respectively; and suppose that P and

p are at a finite distance from the points (if any) which cause discontinuity

in the relationship. Let q and r be any two other points, z + dz and z + 8z,

in the immediate vicinity of p ; and let Q and R be the corresponding

points, w + diu and w + 8w, in the immediate vicinity of P. Then

dw , c. dw ^dw = -^r- dz, bw = -j— oz,
dz dz

the value of ^ being the same for both equations, because, as w is a function

of z, that quantity is independent of the differential element of z. Hence

Bw _ Bz

dw dz'

on the ground that j- is neither zero nor infinite at z, which is assumed not

to be a point of discontinuity in the relationship. Expressing all the differ-

ential elements in terms of their moduli and arguments, let

dz = (re^\ dw = 776**,

8z = (T'e^'\ Bw = 7j'e^'\

and let these values be substituted in the foregoing relation ; then

7]' a

7] a

f^'-^ = e' -e.

Hence the triangles QPR and qpr are similar to one another, though

not necessarily similarly situated. Moreover the directions originally chosen

for ^g and pr are quite arbitrary. Thus it appears that afunctional relation

* Hainack, § 84.
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between two complex variables establishes the similarity of the correspondivg

infinitesimal elements of those parts of two planes which are in the immediate

vicinity of the points representing tlie two variables.

The magnification of the i/;-plane relative to the 0-plane at the corre-

sponding points P and ^j is the ratio of" two corresponding infinitesimal

lengths, say of QP and qj). This is the modulus of -7— ; if it be denoted by

m, we have
\dw '

m-' = TT-
I
dz

_ du dv du dv

dx dy dy dx

'

Evidently the quantity m, in general, depends on the variables and

therefore it changes from one point to another; hence the functional relation

between w and z does not, in general, establish similarity of finite parts of

the two planes corresponding to one another through the relation.

It is easy to prove that w = az + b, where a and b are constants, is the

only relation which establishes similarity of finite parts ; and that, with this

relation, a must be a real constant in order that the similar parts may be

similarly situated.

If w + iv = 7v =
(f>

(z), the curves u = constant and v = constant cut at

right angles; a special case of the proposition that, if
<f>
(x + iy) = u + ve''\

where X is a real constant and 11, v are real, then w= constant and w=constant

cut at an angle \.

The process, which establishes the infinitesimal similarity of two planes

by means of a functional relation between the variables of the planes, may be

called the conformal repr^esentation of one plane on another*.

The discussion of detailed questions connected with the conformal represontatiou is

deferred until the later part of the treatise, principally in order to group all such

investigations together ; but the first of the two chapters, devoted to it, need not be

deferred so late and an immediate reading of some portion of it will tend to simplify

many of the explanations relative to functional relations as they occur in the e^irly

chapters of this treatise.

10. The analytical conditions of functionality, under either of the

adopted definitions, are the equations (2). From them it at once follows that

dx'
"^

dy'
~

'

d-v d'v _
dx- dy-

'

* By Gauss {Gcs. Werke, t. iv, p. 262) it was styled conformc AhhUduno, the name
universally adopted by German mathematicians. The French title is repn'aentation coii/orme

;

and, in England, Cayley has used orthomorphosis or ortfioniKiphic tmii.^/ormation.
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SO that neither the real nor the imaginary part of a complex function can be

arbitrarily assumed.

If either part be given, the other can be deduced ; for example, let u be

given ; then we have

, dv J dv
,

dv = ^r- ax -{ X- dij
dx ay

du , 9m
,= — 7^ax+^- ay,

oy ox

and therefore, except as to an additive constant, the value of v is

/(

du -, du -,

-dy'^^'^dx'^y

In particular, when u is an integral function, it can be resolved into the

sum of homogeneous parts

Ml + z<2 + Ws + • • •

;

and then, again except as to an additive constant, v can similarly be

expressed in the form
Vj,+V.-\-V-^ + ....

It is easy to prove that

by means of which the value of v can be obtained.

The case, when u is homogeneous of zero dimensions, presents no

difficulty; for we then have
u = h + ad,

V = c — a log r,

where a, b, c are constants.

Similarly for other special cases ; and, in the most general case, only

a quadrature is necessary.

The tests of functional dependence of one complex on another are of

effective importance in the case when the supposed dependent complex

arises in the form u + iv, where u and v are real ; the tests are, of course,

superfluous when w is explicitly given as a function of z. When w does

arise in the form u + iv and satisfies the conditions of functionality, perhaps

the simplest method (other than by inspection) of obtaining the explicit

expression in terms of 2; is to substitute 2 — iy for x in it + iv ; the simplified

result must be a function of z alone.

11. Conversely, when w is explicitly given as a function of z and it is

divided into its real and its imaginary parts, these parts individually

satisfy the foregoing conditions attaching to ti and v. Thus log?', where r

is the distance of a point z from a point a, is the real part of log (2 — a)

and therefore satisfies the equation

dx" dy^
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Again,
(f>,

the angular coordinate of z relative to the same point a, is

the real part of —i\og(z — a) and satisfies the same equation: the more
usual form of <p being tan-^ {{y - y^)/{a; - x„)], where a = a?o + tyo- Again, if

a point z be distant r from a and r' from b, then log (lir'), being the real

part of log {{z — a)l(z — b)\, is a solution of the same equation.

The following example, the result of which will Ije useful subsequently*, uses the

property that the value of the derivative is independent of the differential element.

Consider a function u + iv= to= log ,

° z-c
where c' is the inverse of c with regard to a circle centre the origin and radius J{.

Then

u= log —

and the curves u = constant are circles. Let

(fig. 4) Oc= r, xOc= a so that c= re'^\ c'= — e"^

then if

^ I ^ Fig. 4.

the values of X for points in the interior of the circle of radius II vary from zero, when
circle m= constant is the point c, to unity, when the circle ?< = constant is the circle of

radius R. Let the point K{ = Be°'') be the centre of the circle determined by a value of

X, and let its radius be p { = ^3JJV). Then since

cM _'>' _ cN
TM^RTN'

we have

whence

r+p-d r d+ p-

~+p-d — e
r

\R (R^ - 7-2) ^2^(1 -X2)
' R^-r^.^ '

Now if dn be an element of the normal drawn inwards at z to the circle NzM^ we have

dz= dx+ idy= —dn. cos x//' — idn . sin ^
= -e^'^dn,

where y^ { = zKx') is the argument of z relative to the centre of the circle. Hence, since

dw_Jl 1_

dz z — c z-c'''

we have

But

so that

and

and therefore

du .dv _ dw _ / 1 1 \ ^^

d7i dn dn \z-d z — c)

z= 6e'''+pe'^\

du
dn

(X?-e"''^-y?e"');

.dv _ R^-r^X ^ Jr 1 1

'^'dn- R^-r^ '
'

Vt\re'^i-Re-i ^ Re*

R^-r^\^

R R^-r^
' r R^-r^^'

.dv R^-r^\^

'-Xre"'J

* In § 217, ill connection with the invostit,'ations of Sclnvarz, by wliom the rosult is .stated,

Ges. Werki; t. ii, p. 1H8.
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Hence, equating the real parts, it follows that

dn ~ \R{R^- ?-2) {E2 - Mr\ cos (i/^ - a) + XV^}

'

the differential element dn being drawn inwards from the circumference of the circle.

The application of this method is eviilently effective when the curves ?<= constant,

arising from a functional expression of w in terms of z, are a family of non-intersecting

algebraical curves.

12. As the tests which are sufficient and necessary to ensure that a

complex quantity is a function of z have been given, we shall assume that

all complex quantities dealt with are functions of the complex variable

(§§ ^> ^)- Their characteristic properties, their classification, and some' of

the simpler applications will be considered in the succeeding chapters.

Some initial definitions and explanations will now be given.

(i). It has been assumed that the function considered has a differential

coefficient, that is, that the rate of variation of the function in any direction

is independent of that direction by being independent of the mode of change

of the variable. We have already decided (§ S) not to use the term analytical

for such a function. It is often called monogenic, when it is necessary to

assign a specific name ; but for the most part we shall omit the name, the

property being tacitly assumed*.

We can at once prove from the definition that, when the derivative

w, I
= -—

) exists, it is itself a function. For w. =-:=— = ~ ^^ are equations
\ dz

)

dx % dy ^

which, when satisfied, ensure the existence of Wj; hence

1 3wi _ 1 9 (dw\

i dy i dy \da; J

_ 3 /l dwy

dx \i dy J

dx

shewing, as in § 8, that the derivative -j-^ is independent of the direction in

which dz vanishes. Hence w^ is a function of z.

Similarly for all the derivatives in succession.

(ii). Since the functional dependence of a complex is ensured only if the

value of the derivative of that complex be independent of the manner in

which the point z -f dz approaches to coincidence with z, a question naturally

* This is in fact done by Riemann, who calls such a dependent complex simply a function.

Weierstrass, however, has proved (§ 85) that the idea of a monogenic function of a complex

variable and the idea of dependence expressible by arithmetical operations are not coextensive.

Tlie defiiution is thus necessary; but the practice indicated in the text will be adopted, as non-

monogenic functions will be of relatively rare occurrence.
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suggests itself as to the effect on the character of the function that may be

caused by the manner in which the variable itself has come to the value of z.

If a function have only one value for each given value of the variable,

whatever be the manner in which the variable has come to that value, the

function is called uniform*. Hence two different paths from a point a to a

point z give at z the same value for any uniform function ; and a closed

curve, beginning at any point and completely described by the 2^-variable,

will lead to the initial value of w, the corresponding ?y-curve being closed, if z

have passed through no point which makes lu infinite.

The simplest class of uniform functions is constituted by algebraical

rational functions.

(iii). If a function have moi'e than one value for any given value of the

variable, or if its value can be changed by modifying the path in which

the variable reaches that given value, the function is called 'niultiformf.

Characteristics of curves, which are graphs of multiform functions coitc-

sponding to a ^-curve, will hereafter be discussed.

One of the simplest classes of multiform functions is constituted by

algebraical irrational functions.

(iv). A multiform function has a number of different values for the same

value of z, and these values vary with z : the aggregate of the variations of

any one of the values is called a branch of the function. Although the

function is multiform for unrestricted variation of the variable, it often

happens that a branch is uniform when the variable is restricted to

particular regions in the plane.

(v). A point in the plane, at which two or more branches of a multiform

function assume the same value, is called a branch-point J of the function
;

the relations of the branches in the immediate vicinity of a branch-point will

hereafter be discussed.

(vi). A function which is monogenic, uniform and continuous over any

part of the 2^-plane is called holoniorphic^ over that part of the plane. When
a function is called holomorphic without any limitation, the usual implication

is that the character is preserved over the whole of the ])lane which is not at

infinity.

The simplest example of a holomorphic function is a rational integral

algebraical polynomial.

* Also monodromic, or mo7iotroj)tc; with German writers tlie title is cindi-ntig, occasionally,

eimiiidruj.

t Also polytropic ; with German writers the title is mehrdeutig.

X Also critical point, which, however, is sometimes used to include all special points of a

function; with German writers the title is VerzweiguiKjspunkt, and sometimes Windungspunkt.

French writers use point de ramificntion, and Italians puiito di giramcnto and piiiito di

diramazione.

§ Also synectir.
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(vii). A root (or a zero) of a function is a value of the variable for which

the function vanishes.

The simplest case of occurrence of roots is in a rational integral alge-

braical function, various theorems relating to which (e.g., the number of

roots included within a given contour) will be found in treatises on the

theory of equations.

(viii). The infinities of a function are the points at which the value of

the function is infinite. Among them, the simplest are the poles* of the

function, a pole being an infinity such that in its immediate vicinity the

reciprocal of the function is holomorphic.

Infinities other than poles (and also the poles) are called the singular

points of the function : their classification must be deferred until after the

discussion of properties of functions.

(ix). A function which is monogenic, uniform and, except at poles,

continuous, is called a meromorphic function f. The simplest example is a

rational algebraical fraction.

13. The follow^ing functions give illustrations of some of the preceding

definitions.

(rt) In the case of a meromorphic function

F{z)

where F and / are rational algebraical functions without a common factor,

the roots are the roots of F {z) and the poles are the roots of / {z). Moreover,

according as the degree of F is greater or is less than that oi f, z = qo is a

pole or a zero of lo.

(b) If w be a polynomial of order n, then each simple root of w is a

branch-point and a zero of w'", where m is a positive integer; z=x is

a pole of IV ; and z= cc is a pole but not a branch-point or is an infinity

(though not a pole) and a branch-point of iv^ according as n is even or odd.

(c) In the case of the function

1

sn-
z

(the notation being that of Jacobian elliptic functions), the zeros are given by

^ = iK' + 2mK + 2m'iK',
z

for all positive and negative integral values of m and of m. If we take

- = iK' -f ImK -f- ImHK' ^ ^,
z

* Also 'polar discontinuities; also (§ 32) accidental singularities.

t Sometimes reijular, but this term will be reserved for the description of another property of

functions.
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where ^ may be restricted to values that are not large, then

so that, in the neighbourhood of a zero, w behaves like a holomorphic

function. There is evidently a doubly-infinite system of zeros : they are

distinct from one another except at the origin, where an infinite number

practically coincide.

The infinities of w are given by

z

for all positive and negative integral values of n and of ii . If we take

- = %iK + %iiK' + ^,
z

then ~ = {-Vf%\\t,w

so that, in the immediate vicinity of ^=0, — is a holomorphic function.

Hence ^= is a pole of w. There is thus evidently a doubly-infinite system

of poles ; they are distinct from one another except at the origin, where an

infinite number practically coincide. But the origin is not a pole ; the

function, in fact, is there not determinate, for it has an infinite number of

zeros and an infinite number of infinities, and the variations of value are not

necessarily exhausted.

For the function ——:
, the origin is a point which will hereafter be called

sn-
z

an essential singularity.



CHAPTER 11.

Integration of Uniform Functions.

14. The definition of an integral, that is adopted when the variables

are complex, is the natural generalisation of that definition for real variables

in which it is regarded as the limit of the sum of an infinite number of

infinitosimally small terms. It is as follows :

—

Let a and 2 be any two points in the plane ; and let them be connected

by a curve of specified form, which is to be the path of variation of the

independent variable. Let f(z) denote any function of z; if any infinity

of f{z) lie in the vicinity of the curve, the line of the curve will be chosen

so as not to pass through that infinity. On the curve, let any number of

points Zi, Zo,..., Zn in succession be taken between a and z ; then, if the sum

(z, - a)f {a) + (^2 - Zi) f (^1) +... + {z-Zn)f {Zn)

have a limit, when n is indefinitely increased so that the infinitely numerous

points are in indefinitely close succession along the whole of the curve from a

to z, that limit is called the integral oi f {z) between a and z. It is denoted,

as in the case of real variables, by

\f{z)dz.

The limit, as the value of the integral, is associated with a particular

curve : in order that the integral may have a definite value, the curve (called

the jioth of integration) must, in the first instance, be specified*. The
integral of any function whatever may not be assumed to depend in general

only upon the limits.

15. Some inferences can be made from the definition.

(I.) The integral along any path from a to z passing through a point ^ is

the sum of the integrals from a to ^ and from ^ to 2 along the same path.

* This siiecification is tacitly supplied when the variables are real : the variable point moves

alonpr the axis of x.
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Analytically, this is expressed by the equation

rfiz)ch=[^f(z)dz+rfi^)dz,
J a J a J i

the paths on the right-hand side combining to form the path on the left.

(II.) When the path is described in the reverse direction, the sign of the

integral is changed : that is,

'f(z)dz=-rfiz)dz,

the curve of variation between a and z being the same.

(III.) The integral of the sum of a finite number of terms is ecjual to

the sum of the integrals of the separate terms, the path of integration being

the samefor all.

(IV.) If a function f {z^ be finite and continuous along ang finite line

between tivo points a and z, the integral I / {z) dz is finite.
J a

Let / denote the integral, so that we have / as the limit of

n

% {Zr+^-Zr)f{Zr):
r =

n

hence |/| = limit of X {z^^^ — z^)f {Zr)
r =

< X\z,+,-Zr\\f(Zr)\.

Because f(z) is finite and continuous, its modulus is finite and therefore

must have a superior limit, say M, for points on the line. Thus

SO that
l-^l

< limit of MS\z,_^.l — Zf\

<MS,

where S is the finite length of the path of integration. Hence the modulus

of the integral is finite ; the integral itself is therefore finite.

No limitation has been assigned to the path, except finiteness in length

;

the proposition is still true when the curve is a closed curve of finite length,

Hermite and Darboux have given an expression for the integral which

leads to the same result. We have as above

i^rfiz)dz,
J a

and |/|< ["
1/(^)1 |d^|

= ehf{z)\\dz\,
J a

where ^ is a real positive quantity less than unity. The last integral involves

2—2
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only real variables ; hence * for some point ^ lying between a and z, we have

1/(^)1 id^i=i/(f)ifV^i/'
J n

so that |/| = ^^|/(^)|.

It therefore follows that there is some argument a such that, if X = ^e'",

This form proves the finiteness of the integral ; and the result is the

generalisation -f to complex variables of the theorem just quoted for real

variables.

(V.) When a function is expressed in the form of a series, which converges

uniformly and unconditionally, the integral of the function along any path of

finite length is the sum of the integrals of the terms of the series along the

same path, provided that path lies within the circle of convergence of the series:

—a result, which is an extension of (III.) above.

Let ^^0 + "2^ + ^'2 + • • • t)e the converging series ; take

/ {Z) = U, + lii + . . . + Un + R,

where \R\ can be made infinitesimally small with indefinite increase of n,

because the series converges uniformly and unconditionally. Then by (III.),

or immediately from the definition of the integral, we have

I f (z)dz=
j

Hods + 1 u^dz + . . . + 1 Undz -f- I Rdz,
J a J a J a J a J a

the path of integration being the same for all the integrals. Hence, if

e=r f{z)dz- 1 r«,«cz^,
J a 3)1=0 J a

we have © — Rdz.

Let R' be the gi'eatest value of |i2| for points in the path of integi^ation

from a to z, and let S be the length of this path, so that S is finite

;

then, by (IV.),

\®\<SR\

Now S is finite ; and, as n is increased indefinitely, the quantity R' tends

towards zero as a limit for all points within the circle of convergence and

therefore for all points on the path of integration provided that the path lie

within the circle of convergence. When this proviso is satisfied, |©| becomes

infinitesimally small and therefore also becomes infinitesimally small with

* Todhunter's Integral Calculus (-Ith ed.), § 40; Williamson's Integral Calculus, (6th ed.), § 96.

t Hermite, Cours d la faculte des sciences de Paris (-1''"^ ed., 1891), p. 59, where the reference

to Darboux is given.
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indefinite increase of ?i. Hence, under the conditions stated in the enuncia-

tion, we have

I
f{z)dz- S / u,ndz = 0,

which proves the proposition.

16. The following lemma* is of fundamental importance.

Let any region of the plane, on which the ^^-variable is represented, be

bounded by one or more simple^ curves which do not meet one another:

each curve that lies entirely in the finite part of the plane will be considered

to be a closed curve.

Ifp and q be any two functions of x and y, ivhich,for all points within the

region or along its boundary, are uniform, finite and continuous, then the

integral

11 If- 1) "2/,

extended over the luliole area of the region, is equal to the integral

Jipdx + qdy),

taken in a positive direction round the whole boundary of the region.

(As the proof of the proposition does not depend on any special form of

region, we shall take the area to be (fig. 5) that which is included by the

curve QiPiQs'-P/ and excluded by PoQ/P^Q-, and excluded by P/P,. The
positive directions of description of the curves are indicated by the arrows

;

and for integration in the area the positive directions are those of increas-

ing X and increasing y.)

y

Fig. 5.

* It Ih proved by Riomann, GV's. Wcrlie, p. 12, and is made by hiin (as also by Cauchy) the

basis of certain theorems relating to functions of complex variables.

t A curve is called simple, if it have no multiple points. The aim, in constituting the boundary

from such curves is to prevent the superfluous complexity that arises from duplication of area on
the plane. If, in any particular case, multiple points existed, the metliod of meeting the difficulty

would be to take each simple loop as a boundary.
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First, suppose that both j; and q are real. Then, integrating with regard

to a;, we have*
dq

II
^^dxdy=j[qdij\

where the brackets imply that the limits are to be introduced. When the

limits are introduced along a parallel GQiQi'... to the axis of x, then, since

CQiQi'... gives the dii-ection of integration, we have

[qd2/] = - q.dij, + q.'di/,' - q.dy, + q./dy./ - q4y^ + q-^dy^,

where the various differential elements are the projections on the axis of y
of the various elements of the boundary at points along CQiQi'....

Now when integration is taken in the positive direction round the whole

boundary, the part of Jqdy arising from the elements of the boundary at the

points on CQiQ/... is the foregoing sum. For at Q-.' it is q^dy^ because the

positive element dy^, which is equal to CD, is in the positive direction of

boundary integration ; at Q^ it is — q-^dy^ because the positive element dy^,

also equal to CD, is in the negative direction of boundary integration

;

at Qn it is q-i'dy^', for similar reasons; at Q., it is —q-idy.., for similar reasons;

and so on. Hence

\Sldy\

corresponding to parallels through C and D to the axis of x, is equal to

the part of jqdy taken along the boundary in the positive direction for all

the elements of the boundary that lie between those parallels. Then when

we integrate for all the elements CD by forming /[5%], an equivalent is

given by the aggregate of all the parts of Jqdy taken in the positive direction

round the whole boundary ; and therefore

£dxdy^Jqdy,

on the suppositions stated in the enunciation.

Again, integrating with regard to y, we have

dp

II

II ^ dxdy=J[pd.r]

= — jhdxi + pi'dxi — p.dx. + p.^dx.^ — jJsdx^ + p/dx-J,

when the limits are introduced along a parallel BP^Pi'... to the axis of y

:

the various differential elements are the projections on the axis of x of the

various elements of the boundary at points along BP^Pi ....

It is proved, in the same way as before, that the part of — jpdx arising

from the positively-described elements of the boundary at the points on

BP^Pi'... is the foregoing sum. At P3' the part of Jj^dx is - pzdx^, because

the positive element dx^, which is equal to AB, is in the negative direction

* It is in this integration, and in the corresponding integration for p, that the properties of

the function q are assumed : any deviation from uniformity, finiteness or continuity within the

region of integration would render necessary some equation different from the one given in

the text.



IG.] IN INTEGRATION 23

of boundary integration ; at P3 it is p-jidx^, because the positive element

dx^, also equal to AB, is in the positive direction of boundary integration;

and so on for the other terms. Hence

- [v<-M>

corresponding to parallels through A and B to the axis of y, is equal to

the part of Jpdx taken along the boundary in the positive direction for all

the elements of the boundary that lie between those parallels. Hence

integrating for all the elements AB, we have as before

II
dxdy = — jpdx,

and therefore \\\?i^^~^) ^^^V —Hv^x + qdy).

Secondly, suppose that j) and q are complex. When they are resolved

into real and imaginary parts, in the forms j)' + w" and q + iq" respectively,

then the conditions as to uniformity, finiteness and continuity, which apply to

Hencep and q,
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conditions under which the lemma is valid. Since p is a function of z, we

have, at every point of the region,

dp _ldp
dx i dy

'

and therefore, in the present case,

dx dx dy

'

There is no discontinuity or infinity o^p or q within the region; hence

// H-D'^^^^^o.
the integi-al being extended over the region. Hence also

j{pdx + qdy)^0,

when the integral is taken round the whole boundary of the region. But

l^dx + qdy — ])dx + ipdy

= pd2

= f{z)dz,

and therefore If(^) dz — 0,

the integral being taken round the whole boundary of the region within

which/ (2') is holomorphic.

It should be noted that the theorem requires no limitation on the cha-

racter oif{z) for points z that are not included in the region.

Some important propositions can be derived by means of the theorem, as

follows.

18. WJien a function f iz) is holohwrpltic over any continuous 7'egiou

of the plane, the integral I f{z)dz is a holomorphic function of z ptrovided the

points z and a as well as the whole path of integration lie within tJmt region.

The general definition (§ 14) of an integral is associated with a specified

path of integration. In order to prove that the integral is a holomorphic

function of z, it will be necessary to prove (i) that the integral acquires the

same value in whatever way the point z is attained, that is, that the value is

independent of the path of integration, (ii) that it is finite, (iii) that it

is continuous, and (iv) that it is monogenic.

Let two paths ajz and a^z between a and z be drawn (fig. 6) in the

continuous region of the plane within which f{z) is

holomorphic. The line ayz^a is a contour over the area

of which / (z) is holomorphic ; and therefore Jf(z) dz

vanishes when the integral is taken along ayz^a.

Dividing the integral into two parts and implying by

Zy, z^ that the point z has been reached by the paths

a<yz, a^z respectively, we have Fig. 0.
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l''j(z)dz+j'' f(z)dz = 0,
J a J Zo

fZy fa
and therefore I f(z)dz=— I f(z) dz

J a J Zo

= f'f(z)dz.
J a

Thus the value of the integral is independent of the way in which z has

acquired its value ; and therefore I f(z) dz is uniform in the region. Denote

ithyF{z).

Secondly, f(z) is finite for all points in the region and, after the result

of § 17, we naturally consider only such paths between a and z as arc finite in

length, the distance between a and z being finite; hence (§ 15, IV.) the

integral F (z) is finite for all points z in the region.

Thirdly, let z' {=z + 8z) be a point infinitesimally near to z ; and consider

I f(2!) dz. By what has just been proved, the path from a to z' can be taken
J a

a/Szz' ; therefore

rf(z)dz=fy(z)dz+rf(z)dz
J a J a J z

or r'"~ f{z)dz - \'f{z) dz = r '"'

f(z) dz,
) a J a J z

SO that F{z + 8z) - F{z) = j'^ ^
f{z) dz.

' z

Now at points in the infinitesimal line from z to z', the value of the

continuous function f{z) differs only by an infinitesimal quantity from its

value at z ; hence the right-hand side is

where |ei is an infinitesimal quantity vanishing with hz. It therefore follows

that

F{z + hz)-F{z)

is an infinitesimal quantity with a modulus of tlie same order of small

quantities as \8z\. Hence F {z) is continuous for points z in the region.

Lastly, we have

F{z^hz)-F{z)
hz -f{^) + ^;

and therefore —^^ ^^ ^
bz

has a limit when Bz vanishes ; and this limit, / (z), is independent of the

way in which Sz vanishes. Hence F (z) has a differential coefficient; the

integral is monogenic for points z in the region.
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Hence F (s), which is equal to

is uniform, finite, continuous and monogenic ; it is therefore a holomorphic

function of z.

As in § 16 for the functions p and q, so here for f(z), no restriction is

placed on properties of f (z) at points that do not lie within the region; so

that elsewhere it may have infinities, or discontinuities or branch points.

The properties, essential to secure the validity of the proposition, are

(i) that no infinities or discontinuities lie within the region, and (ii) that the

same value of/(^) is acquired by whatever path in the continuous region

the variable reaches its position z.

Corollary. No cJiange is caused in the value of tJte integral of a

holomorphic function between two points when the path of integration hetween

the points is deformed in any manner, provided only that, dunng the defor-

mation, no part of the path passes outside the boundary of the region within

luhich the function is holomorphic.

This result is of importance, because it permits special forms of the path

of integration without affecting the value of the integral.

19. When a function f{z) is holomorphic over a p>art of the plane

bounded by two simple curves (one lying within the other), equal values of

Jf(z) dz are obtained by integrating round each of the curves in a direction,

which—relative to the area enclosed by each—is positive.

The ring-formed portion of the plane (fig. 1, p. 3) which lies between

the two curves being a region over which f(z) is holomorphic, the integi-al

ff{z) dz taken in the positive sense round the whole of the boundary of

the included portion is zero. The integral consists of two parts : first, that

round the outer boundary the positive sense of which is DEF; and second,

that round the inner boundary the positive sense of which for the portion of

area between ABC and DEF is ACB. Denoting the value oi Jf(z)dz round

DEF by (DEF), and similarly for the other, we have

(ACB) + (DEF) = 0.

The direction of an integral can be reversed if its sign be changed, so that

(ACB) = - (ABC) ; and therefore

(ABC) = (DEF).

But (ABC) is the integral ff(z)dz taken round ABC, that is, round the

curve in a direction which, relative to the area enclosed by it, is positive.

The proposition is therefore proved.

The remarks made in the preceding case as to the freedom from limitations

on the character of the function outside the portion are valid also in this case.
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Corollary I. When the integral of a function is taken round the whole

of any simple curve in the plane, no change is caused in its value by continuously

deforming the curve into any other simple curve provided that the function

is holomorj)hic over the part of the plane in which the deformation is effected.

Corollary II. When a function f (z) is holomorphic over a continuous

portion of a plane bounded by any number of simple non-intersecting curves,

all but one of which are external to one another and the remaining one of

which encloses them all, the value of the integral Jf(z) dz taken positively round

the single external curve is equal to the sum ufthe values taken round each, of

the other curves in a direction which is positive relative to the area enclosed

by it.

These corollaries are of importance in finding the value of the integral

of a meromorphic function round a curve which encloses one or more of the

poles. The fundamental theorem for such integrals, also due to Cauchy, is

the following.

20. Let f{z) denote a function which is liolomorpihic over any region in

the z-plane and let a denote any point luithin that region, which is not a zero

the integral being taken positively round tJte luhole boundary of the region.

With a as centre and a very small radius p, describe a circle C, which will

be assumed to lie wholly within the region; this assumption is justifiable

because the point a lies within the region. Because /(2:) is holomorphic over

the assigned region, the hwiction f{z)/{z — a) is holomorphic over the whole of

the region excluded by the small circle G. Hence, by Corollary II. of § 19, we

have

bJ z-a cJ z-a

the notation implying that the integrations are taken round the whole

boundary B and round the circumference of G respectively.

For points on the circle G, let z — a = pe^^, so that 6 is the variable for

the circumference and its range is from to 27r ; then we have

z — a

Along the cirda f{z)=f (a + pe'''); the quantity p is very small and / is

finite and continuous over the wliolc of the region so that f(a + pe^) differs

from f{a) only by a quantity which vanishes with p. Let this difference

be e, which is a continuous small quantity; then jej is a small quantity

which, for every point on the circumference of G, vanishes with p. Then
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[li^dz = ir{f(a) + €}d0
cJz-a Jo

= ^TTif (a) + i I edd.
Jo

If E denote the value of the integral on the right-hand side, and rj the

greatest value of the modulus of e along the circle, then, as in § 15,

\E\< \e\d0
Jo

fZTT

< r]d0
Jo

< 27rrj.

Now let the radius of the circle diminish to zero : then 97 also diminishes

to zero and therefore \E\, necessarily positive, becomes less than any finite

quantity however small, that is, JE is itself zero; and thus we have

ll^d2 = 2'7rif(a),
cJ z — a J \ />

which proves the theorem.

This result is the simplest case of the integral of a meromorphic

f(z)
function. The subject of integration is , a function which is monogenic

and uniform throughout the region and which, everywhere except at z = a, is

finite and continuous ; moreover, z = a is a pole, because in the immediate

vicinity of a the reciprocal of the subject of integration, viz. rFT^ > is holo-

morphic.

The theorem may therefore be expressed as follows

:

If g (z) be a meromorphic function, which in the vicinity of a can be

f(z)
expressed in the form where f(a) is not zero and which at all other

points in a region enclosing a is holomorphic, then

9~"- 19 i'^) ^^ ~ limit of {z — a)g {z) when z = a,

the integral being taken round a curve in the region enclosing the point a.

The pole a of the function g {z) is said to be simple, or of the first order,

or of multiplicity unity.

Corollary. The more general case of a meromorphic function with a

finite number of poles can easily be deduced. Let these be tti,..., «« each

assumed to be simple ; and let

G {z) ^(z- a,) (z - a,). ..{z- a,,).
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Let f{z) be a holomorphic function within a region of the 2;-plane bounded

by a simple contour enclosing the ii points a^, a.,, ...an, no one of which is a

zero o{f(z). Then since

1 =1 1 1

we have

G(z) r=i G' {a,) z - a/

G {z) ^=1 G' (cir) z — a/

We therefore have I ^ftV^ dz = ^ 7977—^ I

-^
f?^,

J (r (^) ,.=i<^ («/•)•/ ^-«r

each integral being taken round the boundary. But the preceding proposition

gives

/
l^dz=2'rrif{ar\
z — a. ^ V

/

because / (2^) is holomorphic over the whole region included in the contour;

and therefore

]G-{z)'^'-^''T.,W(^y

the integral on the left-hand side being taken in the positive direction*.

The result just obtained expresses the integral of the nieromorphic

function round a contour which includes a finite number of its simple poles.

It can be other\vise obtained by means of Corollary II. of § 19, by adopting

a process similar to that adopted above, viz., by making each of the curves in

the Corollary quoted small circles round the points «!,..., 0,4 with ultimately

vanishing radii.

21. The preceding theorems have sufficed to evaluate the integi-al of

a function with a number of simple poles : we now proceed to obtain

further theorems, which can be used among other purposes to evaluate

the integral of a function with poles of order higher than the first.

We still consider a function f{z) which is holomorphic within a given

region. Then, if a be a point within the region which is not a zero o{ f{z),

we have

•' ^ zvi J z — a

the point a being neither on the boundary nor within an infinitesimal

distance of it. Let a + 8a be any other point within the region ; then

f{a + Ba) = ^.L '^^'\ dz,
'' ' liTi J z-a — ca

* We shall for the future assume that, if no tlircctiou for a complete integral be specified, the

positive direction is taken.
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and therefore

PROPERTIES OF [21.

/(„ + &0 - /(a) = 2^. /(-^„ + jrirfe) /(-> '^-

2in }

ha
v,+

(Sa)^
f{z)dz,^^^^^

y 2iri ] \{2 - af ^ (z - af {z - a -Sa)j

the integral being in every case taken round the boundary.

Since /(2) is monogenic, the definition of /'(a), the first derivative of

f(a), gives/' (a) as the limit of

f{a + Sa)-f{a)
^

8a

when Sa ultimately vanishes ; hence we may take

f(a + Ba)-f(a) r> / .
,

ha

where a- is a quantity which vanishes with ha and is therefore such that |o-|

also vanishes with ha. Hence

[f'{a) + a]ha
ha

v,+
ha

f{z)dz;
27ri j [{z - a)- (z - a)- (z-a- ha)\

dividing out by ha and transposing, we have

•^ ^ ^ 27ri] (z- a)' 2'm J (z - a)- {z-a- ha)

As yet, there is no limitation on the value of ha ; we now proceed to a limit

by making a + ha approach to coincidence with a, viz., by making ha

ultimately vanish. Taking moduli of each of the members of the last

equation, we have

I
1 r f(z) , ha f fiz) J

y ^ ' 2it%]{z-ay 27nJ {z-a)-{z-a-ba)

'
' 27r \j {z—a)-(z — a—ha)

Let the greatest modulus of
f(z)

for points z along the
(z — a)- {z-a— ha)

boundary be M, which is a finite quantity on account of the conditions

applying to f{z) and the fact that the points a and a-\-ha are not

infinitesimally near the boundary. Then, by § 15,

/ (z — ar (z — a — ba)^(z — ay{z — a — ha)

<MS,

where >S' is the whole length of the boundary, a finite quantity. Hence

/(„)__L.[/i£L,rf.l<|.| + |ilj/s.
•^ 27n J (z — a)-

i

2'ir
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When we proceed to the limit in which 8a vanishes, we have |Sa| =
and |o-| = 0, ultimately; hence the modulus on the left-hand side ultimately

vanishes and therefore the quantity to which that modulus belongs is itself

zero, that is,

so that /W = 2s/(i^=''^-

This theorem evidently corresponds in complex variables to the well-known

theorem of differentiation with respect to a constant under the integral

sign when all the quantities concerned are real.

Proceeding in the same way, we can prove that

f(a + 8a)-f {a)_ 2!
[ f (z)

8a ~2'7ri](z-ay'^^^^'

where is a small quantity which vanishes with 8a. Moreover the integral

on the right-hand side is finite, for the subject of integration is everywhere

finite along the path of integration which itself is of finite length. Hence,

first, a small change in the independent variable leads to a change of the

same order of small quantities in the value of the function f (a), which

shews that/' (a) is a continuous function. Secondly, denoting

f(a + 8a)-f(a)

by 8/' (a), we have the limiting value of ^ equal to the integral on

the right-hand side when 8a vanishes, that is, the derivative of /"'(a) has

a value independent of the form of 8a and therefoi"C f (a) is monogenic.

Denoting this derivative by /"(«), we have

2! f fjz)

Thirdly, the function f {a) is uniform; for it is the limit of the value

of*^—^^ —J-—•'—^^ and both /(tt) and /(« 4- Sa) are uniform. Lastly, it

is finite; for (S 15) it is the value of the integral - . \ , ~-^Az, in which
^^ ' ^ 2711 J (z- a)-

the length of the path is finite and the subject of integration is finite at

every point of the path.

Hence /'(«) is continuous, monogenic, uniform, and finite throughout

the whole of the region in which / (z) has these properties : it is a

holomorphic function. Hence :

—

Wlten a function is holomorpJiic in any i^egion of the plane hounded
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hj a simple curve, its derivative is also holomorphic within that region. And,

by repeated application of this theorem :

—

When a function is holomorphic in any region of the plane hounded

by a simple curve, it has an unlimited number of successive derivatives each

oftuhich is holomorphic within the region.

All these properties have been shewn to depend simply upon the holo-

morphic character of the fundamental function ; but the inferences relating

to the derivatives have been proved only for points within the region and

not for points on the boundary. If the foregoing methods be used to prove

them for points on the boundary, they require that a consecutive point shall

be taken in any direction ; in the absence of knowledge about the fundamental

function for points outside (even though just outside) no inferences can be

justifiably drawn.

An illustration of this statement is furnished by the hypergeometric series

which, together with all its derivatives, is holomorphic within a circle of

radius unity and centre the origin ; and the series converges unconditionally

everywhere on the circumference, provided 7 > a + /3, But the corresponding

condition for convergence on the circumference ceases to be satisfied for some

one of the derivatives and for all which succeed it : as such functions do not

then converge unconditionally, the circumference of the circle must be

excluded from the region within which the derivatives are holomorphic.

22. Expressions for the first and the second derivatives have been

obtained.

By a process similar to that which gives the value of /' (a), the derivative

of order 71 is obtainable in the form

/,«, („) = ill. [,-/%, dz.
•' ^ '

2-771 J (z - aY+^'(z-ay

the integral being taken round the whole boundary of the region or round any

curves which arise from deformation of the boundary, provided that no point

of the curves in the final or any intermediate form is indefinitely near to a.

In the case when the curve of integration is a circle, no point of which

circle may lie outside the boundary of the region, we have a modified form

for /<'^' (a).

For points along the circumference of the circle with centre a and radius

r, let

2 — a = re^*,

dz
so that as before = idd :

z — a

then and 27r being taken as the limits of 0, wo have
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Let M be the gi-eatest value of the moduhis of /(z) for points on the

circumference (or, as it may be convenient to consider, of points on or within

the circumference) : then

n I r^f

<

.M

1 ra:

MdO

< n\

Now, let there be a function ^ {z) defined by the equation

M
<i>{z)^

1 -

which can evidently be expanded in a series of ascending powers of z — a

that converges within the circle. The series is

I / X ir (i z — a (z — a)-

so that

Hence

d"<i)(z) ,ilf f, , -.x^r-a

?•"
(

rdz"

'd"(j} (z)' M

SO that, if the value of the 7ith derivative of <^(^), when = a, be denoted

by <^'"> (a), we have

|/<"'(«)1 <</>""(«)•

These results can be extended to functions of more than one variable

:

the proof is similar to the foregoing proof. When the variables are two,

say z and z' , the results may be stated as follows :

—

For all points z within a given simple curve G in the 2^-plane and all

points z' within a given simple curve C" in the /-plane, let / {z, z) be a

holomorphic function; then, if a be any point within C and a' any point

within C,

nUi' ! n f{z, z') ^ d-^-y (a, a')

{2'rriy J J (z - ay^' {z' - «')"'+» dii^da''' '

where n and w'are any integers and the integral is taken positively round the

two curves G and C".

If 31 be the greatest value of \f{z, z')\ for points z and z within their

respective regions when the curves G and C are circles of radii i\ r' and

centres a, a, then

9"+"'/ (a, a')

da^da'"'
< n ! li ! —, ;

3
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M
aud if (^ {z, z') =

(i-~)(i-S^')

then
a«+»'/(a,a')

aa"aa''^'

when z = a and / = a in the derivative of ^ (2^, 2:').

23. All the integrals of meromorphic functions that have been considered

have been taken along complete curves : it is necessary to refer to integi-als

along curves which are lines only from one point to another. A single

illustration will suffice at present.

Consider the integral I
-^ ^ ^

dz: the function /" (2') is

supposed holomorphic in the given region, and z and z^ are

any two points in that region. Let some curves joining z

to Zf) be drawn as in the figure (fig. 7).

f(z)
Then ^^—^ is holomorphic over the whole area en- -p. „

z — a ^ Fig. 7

closed by zSzhz^: and therefore we have 1
'-^ dz^O when taken round the

j z — a

boundary of that area. Hence as in the earlier case we have

Jr^ z — a Jg^ z — a

The point a lies within the area enclosed by z^rfz^z^, and the function

--- is holomorphic, except in the immediate vicinity of ^ = a ; hence

[li^ dz = 2'7rif(a),
J z— a ./ \ /'

the integral on the left-hand side being taken round z/yz^Zo. Hence

r''^-^dz=i''^dz+2^ifia).
J So

z-a j ,^ z-a -^

Denoting "^-^^ by g (z), the function g (z) has one pole a in the region

considered.

The preceding results are connected only with the simplest form of

meromorphic functions; other simple results can be derived by means of the

other theorems proved in §§ 17—21. Those which have been obtained are

sufficient however to shew that : The integral of a meromorphic function

Jg{z)dz from one jjoint to another of the region of the function is not in

general a uniform function. The value of the integral is not altered by

any deformation of the path which does not meet or cross a pole of the

function ; but the value is altered when the path of integration is so
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deformed as to pass over one or more poles. Therefore it is necessary to

specify the patli of integration when the subject of integration is a nieru-

moyphic function ; only partial deformations of the path of integration are

possible without modifying the value of the integral.

24. The following additional propositions* are deduced from limiting

cases of integration round complete curves. In the first, the curve becomes

indefinitely small ; in the second, it becomes infinitely large. And in neither,

are the properties of the functions to be integrated limited as in the pre-

ceding propositions, so that the results are of wider application.

I. If f{z) he a function wJiich, whatever he its cliaracter at a, lias no

infinities and no hranch-points in the immediate vicinity of a, the value of

Jf{z)dz taken rvund a small circle with its centre at a tends totvards zero

when the circle diminishes in magnitude so as tdtimately to he merely the

point a, provided that, as \z — a\ diminishes indefinitely, the limit of(z — a)f{z)

tend uniformly to zero.

Along the small circle, initially taken to be of radius r, let

z — a = re^'-,

so that = idO,
z— a

and therefore jf{^) dz = i\ (z — a)f(z) dO.
Jo

Hence
| // (z) dz\ =

\

(z-a) f(z) dO
l-'o

<r\{z-a)f{z)\de
J

< MdO
J

< 27rM',

where M' is the greatest value of M, the modulus of (z — a)f(z), for points

on the circumference. Since {z — a)f{z) tends uniformly to the limit zero as

\z—a\ diminishes indefinitely, \jf{z) dz\ is ultimately zero. Hence the integral

\tse\i jf {z) dz is zero, under the assigned conditions.

Note. If the integral be extended over only part of the circumference of

the circle, it is easy to see that, under the conditions of the proposition,

the value of jf{z) dz still tends towards zero.

Corollary, If (z — a)f{z) tend unifomdy to a limit k as \z — a\

dim,inishes indefinitely, the value of jf{z)dz taken round a small circle centre

a tends towards 2'7rik in the limit.

* The form of the first two propositions, which is adopted here, is due to Jordan, Cours

d'Analyse, t. ii, §§ 285, 28G.

•S—2
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—T, taken round a very small circle centre a, where a is

r dz . . ir /2\i
not the oridn, is zero : the value of I , round the same circle is -. (

-
| .

J{a-z){a+z)^ '- W
Neither the theorem nor the corollary will apply to a function, such as sn —- ,

which has the point a for an essential singularity : the value of {z — a) sn , as

\z — a\ diminishes indefinitely, does not tend (§ 13) to a uniform limit. As a matter of

fixct, the function sn — has an infinite number of poles in the immediate vicinity of a
z-a

as the limit ^= a is being reached.

II. Whatever he the charader of a function f {z) for infinitely large values

of z, the value of ff{z) dz, taken round a circle witJi tlie origin for centre, tends

towards zero as the circle becomes infinitely large, provided that, as \z\

increases indefinitely, the limit of zf{z) tend uniformly to zero.

Along a circle, centre the origin and radius R, we have z =Re^\ so that

z

and therefore If{^) dz = ij zf{z) dO.
Jo

Hence \If(^)d^\ = zf{z)dd

^0
< 1 zf(z)

I
de

< Mde
J i)

where M' is the greatest value of M, the modulus of zf{z), for points on

the circumference. When R increases indefinitely, the value of M' is zero

on the hypothesis in the proposition ; hence
|
Ifiz) dz \

is ultimately zero.

Therefore the value of jf{z)dz tends towards zero, under the assigned con-

ditions.

Note. If the integral be extended along only a portion of the circumfer-

ence, the value of Sf{z) dz still tends towards zero.

Corollary. If zf{z) tend wiiformly to a limit k as \z\ increases

indefinitely, the value of jf{z) dz, taken round a very large circle, centre the

origin, tends towards 27rik.

Thus the value of J(l -z^)~-dz round an infinitely large circle^ centre the origin, is zero

if 71 > 2, and is 27r if n= 2.

III. If all the infinities and the branch -points of a function lie in a finite

region of the z-plane, then the value of Jf (z) dz round any simple curve, which
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includes all those points, is zero, provided the value of zf{z), as \z[ increases

indefinitely, tends uniformly to zero.

The simple curve can be deformed continuously into the infinite circle

of the preceding proposition, without passing over any infinity or any

branch- point ; hence, if we assume that the function exists all over the plane,

the value of jf{z) dz is, by Cor. I. of § 19, equal to the value of the integral

round the infinite circle, that is, by the pi'eceding proposition, to zero.

Another method of stating the proof of the theorem is to consider

the corresponding simple curve on Neumann's sphere (§ 4). The surface

of the sphere is divided into two portions by the curve*: in one portion lie

all the singularities and the branch-points, and in the other portion there is

no critical point whatever. Hence in this second portion the function is holo-

morphic ; since the area is bounded by the curve we see that, on passing back

to the plane, the excluded area is one over which the function is holomorphic.

Hence, by § 19, the integral round the curve is equal to the integral round

an infinite circle having its centre at the origin and is therefore zero, as

before.

Corollary. If, vnder the same circumstances, the value of zf{z), as

\z\ increases indefinitely, tend uniformly to k, then the value of Jf(z)dz round

the simple curve is 27rik.

f dz
Thus the vahic of I

—
,
along any simple curve which encloses the two points

a and - a is 27r ; the value of

dz

h )h{(1-22)(1-F.2)}i

round any simple curve enclosing the four points 1, -1, y, --, is zero, X- being a non-
A' A'

vanishing constant ; and the value of J(l ~z^"')~-dz, taken round a circle, centre tlie origin

and radius greater than unity, is zero when n is an integer gi-eatei' than 1.

But the value of
/((7r^,)(,_*) (,_,,),»

round any circle, which has the origin for centre and includes the three distinct points

Cj, e.^, e^, is not zero. The subject of integration has s= qo for a branch-point, so that the

condition in the proposition is not satisfied ; and the reason that the result is no longer

valid is that the deformation into an infinite circle, as described in Cor. I. of § 19,

is not possible because the infinite circle would meet the branch-point at infinity.

25. The further consideration of integrals of functions, that do not possess

the character of uniformity over the whole area included by the curve of in-

tegration, will be deferred until Chap. IX. Some examples of the theorems

proved in the present chapter will now be given.

* The fact that a single path of inte^'ratiou is the boundary of two portions of the surface

of the sphere, within which the function may have dififorent cliaracteristic properties, will be

used hereafter (§ 104) to obtain a relation between the two internals that arise according as the

path is deformed within one portion or within the other.
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Ex. \. It is sufficient merely to mention the indefinite integrals (that is, integrals from

an ai'bitrary point to a point z) of rational, integral, algebraical functions. After the

preceding explanations it is evident that they follow the same laws as integrals of similar

functions of real variables.

7-

—

'^^~^^
) taken roiuid a simple

(2-a)" + i' ^

*(')=.i-/!^*'

When n is 0, the value of the integral is zero if the curve do not include the point a,

and it is ^iri if the curve include the point a.

When n is a positive integer, the value of the integral is zero if the curve do not

include the point a (by § 17), and the value of the integral is still zero if the curve do

include the point a (by § 22, for the function f{z) of the text is 1 and all its derivatives

are zero). Hence the value of the integral round any curve, which does not pass through

a, is zero.

"We can now at once deduce, by § 20, the result that, if a holomorpMc function he

constant along any simple closed curve icithin its region, it is constant over the whole

area within the curve. For let t be any point within the cm-ve, z any point on it, and G
the constant value of the function for all the points z ; then

r<^(f)

-t

the integral being taken round the ciu-ve, so that

^^^ 2injz-t

= C
by the above result, since the point t lies within the curve.

E.v. 3. Consider the integral \e~^'dz.

In any finite part of the plane, the function e~^ is holomorphic; therefore (§ 17) the

integral round the boundary of a rectangle

(fig. 8), bounded by the lines x — ±_ a, 3/=0,

?/= 6, is zero : and this boundary can be

extended, provided the deformation remain

in the region where the function is holo-

morphic. Now as a tends towards infinity,

the modulus of e~^, being e-^- + J'\ tends

towards zero when y remains finite ; and

therefore the preceding rectangle can be ^^S- ^•

extended towards infinity in the direction of the axis of .r, the side h of the rectangle

remaining unaltered.

Along A'A, we have z= x : so that the value of the integral along the part A'A of the

boundary is / e~^'^dx.

Along AB., %ve have z= a+ iy, so that the value of the integral along the part AB

is i I e-'fl + 'yfdy.

Along BB', we have z= x-\-ih, so that the value of the integi-al along the part BB'

is i %-(»= + •''l^dr.

Along B'A\ w^e have z= -a+ iy, so that the value of the integral along the part

B'A' is i j e-(-" + ^'J)''dy.
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The second of these portions of the integral is e'"- .i.
j

ev"-'''^"i>^d^, which is easily seen

to be zero when the (real) quantity a is infinite.

Similarly the fourth of these portions is zero.

Hence as the complete integi-al is zero, we have, on passing to the limit,

whence e^M c-=^-^i'":d.v=
j

e-='\Lc==n-,

rtr>

or
I

e"^ (cos 2bx - i sin 2hx) dx=Tre~^'^
;

and therefore, on equating real parts, we obtain the well-known result

e"*' cos 2bxdx=iT-e~''\
/;

This is only one of numerous examples* in which the theorems in the text can be

applied to obtain the values of definite integrals with real limits ami real variables.

Ex. 4. Consider the integral I dz, where n is a real positive quantity less than
J L -T Z

unity.

The only infinities of the subject of integration are the origin and the point - 1
;

the branch-points are the origin and ?=oo. Everywhere else in the plane the function

behaves like a holomorphic function ; and, therefore, when we take any simple closed

curve enclosing neither the origin nor the point - 1, the integral of the function round

that curve is zero.

We shall assume that the curve lies on the positive side of the axis of x and that it

is made up of :

—

(i) a semicircle C^ (fig. 9), centre the origin and radius R wliich is made to increase

indefinitely :

(ii) two semicircles, Cj and c.^, with their centres at and - 1 respectively, and with

i-adii r and r', which ultimately are made infinitesimally small :

(iii) the diameter of C^ along the axis of x excepting those ultimately infinitesimal

portions which arc the diameters of c^ and of t^.

The subject of integration is uniform within the area thus enclosed although it

is not uniform over the whole plane. We shall take that value of .:""i which lias its

argument equal to(?t- 1)^, where 6 is the argument of ^.

* See Briot and Bouquet, Theoric dex functions cUq)tiqucs, ('2ud ed.), pp. 141 et sqq., from

which examples 3 and 4 are taken.
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The integral round the boundary is made up of four parts.

{a) The integral round C^. The value of z . -— , as \z\ increases indefinitely, tends

uniformly to the limit zero ; hence, as the radius of the semicircle is increased indefinitely,

tlie integral round C^ vanishes (§ 24, ii., Note).

^n—

1

(b) The integral round i\. The value of z. —— , as |2| diminishes indefinitely,

tends uniformly to the limit zero ; hence as the radius of the semicircle is diminished

indefinitely, the integral round Cj vanishes (§ 24, i., JVote).

(c) The integral round c.^. The value of {\+z) -— ; , as
1 1 +2| diminishes indefinitely

for points in the area, tends uniformly to the limit (-!)»->, i.e., to the limit e(»»-i)"'.

Hence this part of the integral is

(»-i)7ri r^

being taken in the direction indicated by the arrow round Cg, the infinitesimal semicircle.

Evidently =id6 and the limits are it to 0, so that this part of the whole integral is

1 -\-z

lire

= - nre

(cl) The integral along the axis of .v. The parts at - 1 and at which form the

diameters of the small semicircles are to be omitted ; so that the value is

[j -00 J -1+r J r ) !+•*•

This is what Cauchy calls the principal value* of the integral

f.
ax.

-00 l+X

Since the whole integral is zero, we have

JlTTme ^ dx=0.

principal values being taken in each case. Then, takmg account of the arguments, we have

F^r^-^dx
J l-^

Since ^•,^e^'^'+ /'+r = 0,

we have P - e«-^(2= - iWc'^"',

* Williamson's Integral Calculus, § 104.
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so that P- Q COH nn = n HUl nn
, Q )i\nnn = 7r C0H7ln.

Hence i dx^P^ir cosec iitt,

J \+x

I
'- dx= Q= Tv cot nn.
l-.r

Ex. 5. In the same way it may 1)r proved that

cos ax

/;
dx = - ^ - 2 «

where w is an integer, a is positive and <» is e 2"

.

^r. 6. By considering the integral \e~^z^'''^dz round the contour of the sector of a

circle of radius r, bounded by the radii ^= 0, 6— a., where a is less than \tt and n is positive,

it may be proved that

/:

on proceeding to the limit when r is made intinite. (Briot and Bouquet.)

/I
--^, where n is an integer. The subject of integration

is meromorphic ; it has for its poles (each of which is simple) the n points w'' for r=Q,

1, ..., n- 1, where w is a primitive wth root of unity ; and it has no other infinities and no

branch -points. Moreover the value of ^
—-, as |s| increases indefinitely, tends uniformly

to the limit zero ; hence (§ 24, III.) the value of the integral, taken round a circle centre

the origin and radius > 1, is zero.

This result can be derived by means of Corollary II. in § 19. Surround each of the

poles with an infinitesimal circle having the pole for centre ; then the integral round

the circle of radius > 1 is equal to the sum of the values of the integral round the

infinitesimal circles. The value round the circle having &>'' for its centre is, by § 20,

27ri ( limit of
''-—

- , when z= at^\

= 6

n

Hence the intesrral round the lame circle

27ri «-i— 2 0)"
'•

= 0.

Ex. 8. Hitherto, in all the examples considered, the poles that have occurred have

been simple : but the results proved in § 21 enable us to obtain the integrals of

functions which have multiple poles within an area. As an example, consider the
/ dz

integral 1 , 2\n + i
''ound any curve which includes the point i but not the point - i, the.se

points being the two poles of the subject of integration, each of multi])licity n + l.
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We have seen that /" (a) =^ f^^^i ^h

where f{z) is holomorphic throughout the region bounded by the curve round which the

integral is taken.

In the present case a is ?, and/(-)=
yn.-^-x

'> ^^ '^'^^'^

2n! (-1)"

2« I (" _ 1 "in 9.11 '

and therefore f" {i) =^ .^ ';. = ^
2 " 2" -

1

1.

Hence we have
j ^^_^J^„^i

=^ /" (')

2w! n-

n\n\ 22'»

'

In the case of the integral of a function round a simple curve which contains several

of its poles, we first (§ 20) resolve the integral into the sum of the integi'als round simple

curves each containing only one of the points, and then determine each of the latter

integi'als as above.

Another method that is sometimes possible makes use of the expression of the uniform

function in partial fractions. After Ex. 2, we need retain only those fractions which are of

the form : the integi-al of such a fraction is 27riA, and the value of the whole integral
z — ci

is therefore 2Tn^A. It is thus sufficient to obtain the coefficients of the inverse first powers

which arise when the function is expressed in partial fractions corresponding to each pole.

Such a coefficient A, the coefficient of _ in the expansion of the function, is called by

Cauchy the residue of the function relative to the point.

For example,

so that the residues relative to the points —1, — w, —a^ are f, fw, fw^ respectively.

Hence if we take a semicircle, of radius > 1 and centre the origin with its diameter

along the axis of ?/, so as to lie on the positive side of the axis of y, the area between the

semi-circumference and the diameter includes the two points - a> and — w^ ; and therefore

the value of

dz

h(23+ 1)2'

taken along the semi-circumference and the diameter, is

2Tri (f CO+ g a>-)
;

i.e., the value is — Atti.



CHAPTER III.

Expansion of Functions in Series of Powers.

26. We are now in a position to obtain the two fundamental theorems

relating to the expansion of functions in series of powers of the variable

:

they are due to Cauchy and Laurent respectively.

Cauchy's theorem is as follows* :

—

When a function is liolomorphic over the area of a circle of centre a, it can

he expanded as a series ofpositive integral powers of z— a converging for all

points within the circle.

Let z be any point within the circle ; describe a concentric circle of

radius r such that

\z — a\ = p<r<R,
where R is the radius of the given circle. If t

denote a current point on the circumference of the

new circle, we have

1
^

[/(O dt

27ri J t — a^ z — a'
1 - 7— Fit;. 10.

t — a

the integral extending along the whole circumference of radius r. Now

1 _ z — a (z —
= 1 +

(z-a"s^ fz-aY \t-a)

\t — a/ \t — a)z — a t — a \t — aj \t — a/ ^ z — a

t—a t—a

so that, by § 14 (III.), we have

f(.^- 1 //(^)^/4-^-^f /(^^ dt^
{z-aYf fit)

^^'^-^-rriit-a.'^^^ 2'rri ] {t^^' 27rr' j (« - a)"-
^^

2vi Jt — z\t — aj

* Exercices d'Analyse et de Physique I\I(itlit'iii(iti(iiu', t. ii, pj). TiO et hoj\. ; the memoir was first

made public at Turin in 1832.
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Now f{t) is holomorphic over the whole area of the circle ; hence, if t be

not actually on the boundary of the region (§§ 21, 22), a condition secured by

the hypothesis r < R, we have

and therefore

/(.)=/(«.).(.-«)/(.). ^^f-i'^^'^-lBi^-
Let the last term be denoted by L. Since \z — a\—p and \t — a\=r,

it is at once evident that \t — z\'^r — p. Let M be the greatest value of

1/(^)1 for points along the circle of radius r ; then M must be finite, owing to

the initial hypothesis relating to/(^). Taking

t — a= re^'-

so that dt = i(t — a) dO,

we have 1X1=^^
j^ t^zOZr{t-af

pn+i

r^ (r — p)

<(r"-(-,.
Now r was chosen to be greater than p ; hence as n becomes infinitely

large, we have [^j infinitesimally small. Also M fl — H is finite.

Hence as n increases indefinitely, the limit of 1Z|, necessarily not negative,

is infinitesimally small and therefore, in the same case, L tends towards

zero.

It thus appears, exactly as in § 15 (V.), that, when n is made to increase

without limit, the difference between the quantity f{z) and the first n + 1

terms of the series is ultimately zero ; hence the series is a converging series

having/(2:) as the limit of the sum, so that

/(^)=/(«) + (^-«)/'(«) + ^-^^ /'(«)+ +^-^^ /"'(«)+
'

which proves the proposition under the assigned conditions. It is the form

of Taylor's expansion for complex variables.

Note. The series on the right-hand side is frequently denoted by

P (z — a), where P is a general symbol for a converging series of positive

integral powers of z — a: it is also sometimes* denoted by P(z\a). Con-

* Weierstrass, Ahh. ans der FunctionenUhre, p. 1.
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formably with this notation, a series of negative integral powers of z — a

would be denoted by P [ j : a series of negative integi-al powers of z

either byP(-) or by P{z\x)), the latter implying a series proceeding in

positive integral powers of a quantity which vanishes when z is infinite,

i.e., in positive integral powers of -.

If, however, the circle can be made of infinitely great radius so that the

function f{z) is holomorphic over the finite part of the plane, the equivalent

series is denoted by G{z — a) and it converges over the whole plane.

Conformably with this notation, a series of negative integi-al powers oi z - a

which converges over the whole plane is denoted hy G i \

.

27. The following remarks on the proof and on inferences from it should

be noticed.

(i) In order that .— may be expanded in the required form, the

point z must be taken actually within the area of the circle of radius R

;

and therefore the convergence of the series P (z — a) is not established for

points on the circumference.

(ii) The coefficients of the powers of z — a in the series arc the

values of the function and its derivatives at the centre of the circle ; and the

character of the derivatives is sufficiently ensured (§ 21) by the holomoi-phic

character of the function for all points within the region. It therefore

follows that, if a function be holomorphic within a region bounded by a

circle of centre a, its expansion in a series of ascending powers of ^^ — a

converging for all points within the circle depends only upon the values of

the function and its derivatives at the centre.

But instead of having the values of the function and of all its derivatives

at the centre of the circle, it will suffice to have the values of the holomorphic

function itself over any small region at a or along any small line through

a, the region or the line not being infinitesimal. The values of the

derivatives at a can be found in either case ; for /' (b) is the limit of

{f{b + Sb)—f(b)]/Bb, so that the value of the first derivative can be found

for any point in the region or on the line, as the case may be ; and so for all

the derivatives in succession.

(iii) The form of Maclaurin's series for complex variables is at once

derivable by supposing the centre of the circle at the origin. We then

infer that, if a function be holuntorpJdc over a circle, centre the urujin, it can be
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represented in the form of a series of ascending, positive, integral poiuers of the

variable given by

/(^)-/(0) + #'(0) + |,/"(0)+...,

where the coefficients of the various powers of z are the values of tJie derivatives

of f{z) at the origin, and the series converges for all points within the circle.

Thus, the function e^ is holomorphic over the finite part of the plane

;

therefore its expansion is of the form G {z). The function log (1 4- ^) has a

singularity at — 1 ; hence within a circle, centre the origin and radius unity,

it can be expanded in the form of an ascending series of positive integral

powers of z, it being convenient to choose that one of the values of the

function which is zero at the origin. Again, tan"'^:" has singularities at the

four points z^ — — l, which all lie on the circumference; choosing the value at

the origin which is zero there, we have a similar expansion in a series, con-

verging for points within the circle.

Similarly for the function (1 -{- z)'\ which has — 1 for a singularity.

(iv) Darboux's method* of derivation of the expansion of f {z) in

positive powers oi z — a depends upon the expression, obtained in § 15 (IV.),

for the value of an integral. When applied to the general term

z - a\"+i
L say, it gives L = \r (i^^j / {0>

where t. is some point on the circumference of the circle of radius r, and X is

a complex quantity of modulus not greater than unity. The modulus of -r,

is less than a quantity which is less than unity ; the terms of the series of

moduli are therefore less than the terms of a converging geometric progres-

sion, so that they form a converging series; the limit of \L\, and therefore

of L, can, with indefinite increase of n, be made zero and Taylor's expansion

can be derived as before.

00

Ex. 1. Prove that the arithmetic mean of all values of s ~ " 2 apZ", for points lying along

a circle \z\ = r entirely contained in the region of continuity, is a„. (Rouche, Gutzmer.)

Prove also that the arithmetic mean of the squares of the moduli of all values of
CO

2 rtyZ", for points lying along a circle U|= r entirely contained in the region of continuity,
!' = ()

is equal to the sum of the squares of the moduli of the terms of the sci'ies for a point on

the circle. (Gutzmer.)
00

Ex. 2. Prove that the function 2 rt"2"',

M =

is finite and coutiiuious, as well as all its derivatives, within and on the boundary of the

circle |s| = l, provided \a\ < 1. (Fredholm.)

* Liouville, 3^""= S6r., t. ii, (187G), pp. 201—312.
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28. Laurent's theorem is as follows*:

—

A function, which is holomorjjJdc in a imrt of the plane hounded hy two

concentric circles with centre a and finite radii, can he expanded in the form

of a double series of integral poiuers, positive and negative, of z — a, the series

converging uniformly and unconditionally in the p>art of the plane hetween the

circles.

Let z be any point within the region bounded by the two circles of radii

R and R'; describe two concentric circles of

radii r and r' such that

R>r>\z- a|>r'> R'.

Denoting by t and by s current points on the

circumference of the outer and of the inner

circles respectively, and considering the space

which lies between them and includes the point

z, we have, by § 20,

•^ ^ 27njt-z 2771 J s — z ^ ^
Fig- 11.

a negative sign being prefixed to the second integral because the direction

indicated in the figure is the negative direction for the description of the

inner circle regarded as a portion of the boundary.

Now we have
'z-a\''+'

t — a ^ z — a= 1+ ,— +
t — z t — a

/z — a

\t-a.
+ +

z — a
+

t — a

1 -
z — a

t — a

this expansion being adopted with a view to an infinite converging series,

1
z — a

because
t — a

is less than unity for all points t; and hence, by § 15,

[pQdt=f{^*^dt + (z-a)[/-^dt + +(z-ar[-
Jt-z Jt-a ']{t-ay ^

J{

fit)

(t - a)"+i
dt

+
ff(0 /z-aV
Jt-z\t-aJ

dt.
z \t — aj

Now each of the integrals, which arc the respective coefficients of powers of

z — a, is finite, because the subject of integration is everywhere finite along

the circle of finite radius, by § 15 (IV.). Let the value of

\t-aY*'
"*

be 2'7riu,.: the quantity m^. is not necessarily ecpial tof'(a)-^r\, because no

/(

Comptes liendus, t. .xvii, (1^-13), p. 931).
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knowledge of the function or of its derivatives is given for a point within

the innermost cii'cle of radius R'. Thus

^r—. f^ dt = Uo + (z - a) u,+{z- ay u, + +{2- ay'Un
ZTTl Jt — Z

.n+il!f(J}(^^\ at
liriji — z\t — a)

The modulus of the last term is less than

M /pY+'

1
p \r

r

where p is |^ — a| and M is the greatest value of !/(0| f<Ji' points along the

circle. Because p <r, this quantity diminishes to zero with indefinite in-

crease of n ; and therefore the modulus of the expression

becomes indefinitely small with increase of n. The quantity itself therefore

vanishes in the same limiting circumstance ; and hence

^J-^^dt = Uo + (z-a)u,+ +(z-ay''a„,+ ,

27ri

so that the first of the integrals is equal to a series of positive powers. This

series converges uniformly and unconditionally within the outer circle, for

the modulus of the (m + 1)*^*^ term is less than

which is the (7/1 + 1)"' term of a converging series*.

As in
I 27, the equivalence of the integral and the series can be affirmed

only for points which lie within the outermost circle of radius R.

Again, we have

z — a _, -s- — a fs — a\ " \z — a

s — z z— a \z — a) s — a

z—a
this expansion being adopted with a view to an infinite converging series,

because
s — a

z — a
is less than unity. Hence

ZTTl j\z — aj z — s

* Chrystal, ii, 124.
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The modulus of the last term is less than

P

where M' is the greatest value of |/(-?)| for points along the circle of radius

/. With indefinite increase of n, this modulus is ultimately zero ; and thus,

by an argument similar to the one which was applied to the former integral,

we have

_ 1 f/(i>.fc= j:^+ J-' .+.;.... + "i^^_ +
ZTTi J s — z z — a {z — a)- {z — a)'"'

where v-m denotes the integral J(s — «)"'"'/ (s) ds taken round the circle.

As in the former case, the series is one which converges uniformly and

unconditionally ; and the equivalence of the integral and the series is valid

for points z that lie without the innermost circle of radius R'.

The coefficients of the various negative powers o( z — d are of the form

Tri J 1 \s — a)27ri

(s - ay
a form that suggests values of the derivatives of / (s) at the point given by

0, that is, at infinity. But the outermost circle is of finite radius

;

s — a

and no knowledge of the function at infinity, lying without the circle, is

given, so that the coefficients of the negative powers may not be assumed

to be the values of the derivatives at infinity, just as, in the former case, the

coefficients u,. could not be assumed to be the values of the derivatives at the

common centres of the circles.

Combining the expressions obtained for the two integrals, we have

f{z) = Mo + (^ — a) Wi + {z — a)' u. + ...

+ (z - a)'^ Vi + {z - a)-' v.i+ ....

Both parts of the double series converge uniformly and unconditionally for

all points in the region between the two circles, though not necessarily for

points on the boundary of the region. The whole series therefore converges

for all those points : and we infer the theorem as enunciated.

Conformably with the notation (§ 26, note) adopted to represent Taylor's

expansion, a function f(z) of the character required by Laui-ent's Theorem
can be represented in the form

P,{z-a) + pJ^),
\z — a)

the series Pj converging within the outer circle and the series P, converging

without the inner circle ; their sum converges for the ring-space between the

circles.

F. 4
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29. Tlio coefficient u^ in the foregoing expansion is

27ri J t-a
the integral being taken ronnd the circle of radius r. We have

t — a

for points on the circle ; and therefore

dd

SO that |7/o|< f^^ Mt<M',

M' being the greatest value of Mt, the modulus oi f{t), for points along the

circle. If M be the greatest value of \f{z)\ for any point in the whole

region in which f{z) is defined, so that M'^M, then we have

I
Wo

I

< M,

that is, the modulus of the term independent o^ z — a in the expansion of

f{z) by Laurent's Theorem is less than the greatest value of \f{z)\ at points

in the region in which it is defined.

Again, {z — a)~^f{z) is a double series in positive and negative powers of

z — a, the term independent of ^ — a being u^n\ hence, by what has just been

proved,
|
?/„(.

|

is less than p~^ M, where p is \z — a\. But the coefficient Um
does not involve z, and we can therefore choose a limit for any point z. The
lowest limit will evidently be given by taking z on the outer circle of radius

R, so that
I

H„,,
I

< MR~"\ Similarly for the coefficients v^ ; and therefore we
have the result :

—

Tf f{z) he expanded as by Laurent's Theorem in the form

n,+ X (z - ay>' u.,, + 2 (^-ft)~'"^m,
m = l m = 1

then
I

u,n
I

< MR-"\
\

v,,,
|

< MR'"\

where M is the greatest value of \f{z)\ at points ivithin the region in which

f{z) is defined, and R and R' are the radii of the outer and the inner cii'cles

respectively.

30. The following proposition is practically a corollary from Laurent's

Theorem :

—

When a function is holomorphic over all the plane which lies outside a

circle of centre a, it can he expanded in thefo7-m of a series of negative integral

powers of z — a, the series converging uniformly and unconditionally ever'ytuhere

in tlidt jKir't of the plane.

It can be deduced as the limiting case of Laurent's Theorem when the
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radius of the outer circle is made infinite. We then take r infinitely large,

and substitute for t by the relation

t — a = re^',

so that the first integral in the expression (a), p. 47, ^or f{z) is

1 n- dd

t— a

Since the function is holomorphic over the whole of the plane which lies

outside the assigned circle, f{t) cannot be infinite at the circle of radius r

when that radius increases indefinitely. If it tend towards a (finite) limit k,

which must be uniform owing to the hypothesis as to the functional character

of f{z), then, since the limit of {t — z)/(t — a) is unity, the preceding integral

is equal to k.

The second integral in the same expression (a), p. 47, for f(z) is un-

altered by the conditions of the present proposition ; hence we have

f{z) = k + (z- a)-' v, + {z- a)-2 v, + . . .,

the series converging uniformly and unconditionally without the circle,

though it does not necessarily converge on the circumference.

The series can be represented in the form

H-\z — a J

conformably with the notation of § 26.

Of the three theorems in expansion which have been obtained, Cauchy's

is the most definite, because the coefficients of the powers are explicitly

obtained as values of the function and of its derivatives at an assigned point.

In Laurent's theorem, the coefficients are not evaluated into simple expres-

sions
; and in the corollary from Laurent's theorem the coefficients are, as is

easily pi-oved, the values of the function and of its derivatives for infinite

values of the variable. The essentially important feature of all the theorems

is the expansibility of the function in series under assigned conditions.

31. It was proved (§ 21) that, when a function is holomorphic in any

region of the plane bounded by a simple curve, it has an unlimited number
of successive derivatives each of which is holomorphic in the region. Hence,

by the preceding propositions, each such derivative can be expanded in

converging series of integral powers, the series themselves being deducible

by differentiation from the series which represents the function in the region.

In particular, when the region is a finite circle of centre a, within which

f{z) and consequently all the derivatives of f(z) are expansible in converging

series of positive integral ])owers of z — a, the coefficients of the various

powers of z — a are—save as to numerical factors—the values of the

4—2
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derivatives at the centre of the circle. Hence it appears that, luhen a function

is holomorphic over the area of a given circle, the values of the function and all

its derivatives at any point z luithin the circle depend only upon the variable

of the point and upon the values of the function and its derivatives at the

centre.

32. Some of the classes of points in a plane that usually arise in

connection with uniform functions may now be considered.

(i) A point a in the plane may be such that a function of the variable

has a determinate finite value there, always independent of the path by

which the variable reaches a ; the point a is called an ordinary point* of the

function. The function, supposed continuous in the vicinity of a, is con-

tinuous at a : and it is said to behave regularly in the vicinity of an ordinary

point.

Let such an ordinary point a be at a distance d, not infinitesimal, from

the nearest of the singular points (if any) of the function ; and let a circle of

centre a and radius just less than d be drawn. The part of the 2;-plane lying

within this circle is calledf the domain of a ; and the function, holomorphic

within this circle, is said to behave regularly (or to be regular) in the domain

of a. From the preceding section, we infer that a function and its derivatives

can be expanded in a converging series of positive integral powers of ^ — a

for all points z in the domain of a, an ordinary point of the function : and

the coefficients in the series are the values of the function and its derivatives

at a.

The property possessed by the series—that it contains only positive

integral powers of z — a—at once gives a test that is both necessary and

sufficient to determine whether a point is an ordinary point. If the point a

he ordinary, the limit of {z — a) f {z) necessarily is zero when z becomes equal

to a. This necessary condition is also sufficient to ensure that the point is

an ordinary point of the function f (z), supposed to be uniform ; for, since

f (z) is holomorphic, the function {z — a)f {z) is also holomorphic and can be

expanded in a series

Uo -\- u-i{z — a)-\- lu (z — a)- + ...,

converging in the domain of a. The quantity Wq is zero, being the value

of (z — a)f (z) at a and this vanishes by hypothesis ; hence

(z — a)f{z) = {z — a) {ui4-«o {z — a) -{-...],

shewing that f (z) is expressible as a series of positive integral powers of

z — a converging within the domain of a, or, in other w^ords, that f{z) certainly

has a for an ordinary point in consequence of the condition being satisfied,

* Sometimes a regular point.

t The German title is Umgebung, the French is doiiudne.
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(ii) A point a in the plane may be such that a function / (z) of the

variable has a determinate infinite value there, always independent of the

path by which the variable reaches a, the function behaving regularly for

points in the vicinity of a ; then ^y~\ has a determinate zero value there, so

that a is an ordinary point of ^-r-r . The point a is called a j^ole (§12) or

an accidental singularity* of the function.

A test, necessary and sufficient to settle whether a point is an accidental

singularity of a function will subsequently (§ 42) be given.

(iii) A point a in the plane may be such that/(^^) has not a determinate

value there, either finite or infinite, though the function is regular for all

points in the vicinity of a that are not at merely infinitesimal distances.

.
- 1

Thus the origin is of this nature for the functions e\ sn -

.

z

Such a point is called-f* an essential singularity of the function. No
hypothesis is postulated as to the character of the function for points

at infinitesimal distances from the essential singularity, while the relation

of the singularity to the function naturally depends upon this character at

points near it. There may thus be various kinds of essential singularities

all included under the foregoing definition ; their classification is effected

through the consideration of the character of the function at points in their

immediate vicinity. (See § 88.)

One sufficient test of discrimination between an accidental singularity

and an essential singularity is furnished by the determinateness of the value

at the point. If the reciprocal of the function have the point for an ordinary

point, the point is an accidental singularity—it is, indeed, a zero for the

reciprocal. But when the point is an essential singularity, the value of the

reciprocal of the function is not determinate there ; and then the reciprocal,

as well as the function, has the point for an essential singularity.

33. It may be remarked at once that there must be at least one

infinite value among the values which a function can assume at an essential

singularity. For if/(^) cannot be infinite at a, then the limit of {z — a)f{z)

is zero when z = a,no matter what the non-infinite values o{ f (z) maybe,

that is, the limit is a determinate zero. The function {z — a)/{z) is regular

in the vicinity of a: hence by the foregoing test for an ordinary point,

the point a is ordinary and the value of the uniform function f{z) is

* Weierstrass, Abh. ans der Functioncnlehre, p. 2, to whom the name is due, calls it aitsser-

wesentliche sittfiuUire Stellc ; tlic term non-e-'^xential is sugt^ested by Mr Catlicart, Harnack, p. 148.

t Weierstrass, I.e., calls it tueseutlichc singnlare Stelle.
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determinate, contrary to hypothesis. Hence the function must liave at least

one infinite value at an essential singularity.

Further, a uniform function must he capable of assuming any value G at

an essential singularity. For an essential singularity of f (z) is also an

essential singularity of f (z) — G and therefore also of ^---—-^ . The last

function must have at least one infinite value among the values that it can

assume at the point ; and, for this infinite value, we have f (z) = G at the

point, so that/(^) assumes the assigned value G at the essential singularity*.

34. Let f{z) denote the function represented by a series of powers

Pi {z — a), the circle of convergence of which is the domain of the ordinary

point a of the function. The region over which the function f (z) is holo-

morphic may extend beyond the domain of a, although the circumference

bounding that domain is the greatest of centre a that can be drawn within

the region. The region evidently cannot extend beyond the domain of a in

all directions.

Take an ordinary point b in the domain of a. The value at b of the

function/ (^^) is given by the series Pj {b — a), and the values at b of all its

derivatives are given by the derived series. All these series converge within

the domain of a and they are therefore finite at b ; and their expressions

involve the values at a of the function and its derivatives.

Let the domain of b be formed. The domain of b may be included in

that of a, and then its bounding circle will touch the bounding circle of the

domain of a internally. If the domain of b be not entirely included in that

of a, part of it will lie outside the domain of a ; but it cannot include the

whole of the domain of a unless its bounding circumference touch that of the

domain of a externally, for otherwise it would extend beyond a in all

directions, a result inconsistent with the construction of the domain of a.

Hence there must be points excluded from the domain of a which are also

excluded from the domain of b.

For all points z in the domain of b, the function can be represented by a

series, say P., (z — b), the coefficients of which are the values at b of the

function and its derivatives. Since these values are partially dependent

upon the corresponding values at a, the series representing the function may
be denoted by P^ {z — b, a).

At a point z in the domain of b lying also in the domain of a, the two

series Pj {z — a) and P^ (z — b, a) must furnish the same value for the

function^' (2') ; and therefore no new value is derived from the new series P^

* Weierstrass, I.e., pp. 50—52; Dur^ge, Elcmente der Tlieorie der Funktionen, p. 119; Holder,

Math. Ann., t. xx, (1882), pp. 138—143 ; Picard, " Memoire sur les fonctions enti^res," Annales de

VEcole Norm. Sup., 2°'« S6r., t. ix, (1880), pp. 145— 166, which, in this regard, should be consulted

in connection with the developments in Chapter V. See also § 62.
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which cannot be derived from the old series P,. For all such points the new
series is of no advantage ; and hence, if the domain of b be included in that

of a, the construction of the series P.^{z — h,a) is superfluous. Hence in

choosing the ordinary point h in the domain of a we choose a point, if

possible, that will not have its domain included in that of a.

At a pohit z in the domain of h, which docs not lie in the domain of a,

the series P.,(z — b, a) gives a value for f(z) which cannot be given by

Pi (z — a). The new series Po then gives an additional representation of the

function
; it is called* a continuation of the series which represents the function

in the domain of a. The derivatives of P, give the values of f{z) for points

in the domain of h.

It thus appears that, if the whole of the domain of h be not included in

that of a, the function can, by the series which is valid over the whole

of the new domain, be continued into that part of the new domain excluded

from the domain of a.

Now take a point c within the region occupied by the combined domains

of a and h ; and construct the domain of c. In the now domain, the function

can be represented by a new series, say P3 {z — c), or, since the coefficients

(being the values at c of the function and of its derivatives) involve the

values at a and possibly also the values at b of the function and of its

derivatives, the series representing the function may be denoted by

P3(z~c, a, b). Unless the domain of c include points, which are not

included in the combined domains of a and b, the series P3 does not give

a value of the function which cannot be given by Pj or P^: we therefore

choose c, if possible, so that its domain will include points not included in

the earlier domains. At such points z in the domain of c as are excluded

from the combined domains of a and b, the series Pj {z — c, a, b) gives a value

for f(z) which cannot be derived from Pj or F„ ; and thus the new series

is a continuation of the earlier series.

Proceeding in this manner by taking successive points and constructing

their domains, we can reach all parts of the plane connected with one

another where the function preserves its holomorphic character; their

combined aggregate is called -j- the region of continuity of the function.

With each domain, constructed so as to include some portion of the region of

continuity not included in the earlier domains, a series is associated, which is

a continuation of the earlier series and, as such, gives a value of the function

not deducible from those earlier series ; and all the associated series are

ultimately derived from the first.

* Bieniiann, Theorie der analytischen Functioncn, p. 170, which may be consulted in

connection witli the whole of § 34; the German word is Fortsctzung

.

t Weierstrass, I.e., p. 1.
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Each of the contiuiiatious is called an Element of the function. The

aggregate of all the distinct elements is called a monogenic analytic function

:

it is evidently the complete analytical expression of the function in its region

of continuity.

Let z be any point in the region of continuity, not necessarily in the

circle of convergence of the initial element of the function ; a value of the

function at z can be obtained through the continuations of that initial

element. Id the formation of each new domain (and therefore of each new

element) a certain amount of arbitrary choice is possible ; and there may,

moreover, be different sets of domains which, taken together in a set, each

lead to z from the initial point. When the analytic function is uniform, as

before defined (§ 12), the same value at z for the function is obtained,

whatever be the set of domains. If there be two sets of elements, differently

obtained, which give at z different values for the function, then the ana-

lytic function is multiform, as before defined (§ 12) ; but not every change

in a set of elements leads to a change in the value at ^; of a multiform

function, and the analytic function is uniform within such a region of the

plane as admits only equivalent changes of elements.

The whole process is reversible when the function is uniform. We can

pass back from any point to any earlier point by the use, if necessary, of

intermediate points. Thus, if the point (/ in the foregoing explanation

be not included in the domain of h (there supposed to contribute a continu-

ation of the first series), an intermediate point on a line, drawn in the

region of continuity so as to join a and h, would be taken ; and so on,

until a domain is formed which does include a. The continuation, associated

with this domain, must give at a the proper value for the function and its

derivatives, and therefore for the domain of a the original series Pj {z — a)

will be obtained, that is, Pj {z — a) can be deduced from Po (z — h, a) the

series in the domain of b. This result is general, so that aiiy one of the

continuations of a. uniform function, represented by a power-series, can be

derived from any other; and therefore the expression of such a function in

its region of continuity is potentially given by one element, for all the

distinct elements can be derived from any one element.

35. It has been assumed that the property, characteristic of some of the

functions adduced as examples, of possessing either accidental or essential

singularities, is characteristic of all functions ; it will be proved (§ 40) to hold

for every uniform function which is not a mere constant.

The singularities limit the region of continuity ; for each of the separate

domains is, from its construction, limited by the nearest singularity, and the

combined aggregate of the domains constitutes the region of continuity when
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they form a continuous space*. Hence the complete boundary of the region

of continuity is the aggregate of the singularities of the function
•f'.

It may happen that a function has no singularity except at infinity ; the

region of continuity then extends over the whole finite part of the plane but

it does not include the point at infinity.

It follows from the foregoing explanations that, in order to know a

uniform analytic function, it is necessary to know some element of the

function, which has been shewn to bo potentially sufficient for the derivation

of the full expression of the function and for the construction of its region of

continuity.

36. The method of continuation of a function, which has just been

described, is quite general ; there is one particular continuation, which is

important in investigations on conformal representations. It is contained in

the following proposition, due to Schwarz^ :

—

If an analytic function w of z he defined only for a region >S" in the

positive half of the z-plane and if continuous real values of w correspond to

continuous real values of z, tlien w can he continued across the aocis of real

quantities.

Consider a region *S*", symmetrical with S' relative to the axis of real

quantities (fig. 12). Then a function is

defined for the region S" by associating

a value Wo, the conjugate of w, with z^^,

the conjugate oi z.

Let the two regions be combined along

the portion of the axis of x which is their

common boundary ; they then form a

single region S' + >S"'.

Consider the integrals

i'ig. 12.

J_ r w
\7riJ s-2 — I

.dz
27riJs-z-^

taken round the boundaries of S' and of S'

1 f w„ ,

27riJs"Zo-^

respectively. Since w is

* Cases occur in which the region of continuity of a function is composed of isolated spaces,

each continuous in itself, but not continuous into one another. The consideration of such cases

will be dealt with briefly hereafter, and they are assumed excluded for the present : meanwhile,

it is sufficient to note that each continuous space could be derived from an element belonging to

some domain of that space and that a new element would be needed for a new space.

+ See Weierstrass, I.e., pp. 1—3 ; Mittag-LetHer, " Sur la representation aualytique des fonctions

monogenes uniformes d'une variable ind6pendante," Acta Math., t. iv, (1884), pp. 1 et seq.,

especially pp. 1—8.

t Crelle, t. Ixx, (1869), pp. 106, 107, and (Ic^. Math. Ahh., t. ii, pp. 06—68. See also Darboux,

Theorie generate des surfaces, t. i, § 130.
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continuous over the whole area of *Si' as well as along its boundary and

likewise Wo relative to S", it follows that, if the point ^ be in S', the vahie of

the first integral is w(0 ^i^d that of the second is zero ; while, if ^ lie in 8",

the value of the first integral is zero and that of the second is Wq (^). Hence

the sum of the two integrals represents a unique function of a point in either

S' or S". But the value of the first integral is

1 f ^ wdz 1 r^ w (x) dx
'(C) 7,+

' ^ ^

the first being taken along the curve BOA and the second along the axis

AxB ; and the value of the second integral is

1^ r'^ Wo(x)dx 1^ r^ w4z.

the first being taken along the axis BxA and the second along the curve

ADB. But
Wo (*•) = W {x),

because conjugate values tu and w,, correspond to conjugate values of the

argument by definition of w,, ;ind because w (and therefore also Wo) is real

and continuous when the argument is real and continuous. Hence when the

sum of the four integrals is taken, the two integrals corresponding to the

two descriptions of the axis of x cancel and we have as the sum

1 M wdz 1 r -^ Wodzn

27rij B z — ^ ^TriJ a S'o
— ?'

and this sum represents a unique function of a point in *S" + S" . These two

integrals, taken together, are

1 fw'dz

27nJ z-^'
taken round the whole contour of S' + S", where w' is equal to w(^) in the

positive half of the plane and to ?t'o(D i^i ^^^^ negative half

For all points ^ in the whole region S' + S", this integral represents a

single uniform, finite, continuous function of ^; its value is w (f) in the

positive half of the plane and is w^iO ^^ the negative half; and therefore

w^f (^) is the continuation into the negative half of the plane of the function,

which is defined by w(^) for the positive half.

For a point c on the axis of x, we have

tu (z) -iv{c) = A{z-c) + B{z- c)- +G{z-cy + ...;

and all the coefficients A, B, G,... are real. If, in addition, w be such a

function of z that the inverse functional relation makes z a uniform

analytic function of w, it is easy to see that A must not vanish, so that the

functional relation may be expressed in the form

w (z) —w (c) ={z — c) F(z — c),

where P (z— c) does not vanish when z = c.



CHAPTER IV.

General properties of Uniform Functions, particularly of those

WITHOUT Essential Singularities.

37. In the derivation of the general properties of functions, which will be

deduced in the present and the next three chapters from the results already

obtained, it is to be suiaposed, in the absence of any express statement to

other effect, that the functions are uniform, monogenic and, except at either

accidental or essential singularities, continuous*.

Theorem I. A function, which is constant throughout any refjion of the

plane not infinitesimal in area, or which is constant along any line not infini-

tesimal in length, is constant throughout its region of continuity.

For the first part of the theorem, we take any point a in the region of the

plane where the function is constant, and we draw a circle of centre a and

of any radius, provided only that the circle remains within the region of

continuity of the function. At any point z within this circle we have

f{z) =f(a) + {z- a)f' (a) +^^^f" (a) + . . .,

a converging series the coefficients of which are tiie values of the function

and its derivatives at a. But

/'(a) = Limitof-^(^ + ^^^-^^^\

which is zero because f{a + Ba) is the same constant as f{a) : so that the

first derivative is zero at a. Similarly, all the derivatives can be shewn to

be zero at a ; hence the above series after its first term is evanescent,

and we have

that is, the function preserves its constant value throughout its region of

continuity.

The second result follows in the same way, when once the derivatives are

proved zero. Since the function is monogenic, the value of the first and

* It will be assumed, as in § 35 (note, p. 57), that the region of continuity consists of a single

space ; functions, with regions of continuity consisting of a number of separated spaces, will be

discussed in Chap. VII.
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of each of the successive derivatives will be obtained, if we make the

differential element of the independent variable vanish along the line.

Now, if a be a point on the line and a + 8a a consecutive point, we have

f(a + 8a) =f(a) ; hence /' (a) is zero. Similarly the first derivative at any

other point on the line is zero. Therefore we have /' (a + Sa) —f (a), for

each has just been proved to be zei'o : hence /" (a) is zero ;
and similarly the

value of the second derivative at any other point on the line is zero. So on

for all the derivatives : the value of each of them at a is zero.

Using the same expansion as before and inserting again the zero values

of all the derivatives at a, we find that

so that under the assigned condition the function preserves its constant value

throughout its region of continuity.

It should be noted that, if in the first case the area be so infinitesimally

small and in the second the line be so infinitesimally short that consecutive

points cannot be taken, then the values at a of the derivatives cannot be

proved to be zero and the theorem cannot then be inferred.

Corollary I. //' two functions have the same value over any area of

their common region of continuity which is not infinitesimally small or along

any line in tliat region which is not infinitesimally short, then they have the

same values at all points in their common y^egion of continuity.

This is at once evident : for their difference is zero over that area or along

that line and therefore, by the preceding theorem, their difference has a

constant zero value, that is, the functions have the same values, everywhere

in their common region of continuity.

But two functions can have the same values at a succession of isolated

points, without having the same values everywhere in their common region

of continuity ; in such a case the theorem does not apply, the reason being

that the fundamental condition of equality over a continuous area or along

a continuous line is not satisfied.

Corollary II. A function cannot he zero over any continuous area of its

region of continuity which is not infinitesimal or along any line in that region

tuhich is not infinitesimally sliort 'without being zero everywhere in its region of

continuity.

This corollary is deduced in the same manner as that which precedes.

If, then, there be a function which is evidently not zero everywhere, we

conclude that its zeros are isolated points though such points may be multiple

zeros.

Further, in any finite area of the region of continuity of a function that is

subject to variation, there can he at most only a finite number of its zeros, when
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no jwint of the houndary of the area is infinitesimally near an essential

singularity. For if there were an infinite number of such points in any

such region, there must be a cluster in at least one area or a succession

along at least one line, infinite in number and so close as to constitute a

continuous area or a continuous line where the function is everywhere zero.

This would require that the function should be zero everywhere in its region

of continuity, a condition excluded by the hypothesis.

And it immediately follows that the points (other than those infini-

tesimally near an essential singularity) in a region of continuity, at which a

function assumes any the same value, are isolated points ; and that only a

finite number of such points occur in any finite area.

38. Theorem II. The multiplicity ni of any zero a of a function is

finite provided the zero he an ordinary point of the function, which is not zero

throucfhout its 7'egion of continuity ; and the function can. he expressed in the

form
(z-a)^4>(z),

where <j> (z) is holovfiorphic in the vicinity of a, and a is not a zero of <f)
(z).

Let f(z) denote the function ; since a is a zero, we have f(a) = 0.

Suppose that f (a), f" (a), vanish: in the succession of the derivatives

of /, one of finite order must be reached which does not have a zero value.

Otherwise, if all vanish, then the function and all its derivatives vanish at a;

the expansion of f{z) in powers o( z — a leads to zero as the value of f(z),

that is, the function is everywhere zero in the region of continuity, if all the

derivatives vanish at a.

Let, then, the inth. derivative be the first in the natural succession which

does not vanish at a, so that ni is finite. Using Cauchy's expansion, we have

•^ ^ m! "^ ^ (m + 1)!
-^

= {z- ay
(J3

(z),

where
(f)

(z) is a function that docs not vanish with a and, being the quotient

of a converging series by a monomial factor, is holomorphic in the immediate

vicinity of a.

Corollary I. If infinity he a zero of a function of multiplicity m and

at the same time he an ordinary point of the function, then the function can he

expressed in theform z~"' ^ ( -

)

where </>(") is a function that is continuous and non-evanescent for infinitely

large values of z.

The result can be derived from the expansion in § 30 in the same way as

the foregoing theorem from Cauchy's expansion.
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Corollary II. The number of zeros of a function, account being taken of

their multiplicity, which occur within a finite area of the region of continuity

of the function, is finite, luhen no point of the boundary of the area is infinitesi-

mally near an essential singularity.

By Corollary II. of § 37, the number of distinct zeros in the limited area

is finite, and, by the foregoing theorem, the multiplicity of each is finite

;

hence, when account is taken of their respective multiplicities, the total

number of zeros is still finite.

The result is, of course, a known result for an algebraical polynomial ; but

the functions in the enunciation are not restricted to be of the type of

algebraical polynomials.

Note. It is important to notice, both for the Theorem and for Corollary I.,

that the zero is an ordinary point of the function under consideration ; the

implication therefore is that the zero is a definite zero and that in the

immediate vicinity of the point the function can be represented in the form

F (z — a) or P (-), the function P(a — a)ovP(~] being always a definite

zero.

Instances do occur for which this condition is not satisfied. The point

may not be an ordinary point, and the zero value may be an indeterminate

zero ; or zero may be only one of a set of distinct values though everywhere

in the vicinity the function is regular. Thus the analysis of § 13 shews that

z=a is a point where the function sn has any number of zero values and

any number of infinite values, and there is no indication that there are not

also other values at the point. In such a case the preceding proposition does

not apply ; there may be no limit to the order of multiplicity of the zero, and

we certainly cannot infer that any finite integer m can be obtained such that

(z - a)-"' </) (z)

is finite at the point. Such a point is (§ 32) an essential singularity of the

function.

39. Theorem III. A multiple zero of a function is a zero of its

derivative; and the multiplicity for the derivative is less or is greater by

unity according as the zero is not or is at infinity.

If a be a point in the finite part of the plane which is a zero of /(^)

of multiplicity ?;, we have

f{z) = {z-ar<j>{z),

and therefore /' {z) = {z - «)""' [n^ {z) + (z - a) cf)' (z)].

The coefficient of {z — rt)"~^ is holomorphic in the immediate vicinity of a and

does not vanish for a ; hence a is a zero for /' (z) of decreased multiplicity

n-1.
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If z = 00 be a zero off{z) of multiplicity r, then

where ^ ( - ) is holomorphic for very large values of z and does not vanish at

infinity. Therefore

The coefficient of 2"^~^ is holomorphic for very large values of z, and does

not vanish at infinity ; hence z= co is a zero of/' {z) of increased multiplicity

r+1.

Corollary I. If a function be finite at infinity, then ^ = c/d is a zero of the

first derivative of multiplicity at least two.

Corollary II. If a be a finite zero o{f{z) of multiplicity n, we have

f'{z)^ n
^ cf>'{z)

f{z) z-a 4>{z)'

Now a is not a zero of <f> (z) ; and therefore . ; / is finite, continuous, uniform
4>{z)

and monogenic in the immediate vicinity of a. Hence, taking the integral

of both members of the equation round a circle of centre a and of radius

so small as to include no infinity and no zero, other than a, of f (z)—and

therefore no zero of 4>(z)—we have, by § 17 and Ex. 2, § 25,

1-ni J f{z)
1. f
Itti J

dz = n.

40. Theorem IV. A function must have an infinite value for some faiite

or infinite value of the variable.

If i^/be a finite maximum value of the modidus for points in the plane,

then (§ 22) we have

where r is the radius of an arbitrary circle of centre a, provided the whole of

the circle is in the region of continuity of the function. But as the function

is uniform, monogenic, finite and continuous everywhere, this radius can be

increased indefinitely; when this increase takes place, the limit of

\f'Ha)\

is zero and therefore /'"' (a) vanishes. This is truc^ for all the indices 1, 2,...

of the derivatives.
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Now the function can be represented at any point z in the vicinity of a

by the series

f{a) + (^ - a)f' (a) +^^^f" (a) + . . .,

which degenerates, under the present hypothesis, to /(a), so that the function

is everywhere constant. Hence, if a function has not an infinity somewhere

in the plane, it must be a constant.

The given function is not a constant ; and therefore there is no finite

limit to the maximum value of its modulus, that is, the function acquires

an infinite value somewhere in the plane.

Corollary I. A function must leave a zero value for some finite or

infinite value of the variable.

For the reciprocal of a uniform monogenic analytic function is itself a

uniform monogenic analj^tic function ; and the foregoing proposition shews

that this reciprocal must have an infinite value for some value of the

variable, which therefore is a zero of the function.

Corollary II. A function must assume any assigned value at least once.

Corollary III. Every function which is not a mere constant must have

at least one singularity, either accidental or essential. For it must have

an infinite value : if this be a determinate infinity, the point is an accidental

singularity (§ 32) ; if it be an infinity among a set of values at the point, the

point is an essential singularity (§§ 32, 33).

41. Among the infinities of a function, the simplest class is that con-

stituted by its accidental singularities, already defined (§ 32) by the property

that, in the immediate vicinity of such a point, the reciprocal of the function

is regular, the point being an ordinary (zero) point for that reciprocal.

Theorem V. A function, luhich has a j^oint c for an accidental singularity,

can be expressed in tlie form
(z - c)-"

(f>
(z),

where n is a finite j^ositive integer and (z) is a continuous function in the

vicinity of c.

Since c is an accidental singularity of the function f{z), the function y7~\

is regular in the vicinity of c and is zero there (§ 32). Hence, by § 38, there

is a finite limit to the multiplicity of the zero, say n (which is a positive

integer), and we have

_ = (^_c)"x(4

where xi^) i^ uniform, monogenic and continuous in the vicinity of c and is

not zero there. The reciprocal of x (^)> say ^ {z), is also uniform, monogenic
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and continuous in the vicinity of c, which is an ordinary point for
(f)

(z)
;

hence we have

f(z) = (z-c)-<j>(z),

which proves the theorem.

The finite positive integer n measures the multiplicity of the accidental

singularity at c, which is sometimes said to be of multiplicity n or of

order n.

Another analytical expression for f{z) can be derived from that which

has just been obtained. Since c is an ordinary point for {z) and not a zero,

this function can be expanded in a series of ascending, positive, integral

powers of ^ — c, converging in the vicinity of c, in the form

<l>{z)^P{z-c)

= Wo + Wi (2; - C) + . . . + lin-i {2 - C)"-' + ^In {z - c)" + . .

.

= ?<o + Ih{z-C)+ ...+ Un-i (Z - C)"-' +(Z- C)" Q{Z- c),

where Q(z — c), a series of positive, integral, powers of ^r — c converging in the

vicinity of c, is a monogenic analytic function of z. Hence we have

the indicated expression for f(z), valid in the immediate vicinity of c, where

Q{z — c) is uniform, finite, continuous and monogenic.

Corollary. A function, which has z= co for an accidental singularity of

multiplicity n, can be expressed in the form

<)
wliere ^[~] is a continuous function for very large values of \z\, and is not

\Z

zero when z=oo . It can also be expressed in theform

aoz'' + a^z'"'-'- + . . . + a«_i ^ + Q (-) .

where Q\-] is uniform, finite, continuous and monogenic for very large values

of \z\.

The derivation of the form of the function in the vicinity of an accidental

singularity has been made to depend upon the form of the reciprocal of the

function. Whatever be the (finite) order of that point as a zero of the

reciprocal, it is assumed that other zeros of the reciprocal are not at merely

infinitesimal distances from the point, that is, that other infinities of the

function are not at merely infinitesimal distances from the point.

Hence the accidental singularities of a function are isolated points ; and

there is only a finite number of them in any limited portion of the plane.

F. 5
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42. We can deduce a criterion which detcrmiucs whether a given singu-

larity of a function /(^) is accidental or essential.

When the point is in the finite part of the plane, say at c, and a finite

positive integer n can be found such that

{z-crf(z)

is not infinite at c, then c is an accidental singularity.

When the point is at infinity and a finite positive integer n can be found

such that

2r-f(z)

is not infinite when z= x , then ^ = oo is an accidental singularity.

If one of these conditions be not satisfied, the singularity at the point is

essential. But it must not be assumed that the failure of the limitation to

finiteness in the multiplicity of the accidental singularity is the only source

or the complete cause of essential singularity.

Since the association of a single factor with the function is effective in

preventing an infinite value at the point when one of the conditions is

satisfied, it is justifiable to regard the discontinuity of the fuuction at

the point as not essential and to call the singularity either non-essential

or accidental (§ 82).

43. Theorem VI. The 'poles of a function, that lie in the finite part

of the plane, are all tlce poles {of increased multiplicity) of the derivatives of

the function that lie in the finite part of the plane.

Let c be a pole of the function f(z) of multiplicity ^ : then, for any point

z in the vicinity of c,

f(z) = {z-crPcf>{z),

where
(f)

(z) is holomorphic in the vicinity of c, and does not vanish for z — c.

Then we have

/' (2) = {Z- C)-^' Cf>' (Z) -p{z- C)-1'-^ Cf> {Z)

= {z-c)-P-'[{z-c)c^'{z)-p^{z)]

= {z-c)-P-'x(^l

where x (^) is holomorphic in the vicinity of c, and does not vanish for z = c.

Hence c is a pole of/' (z) of multiplicity j) + 1- Similarly it can be shewn

to be a pole of/""* (z) of multiplicity p + r.

This proves that all the poles of f{z) in the finite part of the plane are

poles of its derivatives. It remains to prove that a derivative cannot have

a pole which the original function does not also possess.

Let a be a pole oif'{z) of multiplicity ni : then, in the vicinity of a,f'(z)

can be expressed in the form

(z - a)-'" yjr (z),
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where ylr(z) is holomorphic in the vicinity of a and does not vanish for z = a.

Thus

^(2) = f (a) + (2-a)yjr'(a)+...,

and therefore /' (z) =^l + ^ J^lifL^^ + . .

.

so that, integrating, we have

•^ ^ ^ m{z-ay''-' (m-l)(^-a)'«-2 •"'

that is, a is a pole off{z).

An apparent exception occurs in the case when m is unity: for then

we have

,
\lr(a.)

, , . s z — a , ,, , .

/ (^) = J-ITa + t («) + -JT "^^"^ + ••'

the integral of which leads to

f(z) = ylr{a)\og(z-a.)+ ...,

so that/(^) is no longer uniform, contrary to hypothesis. Hence a derivative

cannot have a simple pole in the finite part of the plane; and so the exception

is excluded.

The theorem is thus proved.

Corollary I. The r"' derivative of a function cannot have a pole in the

finite part of the plane of midtiplicitij less than r +1.

Corollary II. If c be a pole off {z) of any order of multiplicity fx, and

if f^''^ (^) be expressed in the form

there are no terms in this expression luith the indices — 1, — 2, ,
— r.

Corollary III. If c be a pole of/ (z) of multiplicity p, we have

f(z) z-c'^cf>{z)'

where (z) is a holomorphic function that does not vanish for z = c, so that

^ . . is a holomorphic function in the vicinity of c. Taking the integral of

other poles or zeros of the function/ (2^), we have

round a circle, with c for centre, with radius so small as to exclude all

.ctiony(2^), we have

1 [f(^}dz = -V
27rij f{z)

5—2
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Corollary IV. If a simple closed curve include a number JV of zeros of

a uniform function f {z) and a number P of its poles, in both of which

numbers account is taken of possible multiplicity, and if the curve contain

no essential singularity of the function, then

!.//_« ,..^_P,
27^^•j/(^)

the integral being taken round the curve.

The only infinities of the function ^, ! within the curve are the zeros

and the poles of f {z). Round each of these draw a circle of radius so small

as to include it but no other infinity; then, by Cor. II. § 18, the integral

round the closed curve is the sum of the values when taken round these

circles. By the Corollary II. § 39 and by the preceding Corollary III,, the

sum of these values is

= Sw — '%i^

= N-P.

It is easy to infer the known theorem that the number of roots of an

algebraical polynomial of order n is n, as well as the further result that

27r (iV — P) is the variation of the argument of f {z) as z describes the

closed curve in a positive sense.

Ex. Prove that, if F {z) be holomorphic over an area, of simple contour, which con-

tains roots aj, a^,... of multiplicity m^, m^,... and poles c^, C2,... of multiplicity p^, Pi-,---

respectively of a function /(~) which has no other singularities within the contour, then

^./i^(^)f| dz^^.^,Fi^a^) - ^j,.F{c;)^

the integral being taken round the contour.

In particular, if the contour contains a single simple root a and no singularity, then that

root is given by

"hj'jm *'

the integral being taken as before. (Laurent.)

44. Theorem VII. If infinity he a pole of f {z), it is also a pole of

f'{z) only when it is a multiple pole off (z).

Let the multiplicity of the pole for / (z) be 71 ; then for very large values

of z we have

f(z)=zn<f>(^y

where
(f>

is holomorphic for very large values of z and does not vanish at

infinity ; hence

/'w=^"-H ©-->'©}
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The coefficient of 2'^~^ is holomorphic for very large values of z and does not

vanish at infinity ; hence infinity is a pole o{f'(z) of multiplicity n — 1.

If n be unity, so that infinity is a simple pole of f(z), then it is not a

pole of /' (z) ; the derivative is then finite at infinity.

45. Theorem VIII. A function, winch has no singularity in a finite

part of the plane, and has ^ = co for a pole, is an algebraical polynomial.

Let n, necessarily a finite integer, be the order of multiplicity of the pole

at infinity : then the function/ {z) can be expressed in the form

a,^^ + a.z'^-^ + + an-^z + Q (^) .

where Q { - j
is a holomorphic function for very largo values of z, and is finite

(or zero) when z is infinite.

Now the first n terms of the series constitute a function which has no

singularities in the finite part of the plane : and f {z) has no singularities

in that part of the plane. Hence Q (~) has no singularities in the finite part

of the plane : it is finite for infinite values of z. It thus can never have an

infinite value : and it is therefore merely a constant, say an. Then

/ {z) = a^'' + a,z''-^ + + an-iZ + a„,

a polynomial of degree equal to the multiplicity of the pole at infinity,

supposed to be the only polo of the function.

46. The above result may be obtained in the following manner.

Since 2= oo is a pole of multiplicity n, the limit of z~'"'f{z) is not infinite

when z= Qo

.

Now in any finite part of the plane the function is everywhere finite, so

that we can use the expansion

f{z) = f{Q) + zf'{0)+ 4-^^/(«)(0)+i^,

where R = ^—.1 ,
.

l-iri J f'+' t-z'

the integral being taken round a circle of any radius r enclosing the point z

and having its centre at the origin. As the subject of integration is finite

everywhere along the circumference, we have, by Darboux's expression in

(IV.) § 14,

T-«+i r-z
where t is some point on the circumference and X is a ([uantity of nindulus

not greater than unity.
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Let T = J-e'" ; then

i2 = ^^«+ie-2ai/(l)
r T'- ^ z .

1 e-"^
r

. . fir)
By definition, the limit of —~- as t (and therefore r) becomes infinitely

large is not infinite ; in the same case, the limit of (1 —_ e~'"
j

is unity.

Since |X| is not gi-eater than unity, the limit of X/r in the same case is zero

;

hence with indefinite increase of r, the limit of R is zero and so

f{z)=f{o)+zf'{o) + +J/"no),

shewing as before that/ (2^) is an algebraical polynomial.

47. As the quantity n is necessarily a positive integer*, there are two

distinct classes of functions discriminated by the magnitude of n.

The first (and the simpler) is that for which n has a finite value. The

polynomial then contains only a finite number of terms, each with a positive

integral index ; and the function is then a rational, integral, algebraical

2)oli/nomial of degree n.

The second (and the more extensive, as significant functions) is that

for which n has an infinite value. The point ^^ = x is not a pole, for then

the function does not satisfy the test of § 42 : it is an essential singularity

of the function, which is expansible in an infinite converging series

of positive integral powers. To functions of this class the general term

transcendental is applied.

The number of zeros of a function of the former class is known : it is

equal to the degree of the function. It has been proved that the zeros of a

transcendental function are isolated points, occurring necessarily in finite

number in any finite part of the region of continuity of the function, no

point on the boundary of the part being infinitesimally near an essential

singularity ; but no test has been assigned for the determination of the total

number of zeros of a function in an infinite part of the region of con-

tinuity.

Again, when the zeros of a polynomial are given, a product-expression can

at once be obtained that will represent its analytical value. Also we know

that, if a be a zero of any uniform analytic function of multiplicity n, the

function can be represented in the vicinity of a by the expression

{x-aycf>{2),

where ^ (z) is holomorphic in the vicinity of a. The other zeros of the

function are zeros of <p (z) ; this process of modification in the expression

* It is unnecessary to consider the zero value of n, for the function is then a polynomial of

order zero, that is, it is a constant.
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can be continued for successive zeros so long as the number of zeros taken

account of is limited. But when the number of zeros is unlimited, then the

inferred product-expression for the original function is not necessarily a

converging product ; and thus the question of the formal factorisation of a

transcendental function arises.

48. Theorem IX. A function, all the singulcmties of which are accid-

ental, is a rational, algebraical, meronfiorphic function.

Since all the singularities are accidental, each must be of finite

multiplicity ; and therefore infinity, if an accidental singularity, is of finite

multiplicity. All the other poles are in the finite part of the plane ; they

are isolated points and therefore only finite in number, so that the total

number of distinct poles is finite and each is of finite order. Lot them be

«!, a-i, , a^ of orders mj, m.2, , m^ respectively : let m be the order of

the pole at infinity: and let the poles be arranged in the sequence of

decreasing moduli such that |rtj^| > |a^_i| > >|«i|-

Then, since infinity is a pole of order m, we have

/ {z) = a.nz'^ + a^^z-""-^ + + ai5 + /„ (z),

where /„ {z) is not infinite for infinite values of z. Now the polynomial

1,a^z'' is not infinite for any finite value of z ; hence f^ (z) is infinite for all

i= l

the finite infinities of f{z) and in the same way, that is, the function fu(z)

has «!, , a^ for its poles and it has no other singularities.

Again, since a^ is a finite pole of multiplicity ??i^, we have

where fi{z) is not infinite for z = a^ and, as fo{z) is not infinite for z=cc
,

evidently /i (z) is not infinite for z= cc . Hence the singularities of/i (z) are

merely the poles aj, , a^_i ; and these are all its singularities.

Proceeding in this manner for the singularities in succession, we ultimately

reach a function fn{z) which has only one pole Oj and no other singularity,

so that

f'^^=iAr^ +.^,+^<^>-

where g (z) is not infinite for z = a^. But the function /^(^) is infinite only

for z = ai, and therefore g (z) has no infinity. Hence g (z) is only a constant,

say ^0 ' thus

g{z) = k„.

Combining all these results we have a finite number of seri(>s to add together:

and the result is that
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where gi (2) is the series ko+ a^z + + a„,2'"\ and , is the sum of the

finite number of fractions. Evidently gg (z) is the product

(z - a^Y'' (z - tto)'"'^ (z- «^)»V ;

and g. (z) is at most of degree

m^ + m.2 4- + m^ — 1.

If F (z) denote g^ (z) g^ (z) + g. {z), the form of / {z) is

F{z)

that is, f {z) is a rational, algebraical, meromorphic function.

It is evident that, when the function is thus expressed as an algebraical

fraction, the degree of F {z) is the sum of the multiplicities of all the poles

when infinity is a pole.

Corollary I. A function, all the singularities of which are accidental,

has as many zeros as it lias accidental singularities in the plane.

If 2 = 00 be a pole, then it follows that, because f{z) can be expressed

in the form
I\z)

it has as many zeros as F {z), unless one such should be also a zero of g.^ {z).

But the zeros of gi{z) are known, and no one of them is a zero oi F{z), on

account of the form of f{z) when it is expressed in partial fractions. Hence

the number of zeros oif{z) is equal to the degree of F {z), that is, it is equal

to the number of poles oif{z).

li z=co be not a pole, two cases are possible; (i) the function /(2') may be

finite for z = <x> , or (ii) it may be zero for z= co . In the former case, the

number of zeros is, as before, equal to the degree of F {z), that is, it is equal

to the number of infinities.

In the latter case, if the degree of the numerator F (z) be k less than

that of the denominator g.^ {z), then z=oo is a zero of multiplicity k ; and it

follows that the number of zeros is equal to the degree of the numerator

together with k, so that their number is the same as the number of accidental

singularities.

Corollary II. At the beginning of the proof of the theorem of the

present section, it is proved that a function, all the singularities of which are

accidental, has only a finite number of such singularities.

Hence, by the preceding Corollary, such a function can have only a finite

number of zeros.

If, therefore, the number of zeros of a function be infinite, the function

must have at least one essential singularity.

I
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Corollary III. When a uniform analytic function has no es.sential

singularity, if the (finite) number of its poles, say Cj,..., c,„, be m, no one of

them being at £• = oo , and if the number of its zeros, say «!,..., a,n, be also m,

no one of them being at z = oo , then the function is

r =i\2-Cr.

except possibly as to a constant factor.

When z= CO is a zero of order n, so that the function has m — n zeros, say

a,, tto,..., in the finite part of the plane, the form of the function is

m-n
U (z — ar)
r = l

.

m '

U(Z- Cr)

and, when z = X) is a pole of order p, so that the function has m — jy poles,

say Ci, c.,,..., in the finite part of the plane, the form of the function is

m
n(z- a,)
r=l
m-p
n (Z-Cr)
r=l

Corollary IV. A II the singularities of rational algebraical meromorphio

functions are accidental.



CHAPTER V.

Transcendental Integral Functions.

49. We now proceed to consider the properties of uniform functions

which have essential singularities.

The simplest instance of the occurrence of such a function has already

been referred to in § 42 ; the function has no singularity except at z = <x>

,

and that value is an essential singularity solely through the failure of the

limitation to finiteness that would render the singularity accidental. The

function is then an integral function of transcendental character ; and it is

analytically represented (§ 26) by {z) an infinite series in positive powers of

z, which converges everywhere in the finite part of the plane and acquires

an infinite value at infinity alone.

The preceding investigations shew that uniform functions, all the singu-

larities of which are accidental, are rational algebraical functions—their

character being completely determined by their uniformity and the accidental

nature of their singularities, and that among such functions having the same

accidental singularities the discrimination is made, save as to a constant

factor, by means of their zeros.

Hence the zeros and the accidental singularities of a rational algebraical

function determine, save as to a constant factor, an expression of the function

which is valid for the whole plane. A question therefore arises how far

the zeros and the singularities of a transcendental function determine the

analytical expression of the function for the whole plane.

50. We shall consider first how far the discrimination of transcendental

integral functions, which have no infinite value except for = oo , is effected

by means of their zeros*.

* The following investigations are based upon the famous memoir by Weierstrass, " Zur

Theorie der eindeutigen analytischen Functionen," published in 187G : it is included, pp. 1—52,

in the Ahhandlungen aus der Functioncnlehre (Berlin, 1886).

In connection with the product-expression of a transcendental function, Cayley, " MCmoire sur

les fonctions doublemcnt periodiques," Liouville, t. x, (1845), pp. 385—420, or Collected Works,

vol. i, pp. 156—182, should be consulted.
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Let the zeros a^, a^, as,... be arranged in order of increasing moduli: a

finite number of terms in the series may have the same value so as to allow

for the existence of a multiple zero at any point. After the results stated

in § 47, it will be assumed that the number of zeros is infinite ; that,

subject to limited repetition, they are isolated points ; and, in the present

chapter, that, as n increases indefinitely, the limit of |a„| is infinity. And it

will be assumed that |rt,| > 0, so that the origin is temporarily excluded fvom

the series of zeros.

Let z be any point in the finite part of the plane. Then only a limited

number of the zeros can lie within and on a circle centre the origin and
radius equal to \z\ ; let these be aj, a.,,..., a^-i, and let a^. denote any one of

the other zeros. We proceed to form the infinite product of cjuantities iiy,

where Ur denotes

(>-i)
and gr is a rational integral function of z whicli, being subject to choice, will

be chosen so as to make the infinite product converge everywhere in the

plane. We have

a series which converges because \z\ < |rt,.|. Now let

s-ll

then \0gUr=- 2 -(-

and therefore

Hence

V,

if the expression on the right-hand side be finite, that is, if the series

i 5 1(^

converge unconditionally,

have

so that

Denoting the modulus of this series by M, we

015 00

r=k n=s
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whence, since 1 —

sum, we have

is the smallest of the denominators in terms of the last

sMU < 2
r=k

r=A; \^r\

If, as is not infrequently the case, there be any finite integer s for which (and

therefore for all greater indices) the series

00 1

2 —

—

r=l\ar\''
00

and therefore the series 2 ja,•|''^ converges, we choose s to be that least
r=k

integer. The value of M then is finite for all finite values of z ; the series

00 CO "1 / ~

2 2 (-
r=k n = s ^^ \(^r

converges unconditionally and therefore

00

n Ur
r=k

is a converging product when

Let the finite product

*n If1 - —) e "^1 ^* ^"™''

be associated as a factor with the foregoing infinite converging product. Then

the expression

is an infinite p7'oduct, converging uniformly and unconditionally for all finite
00

values of z, provided the finite integer s he such as to make the series 2 |ar|~*
r=l

converge uniformly and unconditionally.

Since the product converges uniformly and unconditionally, no product

constructed from its factors u^, say from all but one of them, can be infinite.

Now the factor
8-1 1 f zy-

\ _ l\ Q n=l « \M .

vanishes for z = a,„ ; hence f{z) vanishes for z =am. Thus the function,

evidently uniform after what has been proved, has the assigned points

«!, a.,,... and no others for its zeros.



50.] INFINITE PRODUCT 77

Further, z = y:) is an essential singularity of the function ; for it is an

essential singularity of each of the factors on account of the exponential

element in the factor.

51. But it may happen that no finite integer 6- can be found which will

make the series

i \ar\-'

converge*. Wc then proceed as follows.

Instead of having the same index s throughout the scries, we associate

with every zero a^ an integer m,. chosen so as to make the series

1 (£

a converging series. To obtain these integers, we take any scries of decreasing

real positive quantities e, e,, e^,..., such that (i) e is less than unity and

(ii) they form an unconditionally converging series ; and we choose integers

vfir such that

These integers make the foregoing scries of moduli converge. For,

neglecting the limited number of terms for which |2^|^|a|, and taking e

such that

z
I _

n=l

dk

we have for all succeeding terms

and therefore

z

<e,

<e,

^ e"^+i ^ e^.

Hence, except for the first k — \ terms, the sum of which is finite, we have

% \1 ( zyr,\ 1

n=k\0'n\0'nJ ' p|

which is finite because the series e4- ej + e., + ... converges. Hence the series

n=l
1
C^n V'n/ I

is a converging series.

* For instance, there is no finite intef^cr s that can make the infinite series

(log2)-+(logH)- + (log4)-+...

converge. This series is given in illustration by Hermite, Cours a la faculte des Sciences {i'"" 6d.

1891), p. 8G.
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Just as in the preceding case a special expression was formed to serve as

a typical factor in the infinite product, we now form a similar expression

for the same purpose. Evidently

- S ^
1 - a; = glog (i-a;) = e

r=or+l
^

if |a;| < 1. Forming a function E (x, m) defined by the equation

E {x, m) ={1 — x)e

m fT
S -
r=l '

CO ^m-t-r

- s ^

we have E {x, m) = e

In the preceding case it was possible to choose the integer m so that it

should be the same for all the factors of the infinite product, which was

ultimately proved to converge. Now, we take x =— and associate ??i,i as

the corresponding value of m. Hence, if

« = /c \«?t

where \au--\ < j^'l
< |ajfc|, we have

The infinite product represented by f{z) will converge if the double series in

the exponential be a converging series.

Denoting the double series by S, we have

CO t»

\S\< % 2
= /.r=l r ^- llln \an

< 2 S

^ 5 1^
i

Z

an

1+m,

r+rn„

I Z1- —

on effecting the summation for r. Let ^4 be the value of 1 — — : then for

all the I'emaining values of n we have

1- >A,

and so
1 '^

\ f
\S\<~ 2 -

^ n=k I ^?i

1^1 *
1 1

<9 2 - .

^ n=k \ ^n X^n

This series converges; hence for finite values of \z\ the value of \S\ is

finite, so that /S is a converging series. Hence it follows that f(z) is an
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unconditionally converging product. We now associate with f{z) as factors

the h—\ functions

Ei-.m.

for 1= 1, 2,..., h—\\ their number being finite, their product is finite and

therefore the modified infinite product still converges. We thus have

n=l \Ojn /

an unconditionally converging product.

Since the product G {z) converges unconditionally, no product constructed

from its factors E, say from all but one of them, can be infinite. The fact(jr

""' 1 / 2 Y

vanishes for the value z = a^^ and only for this value ; hence G {£) vanishes for

z = an. It therefore appears that G^z) has the assigned points a^, a., a^, ...

and no others for its zeros ; and from the existence of the exponential in each

of the factors it follows that z= (X) in an essential singularity of the factor and

therefore it is an essential singularity of the function.

Denoting the series in the exponential by g^ (z), so that

'"" 1 / zY

we have E

(

— , mn) — ( 1 — -
) e''«'^' ;

and therefore the function obtained is

71 = 1 (\ (hJ

The series g^ usually contains only a limited number of terms ; when the

number of terms increases without limit, it is only with indefinite increase

of
I

tt„
I

and the series is then a converging series.

It should be noted that the factors of the infinite product G (z) are the

expressions E no one of which, for the purposes of the product, is resoluble

into factors that can be distributed and recombined with similarly obtained

factors from other expressions E ; there is no guarantee that the product

of the factors, if so resolved, would converge uniformly and unconditionally,

and it is to secure such convergence that the expressions E have been

constructed.

It was assumed, merely for temporary convenience, that the origin was nt)t

a zero of the required function ; there obviously could not be a factor of

exactly the same form as the factors E if a were the origin.
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If, however, the origin were a zero of order X, we should have merely

to associate a factor z^ with the function already constructed.

We thus obtain Weierstrass's theorem :

—

It is possible to construct a transcendental integral function such that it

shall have infinity as its only essential singularity and have the or'igin (of

midtiplicity \), Oj, a«, a^, ... as zeros ; and such a function is

'^ n -1(1- — lef?„w

where gni^) is a rational, integral, algebraical function of z, theform of luhich

is dependent upon t/te latv of succession of the zeros.

52. But, unlike uniform functions with only accidental singularities, the

function is not unique : there are an unlimited number of tr-anscendental

integral functions with tJie same series of zeros and infinity as the sole essential

singularity, a theorem also due to Weierstrass.

For, if Gi (z) and G (z) be two transcendental, integral functions with the

same series of zeros in the same multiplicity, and 2: == oo as their only essential

singularity, then

G(z)

is a function with no zeros and no infinities in the finite part of the plane.

Denoting it by G^, then
]^dG,

G, dz

is a function which, in the finite part of the plane, has no infinities ; and

therefore it can be expanded in the form

G^ + 2G,z + SCsZ- + ...,

a series converging everywhere in the finite part of the plane. Choosing a

constant Cq so that GziO) = e^", we have on integration

Go(z) = e^^'\

where g (z) = Go + G-^z + C.z" + ...

,

and g {z) is finite everywhere in the finite part of the plane. Hence it follows

that, ifgiz) denote any integral function of z whiclt is finite everywhere in the

finite part of the plane, and if G {z) be some transcendental integral function

luith a given series of zeros and ^=00 as its sole essential singularity, all

transcendental integral functions luith that series of zeros and z=(X) as the

sole essential singularity are included in theform

G{z)e^^'K

Corollary I. A function which has no zeros in tJie finite part of the

plane, no accidental singularities and z=ccfor its sole essential singularity

is necessarily of the form
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wJiere g {z) is an integral function of z finite everywhere in the finite pcu-t

of the plane.

Corollary II. Every transcendental function, which has the same zeros

in the same multiplicity as an algebraical polynomial A (z)—the number,

therefore, being necessarily finite— , wJiich has no accidental singularities and

lias z—'-J^i for its sole essential singularity, can be expressed in the form

A{z)e^^'K

Corollary III. Every function, luJtich has an assigned series of zeros

and an assigned seHes of poles and has z=cc for its sole essential singu-

larity, is of theform

where the zeros of G„{z) are the assigned zeros and the zeros of Gj,{z) are the

assigned poles.

For if Gp(z) be any transcendental integral function, constructed as in

the proposition, which has as its zeros the poles of the requii-ed function in

tlie assigned multiplicity, the most general form of that function is

G.Az)e'^'%

where h(z) is integral. Hence, if the most general form of function which

has those zeros for its poles be denoted hy f(z), we have

f{z)G,(z)e^^^^'

as a function with no poles, with infinity as its sole essential singularity, and

with the assigned series of zeros. But if G„ (z) be any transcendental integral

function with the assigned zeros as its zeros, the most general form of function

with those zeros is

Go{z)e^^'^;

and so f(z) Gj, (z) e''
(-'' = G„ (z) e^'^'

,

whence f(z)=^'^\e~^^'\

in which g (z) denotes g (z) — h (z).

If the number of zeros be finite, we evidently may take G„{z) as the

algebraical polynomial with those zeros as its only zeros.

If the nimibor of poles be finite, we evidently may take Gj,(z) as the

algebraical polynomial with those poles as its only zeros.

And, lastly, if a function have a finite ninnber of zeros, a finite miinbcr

of accidental singularities and z = oo as its sole essential siugulai-ity, it can

be expressed in the form
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where P and Q are rational integral polynomials. This is valid even though

the number of assigned zeros be not the same as the number of assigned

poles ; the sole effect of the inecpiality of these numbers is to complicate the

character of the essential singularity at infinity.

53. It follows from what has been proved that any uniform function,

having z = ^ for its sole essential singularity and any number of assigned

zeros, can be expressed as a product of expressions of the form

Such a quantity is called* ii primary factor of the function.

It has also been proved that :

—

(i) If there be no zero a„, the primary factor has the form

(ii) The exponential index gn{z) maybe zero for individual primary

factors, though the number of such factors must, at the utmost,

be finite
"f".

(iii) The factor takes the form z when the origin is a zero.

Hence we have the theorem, due to Weierstrass :

—

Every uniform integral function of z can he expressed as a pi'odnct of

primary factors, each of the foriin

where g{z) is an appropriate integral function of z vanishing with z and where

1c, I are constants. In jyarticidar factors, g (z) may vanish ; and either k or I,

hut not hoth k and I, may vanish witli or without a non-vanishing exponential

index g {z).

54. It thus appears that an essential distinction between transcendental

integral functions is constituted by the aggregate of their zeros : and we may
conveniently consider that all sucJi functions are substantially the same when

they liave the same zeros.

There are a few very simple sets of functions, thus discriminated by their

zeros: of each set only one member will be given, and the factor e^'^', which

makes the variation among the members of the same .set, will be neglected

for the present. Moreover, it will be assumed that the zeros are isolated

points.

I. There may be a finite number of zeros ; the simplest function is then

an algebraical polynomial.

* Weierstrass's term is Primfunction, I.e., p. 15.

t Unless the class (§ 59) be zero, when the index is zero for all the factors.
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11. There may be a singly-infinite system of zeros. Various functions

will be obtained, according to the law of distribution of the zeros.

Thus let them be distributed according to a law of simple arithmetic

progression along a given line. If a be a zero, (o a (piantity such that
|
co I

is the distance between two zeros and arg, &> is the inclination of the line,

we have
a + mco,

for integer values of m from -co to + co , as the expression of the series of

the zeros. Without loss of generality we may take a at the origin—this

is merely a change of origin of coordinates—and the origin is then a

simple zero: the zeros are given hy nio), for integer values of m fi-nm

— 00 to + 00 .

Now S = — S — is a diverofing series ; but an integer s—the lowest
niQ) (O m o c^ ' n

value is s = 2—can be found for which the series 2 (
I

converefes uni-
\7ncoJ

*

formly and unconditionally. Taking s= 2, we have

z\"_ z

so that the primary factor of the present function is

^"•(^>=j!s(r'="-

1 - ^'A e
mo)/

and therefore, by § 52, the product

/w-.^1(i-„:j^"'"

converges uniformly and unconditionally for all finite values of 2.

The term corresponding to wi = is to be omitted from the product ; and

it is unnecessary to assume that the numerical value of the positive infinity

for 7n is the same as that of the negative infinity for m. If, however, the

latter assumption be adopted, the expression can be changed into the ordinary

product-expression for a sine, by combining the primary factors duo to values

of 771 that are equal and opposite : in fact, then

», , CO . TTZ
f iz) — - sm — .

•^

TT ft)

This examplo is sufficient to show tlic importance of the exponential term in the

primary factor. If the [)rodiict be formed exactly as for an algel>raical polynomial, tlien

the function is

in tlie limit wlien hotli ;) and y are infinite. r)Ut this is known* to he

I
*-

I
- sni — .

\pj TT M

* Hobson's Tri(i()iinmctrii, ^ '2S7.

G—

2
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Another illustrntioa is aflbrdecl by Gauss's n-fimction, which is the limit when k is

infinite of

1.2.3 k ^

This is transformed by Gauss* into the reciprocal of the expression

(>-->s{(-,^)(^r}.

that is, of {1+z) n Ul + -]e ^"-'^l

the primary factors of which have the same characteristic fonn as in the preceding

investigation, though not the same literal form.

It is chiefly for convenience that the index of the exponential part of the primary
!-l 1 / 2\»

factor is taken, in § 50, in the form 2 - ( — ) . With equal effectiveness it may be

.-1

1

taken in the form 2 -K ,,2", provided the series

converge uniformly and unconditionally.

Ex. 1. Prove that each of the products

for '/«= ±1, ±3, +5, to infinity, and

(-!)5:[{'-(-^}»-].
the term for n= being excluded from the latter product, converges uniformly and uncon-

ditionally and that each of them is equal to cos 2. (Hemiite and Weyr.)

Kv. 2. Prove that, if the zeros of a transcendental integral function be given by the

series

0, ±0), ±4a), ±9a), to infinity,

the simplest of the set of fmictious thereby determined can be expressed in the form

^"^f ©"}'"^f ©1
£x. 3. Constnict the set of transcendental integral functions which have in common

the series of zeros determined by the law m^ai + 'imca.^ + a>.^ for all integral values of m
between - qo and + x ; and express the simplest of the set in terms of circular functions.

55. The law of distribution of the zeros, next in importance and sub-

stantially next in point of simplicity, is that in which the zeros form a doubl}'-

infinite double arithmetic progression, the points being the 00^ intersections

of one infinite system of equidistant parallel straight lines with another

infinite system of equidistant parallel straight lines.

The origin may, without loss of generality, be taken as one of the zeros.

If ft) be the coordinate of the nearest zero along the line of one system

passing through the origin, and to' be the coordinate of the nearest zero along

* Ges. IVerlic, t. iii, p. 145; the example is quoted in this connection by Weierstrass, I.e.,

p. 15.

4



55.] FACTORS 85

the line of the other system jjassuig through the origin, tiiuu the eoinplete

series of zeros is given by

n = niw + via)',

for all integral values of m and all integral values of m' between — oo and

+ 00 . The system of points may be regarded as doubly-periodic, having co

and co' for periods.

It must be assumed that the two systems of lines intersect. Other-

wise, (o and ft)' would have the same argument and their ratio would be a real

quantity, say a ; and then

n— = 771 + ni a.
(O

Whether a be commensurable or incommensurable, the number of pairs

of integers, for which m + m'a is zero or may be made less than any small

({uantity S, is infinite ; and in either case we should have the origin a zero

for each such pair, that is, altogether the origin would be a zero of infinite

multiplicity. This property of a function is to be considered as excluded,

for it would make the origin an essential singularity instead of, as re(|uire(l,

an ordinary point of the transcendental integral function. Hence the ratio of
the quantities eo and w is not real.

56. For the construction of the primary factor, it is necessary to render

the series

converging, by appropriate choice of integers 6-,„,„j. It is found to be

{)ossible to choose an integer s to be the same for every term of the series,

corresponding to the simpler case of the general investigation, given in § 50.

As a matter of fact, the series

diverges for s = l (we have not made any assumption that the positive and

the negative infinities for m are numerically e({ual, nor similarly as to nt')
;

the series converges for s = 2, but its value depends upon the relative values

of the infinities for m and ni; and s = 3 is the lowest integral value for which,

as for all greater values, the series converges uniformly and unconditionally.

There are various ways of proving the uniform and unconditional conver-

gence of the series Sfl"'^ when yu, > 2 : the following proof is based upon a

general method due to Eisenstein*.

J«=00

First, the series X X {m^ + n-)~'^ converges uniformly and uncondi-
m= — oc n= -oo

tionally, if yu,> 1. Let the series be arranged in partial series : for this purpose,

* Grelle, t. xxxv, (1847), p. 161 ; a geometrical exposition is given by Halplien, Traitc dcs

fonctions elliptiijties, t. i, pp. 358—362.
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we choose integers k and I, and include in each such partial series all

the terms which satisfy the inequalities

2^' < })i ^ 2^'+\

2^ < II ^ 2^+\

so that the number of values of ni is 2* and the number of values of n is 2K

Then, if k + 1 = 2k, we have

2-'^ < 2--+' < 2-^ + 2-^ < in' + II-,

so that each term in the iiavtial series < ,;rT— . The number of terms in the

partial series is 2^'.2^ that is, 2-": so that the sum of the terms in the

partial series is

1
<

<92K(/li-l) •

Take the upper limit of k and I to be ^j, ultimately to be made inlinite.

Then the sum of all the partial series is

^ 1
<

^ 1 _ 2-2 (M-i) -•

which, when ^) = x , is a finite quantity if /u- > 1.

Next, let (i} = a + jSi, co' = 7 + hi, so that

n = may + nw = ma + n^ -\- i {iiifS + nS)
;

hence, if 6 = uia + wy, (j) = inlS + 118,

we have
1

^ ' = ^' + ^"'

Now take integers r and 8 such that

?-<^<?' + l, S<<{)<S+l.

The number of terras H satisfying these conditions is definitely finite and is

independent of >ii and n. For since

m {olB — ^y) — $S — ^7,

n (aS -^ry) = -ei3 + (/)«,

and a8 — /By does nut vanish because (o'j(o is not purely real, the number of

values of m is the integral part of

(r + l)B — sy

ah — ^y
less the integi'al part of

r8 — (s + l)y

aS — ^y '

that is, it is the integral part of {y -\-h),{a8 — j3y). Similarly, the number of

values of 11 is the integral part of (a + (3)^ (aS — ^y). Let the product of the
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last two integers be q ; then the number of terms XI satisfying the in-

equalities is q.

Then SS
|

ft |-> = tl {&' + (/)'-')-'^

^ (/ SS (r- + S')->',

which, by the preceding result, is finite when /u,> 1. Hence

SS (mo) + m'(o')~''^

converges uniformly and unconditionally when /* > 1 ; and therefore the least

value of s, an integer for which

S2 (mo) + w'ft)')"*'

converges uniformly and unconditionally, is 3.

The series 22 (mw + ?;i'(»')
~

^ has a finite sum, the vahie of which depends* upon

the infinite limits for the summation with regard to m and 7a'. This dependence is

inconvenient and it is therefore excluded in view of our present purp(;se.

£a;. Prove in the same manner that the series

222(oti'-^+ ;»^--|- + «^;-)~^

the multiple summation extending over all integers Mj, vi.^, , in,^ between - oc and

-t-oo, converges uniformly and unconditionally if 2fi>7i. (Eiseustein.)

57. Returning now to the construction of the transcendental integral

function the zeros of which are the various points fl, we use the preceding

result in connection with | 50 to form the general primary factor. Since

5 = 3, we have

_ z ^ z-

and therefore the primary factor is

i-s'^^
^\ -o + Jn=

Moreover, the origin is a simple zero. Hence, denoting the recjuired function

by a {£), we have

<^^^>=^".",fr-S)^^''°'}

as a transcendental integral function wliicli, since tJie product converges iini-

fofrmly and unconditionallg for all finite values of z, escists and has a finite

value everyiuhere in the finite jmr-t of the jjlane ; the quantity H denotes

mto + 7n'(o', and the double product is taken for all values of m and of ni

between — oo and -f- x , simultaneous zero values alone being excluded.

This function will be called Weieretrass's cr-function ; it is of importance

in the theory of doubly-periodic functions which will be discussed in Chapter
XL

* See a paper by the author, Quart. Jount. uf Math., vol. xxi, (188G), pp. 261—280,
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Ex. If the doubly-iufiuite scries of zeros be the points given liy

Q. = /)l'U)i + 2/H '11(02 "t" ^^'<^.i )

coi, w^, t>>3 being such complex constants that Q does not vanish for real values of vi and ji,

then the series

2 2 Q-*

converges for s= 2. Tlie primary factor is thus

and the simplest transcendental integi'al function having the assigned zeros is

The actual points that are the zeros are the intersections of two infinite systems of

parabolas.

58. One more result—of a negative character—will be adduced in this

connection. We have dealt with the case in which the system of zeros is a

singly-infinite arithmetical progression of points along one straight line and

with the case in which the system of zeros is a doubly-infinite arithmetical

progression of points along two different straight lines : it is easy to see that

a uniform transcendental integral function cannot exist with a triply-infinite

arithmetical progression ofpointsfor zeros.

A triply-infinite arithmetical progression of points would be represented

by all the possible values of

2h^,+p.n,+p,n,

for all possible integer values for Jh, l^z, Ps between — x and + x
,
where no

two of the arguments of the complex constants Hj, Ho, 12^ are ec[ual. Let

nr = (o, + i(o;, (r = l, 2, 3);

then, as will be proved (§ 107) in connection with a later proposition, it is

possible*—and possible in an unlimited number of ways—to determine

integers jJi^ 1^-, Pi so that, save as to infinitesimal quantities.

Pi
^ ^ P-2 ^ p3

all the denominators in which equations differ from zero on account of the

fact that no two arguments of the three quantities Hj, Ho, D.-, are equal. For

each such set of determined integers we have

p^ni+p^n.+psn^

zero or infinitesimal, so that the origin is a zero of unlimited multiplicity or,

in other words, there is a space at the origin containing an unlimited number

of zeros. In either case the origin is an essential singularity, contrary to

* Jacobi, Gt'x. Werke, t. ii, p. 27.
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the hypothesis that the only essential singularity is for ^ = x ; antl hence a

uniform transcendental function cannot exist having a triply-infinite arith-

metical succession of zeros.

59. In effecting the formation of a transcendental integral function by

means of its primary factors, it was seen that the expression of the primary

factor depends upon the values of the integers which make

» = 1

a converging series. Moreover, the primary factors are not unicjue in form,

because any finite number of terms of the proper form can be added to the

exponential index in

and such terms will only the more effectively secure the convergence of the

infinite product. But there is a lower limit to the removal of terms with the

highest exponents from the index of the exponential; for there are, in general,

minimum values for the integers m^^, m.,,..., below which these integers can-

not be reduced, if the convergence of the product is to be secured.

The simplest case, in which the exponential must be retained in the

primary factor in order to secure the convergence of the infinite product, is

that discussed in § 50, viz., when the integers m,, m.,,... are equal to one

another. Let wi denote this common value for a given function, and let

m be the least integer effective for the purpose : the function is then said*

to be of class m, and the condition that it should be of class in is that the

integer m be the least integer to make the series

n=l

converge uniformly and unconditionally, the constants a being the zeros of

the function.

Thus algebraical polynomials arc of class ; the circular functions sin z

and cos z are of class 1 ; Weierstrass's a--function, and the Jacobian elliptic

function sn z are of class 2, and so on : but in ,no one of these classes do the

functions mentioned constitute the whole of the functions of that class.

60. One or two of the simpler properties of an aggregate of transcen-

dental integral functions of the same class can easily be obtained.

Let a function f{z), of class n, have a zero of order r at the origin and

* The French word is genre; the Italian is gcnerc. Laguerrc (sec references on p. !»2) appears

to have been the first to discuss the class of transcendental integral functions.
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have fti, a...... for its other zeros, arranged in order of increasing moduli.

Then, by § 50, the function /(^) can be expressed in the form

where a,- (z) denotes the series S - and G (2) must be properly deter-
•^^^ ^

s=l s VliJ

mined to secure the equality.

Now the series

is one which converges uniformly for all values of 2 that do not coincide with

one of the points a, that is, with one of the zeros of the original function.

For the sum of the series of the moduli of its terms is

i 1 1

i:i\aiy'^'L_2_
a,:

\ z
\

., 1

Let d be the least of the quantities
j

1
, necessarily non-evanescent be-

cause 2 does not coincide with any of the points a ;
then the sum of the series

1 CO 1

<- ^ —
^ 1 = 1 l^^nl

which is a converging series since the function is of class n. Hence the

series of moduli converges and therefore the original series converges ; let it

be denoted by S> {2), so that
CO \

We have

4;(^)=G'(.)+r+iifi+i+.,.+ -

= (?'(^)+^-^'^S ^

z i^\at{ai-z)

r
G'(2) + - -z''S(z).

z

Each step of this process is reversible in all cases in which the original pro-

duct converges; if, therefore, it can be shewn of a function / (2^) that ^. ^

takes this form, the function is thereby proved to be of class n.

If there be no zero at the origin, the term - is absent.
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If the exponential factor G {z) be a constant so that G' {z) is zero, the

function /(^) is said to be a simple function of class n.

61. There are one or two criteria to determine the class of a function

:

the simplest of them is contained in the following proposition, due to

Laguerre *.

If, as z tends to the value cc , a very great value of \z\ can he found for

f (z)
which the limit of z~^^ "^^ , where f {z) is a transcendental, integral function,

tends uniformly to the value zero, then f {z) is of class n.

Take a circle centre the origin and radius R, eijual to this value of \z\\

then, by § 24, II., the integral

•l/'(0 dt

'lirijtt-f{t) t-z'

taken round the circle, is zero when jR becomes indefinitely great. But the

value of the integral is, by the Corollary in § 20,

1 rif^j^, 1 [<'''! /'io dt
. L ^ f'"''i/'(0 ^

27riJ t'' fit) t-z 2-771] t" fit) l-z 2-Tri,^xJ t" fit) t-z'

taken round small circles enclosing the origin, the point z, and the points

ai, which are the infinities of the subject of integration ; the origin being

supposed a zero of /(^) of multiplicity r.

1 r<^'<i/^ cli^lf\z)
l-Tri] f'fit) t-z z'' fiz)

'

1 r'«i' If it) dt 1 1

Now

42TriJ f' fit) t-z ai''ai-z'

1_ P'l/XO d±^_<H^_ r

2'7ri] P' fit) t-z z''
2"+^'

where <^ iz) denotes the integral, algebraical, polynomial

If it) iP dtlfit) tr"n-lldt-^\fit) t

when t is made zero. Hence

and therefore

z'' fiz) iZxatiai-z) 2" ^"+1 '

^[^ = <^iz) + '^-z-Siz),
Jiz) ^^ ' z

which, by § 00, shews that / (2^) is of class //.

* Coiii2)tes llemUts, t. xciv, (1882), p. 030.
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Corollary. The product of any finite number of functions of the same

class n is a function of class not higher than n; and the class of the product

of any finite number of functions of different classes is not greater than the

highest class of the component functiom.

The following are the chief references to memoir.s discussing the class of functions :

Laguerre, Comptes Rendus, t. xciv, (1882), pp. 160-163, pp. 635—638, ib. t. xcv, (1882),

pp. 828—831, ib. t. xcviii, (1884), pp. 79—81

;

Poincare, Bull, des Sciences Math., t. xi, (1883), pp. 136—144 ;

Ces^ro, ComjJtes Rendus, t. xcix, (1884), pp. 26—27, followed (p. 27) by a note by

Hermitc; Giornale di Battaglini, t. xxii, (1884), pp. 191—200;

Vivanti, Giornale di Battaglini, t. xxii, (1884), pp. 243—261, pp. 378—380, ib. t. xxiii,

(1885), pp. 96—122, ib. t. xxvi, (1888), pp. 303—314
;

Hermitc, Cours a la faculte des Sciences (4°" ud., 1891), pp. 91—93.

Ex. 1. TliC function

2 er^'fi (^),

where the quantities c are constants, a is a tinite integer, and tlie functions /j (2) are

algebraical polynomials, is of cla.ss unity.

Ex. 2. If a simple function be of class n, its derivative is also of class n.

Ex. 3. Discuss the conditions under which the siun of two functions, each of class n,

is also of class n.

Ex. 4. Examine the following test for the class of a function, due to Poincare.

Let a be any number, no matter how small provided its argument 1)0 such that «""

vanishes when z tends towards infinity. Then / {z) is of class n, if the limit of

.-"^V(^')

vanish with indefinite increase of :.

A possible value of a is 2 CiWi"""!, where c^ is a constant of modulus miity.

Ex. 5. Verify the following test for the class of a finiction, due to de Sparre*.

Let X be any positive non-infinitesimal quantity ; then the fmiction / (;) is of class n,

if the limit, for m = x , of

l«mi"~MI«m + l|-l«ml}

be ncjt less than X. Thus sin z is of class unity.

Ex. 6. Let the roots of $"^^ — 1 be 1, a, a?, , a"; and let f {z) be a function

of class n. Then forming the product

n/(a«4

we evidently have an integral function of -.""^i; let it be denoted by i^(2" + *). The roots of

* Comptes Rendiis, t. cii, (1880), p. 741,
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/'^(2'' + i) = are Uia'for i=l,2, and s= 0, 1, , n; and therefore, replacing 5"+' by z,

the roots o{ F(z) = are «i"
+ > for i=l, 2,

Since/ (z) is of class ?i, the series

i '
n + l

converges uniformly and unconditionally. This scries is the sum of the first powers of the

reciprocals of the roots of F(z) = 0; hence, according to the definition (p. 89), F{z) is of

class zero.

It therefore follows that fi'om a function of any class a function of class zero with a

modified variable can be deduced. Conversely, by appropriately modifying the variable of

a ffiven function of class zero, it is possible to deduce functions of any required class.

E.V. 7. If all the zeros of the function

M(-^3-
r On'

be real, then all the zeros of its derivative are also real. (Witting.)



CHAPTER VI.

Functions with a Limited Number of Essential Singularities.

62. Some indications regarding the character of a function at an

essential singularity have already been given. Thus, though the function

is regular in the vicinity of such a point a, it may, like sn - at the origin,

have a zero of unlimited multiplicity or an infinity of unlimited multiplicity

at the point ; and in either case the point is such that there is no factor of

the form (z — ay which can be associated with the function so as to make the

point an ordinary point for the modified function. Moreover, even when

the path of approach to the essential singularity is specified, the value

acquired is not definite : thus, as z approaches the origin along the axis of .v,

so that its value may be taken to be 1 -^ (4<mK + x), the value of sn - is not

definite in the limit when m is made infinite. One characteristic of the

point is the indefiniteness of value of the function there, though in the

vicinity the function is uniform.

A brief statement and a proof of this characteristic were given in § 33

;

the theorem there proved—that a uniform analytical function can assume

any value at an essential singularity—may also be proved as follows. The

essential singularity will be taken at infinity—a supposition that will be

found not to detract from generality.

Let f{z) be a function having any number of zeros and any number

of accidental singularities and z=cc for its sole essential singularity ; then

it can be expressed in the form

where Gi (z) is algebraical or transcendental according as the number of zeros

is finite or infinite and G.(z) is algebraical or transcendental according as

the number of accidental singularities is finite or infinite.

If G.iz) be transcendental, we can omit the generalising factor e'"^*.

Then f{z) has an infinite number of accidental singularities ; each of them

in the finite part of the plane is of only finite multiplicity and therefore some

of them must be at infinity. At each such point, the function G. (z) vanishes

and Gi (z) does not vanish ; and so f(z) has infinite values for z= x .
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If G..{z) be algebraical and 0^{z) be also algebraical, then the factor e»'^'

may not be omitted, for its omission would make f{z) an algebraical function.

Now 2: = 00 is either an ordinary point or an accidental singularity of

G,{z)IG,{z)-

hence as g {z) is integral there are infinite values of z which make

infinite.

If Gi{z) be algebraical and Gi{z) be transcendental, the factor e'"^' maybe

omitted. Let a^, a,,..., an be the roots of Go{z): then taking

f(z)= X-^+Gniz),
r=lZ — CLr

, . Gi (ar)
we have A,. = 7=^—c,

(t., {Clr)

a non-vanishing constant ; and so

where Gn(z) is a transcendental integral function. When z=<X), the value

of (ra (2;)/Cra (^) is zcro, but Gn(z) is infinite ; hence /(^) has infinite values for

0= 00 .

Similarly it may be shewn, as follows, that/(2^) has zero values for z= X)

.

In the first of the preceding cases, if Gi (z) be transcendental, so that f(z)

has an infinite number of zeros, then some of them must be at an infinite

distance
; f{z) has a zero value for each such point. And if Gi (z) be

algebraical, then there are infinite values of z which, not being zeros of

G~,{z), make f{z) vanish.

In the second case, when z is made infinite with such an argument as to

make the highest term in g(z) a real negative quantity, then f(z) vanishes

for that infinite value of z.

In the third case,/(^) vanishes for a zero of Gi(z) that is at infinity.

Hence the value oi f{z) for 2 = x is not definite. If, moreover, there

be any value neither zero nor infinity, say G, which f{z) cannot acquire

for z= QC , then

is a function which cannot be zero at infinity and therefore all its zeros are

in the finite part of the plane : no one of them is an essential singularity, for

f{z) has only a single value at any point in the finite part of the plane; hence

they are finite in number and are isolated points. Let H^{z) be the alge-

braical polynomial having them for its zeros. The accidental singularities

of f{z) — C are the accidental singularities of f(z) ; hence
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where, if G.iz) be algebraical, the exponential h{z) must occur, since /(^),

and therefore /(2) - G, is transcendental. The function

evidently has ^ = co for an essential singularity, so that, by the second or

the third case above, it certainly has an infinite value for 2=00, that is,

f(z) certainly acquires the value C for ^= go .

Hence the function can acquire any value at an essential singularity.

63. We now proceed to obtain the character of the expression of a

function at a point z which, lying in the region of continuity, is in the

vicinity of an essential singularity b in the finite part of the plane.

With b as centre describe two circles, so that their circumferences and

the whole area between them lie entirely within the region of continuity.

The radius of the inner circle is to be as small as possible consistent with

this condition; and therefore, as it will be assumed that b is the only

singularity in its own immediate vicinity, this radius may be made very

small.

The ordinary point z of the function may be taken as lying within the

circular ring-formed part of the region of continuity. At all such points in

this band, the function is holomorphic ; and therefore, by Laurent's Tlieorem

(§ 28), it can be expanded in a converging series of positive and negative

integi-al powers of z — b in the form

Wo + Wi {z — b) + lu iz - 6)- + . .

.

\v^{z- 6)-i + Vo (2: - b)-"- + ...,

where the coefficients «„ are determined by the equation

the integrals being taken positively round the outer circle, and the coefficients

Vn are determined by the equation

%.=^.\{t'-br-^f{^^)dt!,

the integrals being taken positively round the inner circle.

The series of positive powers converges everywhere within the outer circle

of centre b, and so (§ 26) it may be denoted by P{z — b) ; and the function P
may be either algebraical or transcendental.

The series of negative powers converges everywhere without the inner

circle of centre b ; and, since b is not an accidental but an essential singularity

of the function, the series of negative powers contains an infinite number of
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terms. It may be denoted by G (

j j
, a series converging for all points

in the plane except z = b and vanishing when 2; — & = x)

.

Thus f(z)=G(^^^+P(z-b)

is the analytical representation of the function in the vicinity of its essential

singularity h ; the function G is transcendental and converges everywhere in

the jilane except at z = b, and the function P, if transcendental, converges

uniformly and unconditionally for sufficiently small values of \z — h\.

Had the singularity at h been accidental, the function G would have been

algebraical.

Corollary I. If the function have any essential singularity other than

h, it is an essential singularity of P (^r — h) continued outside the outer circle
;

but it is not an essential singularity of Gi 7], for the latter function

converges everywhere in the plane outside the inner circle.

Corollary IL Suppose the function has no singularity in the plane

except at the point h ; then the outer circle can have its radius made infinite.

In that case, all positive powers except the constant term ?/,, disappear:

and even this term survives only in case the function have a finite value at

infinity. The expression for the function is

Vl Vo

z — b {z — by

and the transcendental series converges everywhere outside the infinitesimal

circle round b, that is, everywhere in the plane except at the point b. Hence

the function can be represented by

This special result is deduced by Woiersti-ass from the earlier investiga-

tions*, as follows. If f(z) be such a function with an essential singularity at

b, and if we change the independent variable by the relation

Z — b

then f(z) changes into a function of/, the only essential singularity uf which

is at z' ^ X) . It has no other singularity in the plane ; and the form of the

function is therefore G{z'), that is, a function lianing an essential singulai'ity

at b but no other singularity in the plane is

* Weiorstrass (I.e.), p. 27.
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Corollary III. The most general expression of a function having its

sole essential migulamtij at h a point in the finite part of the plane and any

number of accidental singidaHties is

^it^l/fe)

where the zeros of the function are the zeros of G^, the accidental singularities

of the function are the zeros of G., and the function g in the exponential is a

function which is finite everyiuhere except at h.

This can be derived in the same way as before ; or it can be deduced

from the corresponding theorem relating to transcendental integi-al functions,

as above. It would be necessary to construct an integi-al function G^iz)

having as its zeros

Oa — b' O2 — 6
'

" *

'

and then to replace z by -—y ; and G., is algebraical or transcendental,

according as the number of zeros is finite or infinite.

Similarly we obtain the following result

:

Corollary IV. A uniform function of z, which has its sole essential

singidarity at h a point in the finite part of the plane and no accidental

singularities, can he represented in the form of an infinite product of primary

factoids of the form

which converges uniformly and unconditionally everywhere in the plane except

at z = h.

The function g( -7) is an integral function of ^—y vanishing when

5- vanishes ; and k and I are constants. In particular factors, g ( ,-

)

z-b ^ \z-bj

may vanish ; and either k or I (but not both k and /) may vanish with or

without a vanishing exponent ^ f ,
j

.

If ai be any zero, the corresponding primary factor may evidently be

expressed in the form

Similarly, for a uniform function of z with its sole essential singularity at h and

any number of accidental singularities, the product-form is at once derivable
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by applying the result of the present Corollary to the result given in

Corollary III.

These results, combined with the results of Chapter V., give the complete

general theory of uniform functions with only one essential singularity.

64. We now proceed to the consideration of functions, which have a

limited number of assigned essential singularities.

The theorem of § 63 gives an expression for the function at any point in

the band between the two circles there drawn.

Let c be such a point, which is thus an ordinary point for the function

;

then in the domain of c, the function is expansible in a form Pj {z — c).

This domain may extend to an essential singularity h, or it may be limited

by a pole d which is nearer to c than h is, or it may be limited by an

essential singularity f which is nearer to c than h is. In the first case, we

form a continuation of the function in a direction away from h ; in the

second case, we continue the function by associating with the function

a factor {z — dY which takes account of the accidental singularity; in

the third case, we form a continuation of the function towards /. Taking

the continuations for successive domains of points in the vicinity of y, we can

obtain the value of the function for points on two circles that have f for

their common centre. Using these values, as in § 63, to obtain coefficients,

we ultimately construct a series of positive and negative powers converging

except at / for the vicinity of f. Different expressions in different parts

of the plane will thus be obtained, each being valid only in a particular

portion : the aggregate of all of them is the analytical expression of the

fimction for the whole of the region of the plane where the function exists.

We thus have one mode of representation of the function ; its chief

advantage is that it indicates the form in the vicinity of any point, though it

gives no suggestion of the possible modification of character elsewhere. This

deficiency renders the representation insufficiently precise and complete ; and

it is therefore necessary to have another mode of representation.

65. Suppose that the function has n essential singularities ai,ao,...,a„

and that it has no other singularity. Let a circle, or any simple closed

curve, be drawn enclosing them all, every point of the boundary as well

as the included area (with the exception of the n singularities) lying in

the region of continuity of the function.

Let z be any ordinary point in the interior of the circle or curve ; and

consider the integral
^ ^/^\

m-^
taken round the curve. If we surround z and each of the n singularities by

small circles with the respective points for centres, then the integral round

7—2
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the outer curve is equal to the sum of the vakies of the integral taken round

the 71 + 1 circles. Thus

27r* J st — 2 27ri J zt — z liri j „^ t — z

and therefore

dt,

'Z'mj-t-z linjst — z 27n Jart—^

The left-hand side of the equation is f{z).

Evaluating the integi-als, we have

1 t ^^'Ku=~gJ '

27rl Jort — ^ "^

\Z — ttrJ

where Gr is, as before, a transcendental function of vanishing; when
Z — ttr

1
IS zero.

Z — Qr

Now, of these functions, Gr i ) converges everywhere in the plane
\Z Cl,-/

except at a^. : and therefore, as n is finite,

r=i \z- a,

is a function which converges everywhere in the plane except at the n points

fti , . .
.
, 0,11 •

Because ^^ = x is not an essential singularity of f{z), the radius of the

circle in the integral ^

—

. I .-^ dt may be indefinitely increased. The value
ZiTTt J g t — Z

of/(f) tends, with unlimited increase of t, to some determinate value C which

is not infinite ; hence, as in § 24, II., Corollary, the value of the integral is

G. We therefore have the result that/(^) can be expressed in the form

C+ tGr(^^),

or, absorbing the constant G into the functions G and replacing the limitation,

that the function Gri ) shall vanish for = 0, by the limitation
V^ — OrJ Z — ttr

that, for the same value = 0, it shall be finite, we have the theorem*:

—

z — a,.

If a given fmiction f{z) have n singularities a^,..., a,i, all of which are in

the finite part of the plane and are essential singularities, it can be expressed

in theform

r=i \z - aj

* Tlie method of proof, by an integration, is used for brevity : the theorem can be established

by purely algebraical reasoning.
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where Gr is a transcendental function converging everywhere in the jdane

except at a^ awe? having a determinate finite value gr for -—— = 0, such

n

that S gr is the finite value of the given function at infinity.

r=\

Corollary. If the given function have a singularity at oo , and n singu-

larities in the finite part of the plane, then the function can be expressed in

the form

G(^)+ SgJ i-),

where Gr is a transcendental or an algebraic polynomial function, according

as Ur is an essential or an accidental singularity : and so also for G {z), accord-

ing to the character of the singularity at infinity.

66. Any uniform function, which has an essential singularity at z = a,

can (§ 63) be expressed in the form

»(j^)+^<"-">

for points z in the vicinity of a. Suppose that, for points in this vicinity,

the function f{z) has no zero ; that it has no accidental singularity ; and

therefore, among such points z, the function

1 df(z)

f(z) dz

has no pole, and therefore no singularity except that at a which is essential.

Hence it can be expanded in the form

G f-^-) + P (^ - a),
\z — aj

where G converges everywhere in the plane except at a, and vanishes for

1

z — a
0. Let

G{^^]=^~+~\G,
\z — aj z — a dz

where G^ ( j converges everywhere in the plane except at a, anil vanishes

for ^— = 0.
z — a

Then c, evidently not an infinite quantity, is an integer. To prove this,

describe a small circle of radius p round a: then taking z — a=pe^^ so that

= idd, we have
z — a

iv\^^ dz = P{z- a) dz + aide + ^\gJ — "ll dz,
f{z) dz ^ dz{ \z-aj)
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and therefore

„ cie+!P(z-a),h+G,{::^)
f{z) — (Je V--a/,

Now JP(z — a)dz is a uniform function : and so is /(z). But a change

of 6 into 6 + 27r does not alter z or any of the functions : thus

and thei'cfore c is an integer.

67. If the function f{z) have essential singularities «!,.••> ('h and no

others, then it can be expressed in the form

C+ i gr(-^].

If there be no zeros for this function f(z) anywhere (except of course such

as may enter through the indeterminateness at the essential singularities),

then

1 df(z)

f{z) dz

has n essential singularities ttj,..., an and no other singularities of any kind.

Hence it can be expressed in the form

0+ I Gr{~^),
r=\ Kz-aJ

where the function G,- vanishes with . Let
z — a,.

\Z — ClrJ Z — ar dz {
^ \Z — ilyj

where Gr I I
is a function of the same kind as (r,. ( )

.

V^:
— arl \Z — ar)

Then all the coefficients Cy, evidently not infinite quantities, are integers.

For, let a small circle of radius p be drawn round a,. : then, if z — ar= pe^', we

have

Crdz = CM
z — ar

and -^— = dPs (z - ar).
Z-ttg

We proceed as before : the expression for the function in the former

case is changed so that now the sum 'S.Pgiz - ar) for s — l,..., r—1,

r + 1,..., n IB a. uniform function; there is no other change. In exactly the

same way as before, we shew that every one of the coefficients Cr is an

integer.

Hence it appears that if a given function f{z) have, in the finite part of
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the plane, n essential singularities «!,..., cin and no other singularities and if

it have no zeros anywhere in the plane, then

f{z) dz i^-^z-ai i=idz\ ''{z-aj}'

where all the coefficients Cj are integers, and the functions G converge every-

where in the plane except at the essential singularities and Gi vanishes for

Z-Ui

Now, since /(£;) has no singularity at oo , we have for very large values ofz

Z Z'

and f {z)^ i — ....
•' ^ ' z' z^

and therefore, for very large values of z,

1 df{z) ^ Vi 1
_^

w,
^

f{z) dz UqZ' 2*

Thus there is no constant term in .7-^ 7-^^^, and there is no term in -. But
f{z) dz z

the above expression for it gives G as the constant term, which must therefore

vanish ; and it gives Sci as the coefficient of , for
-f \Gii ] [ will begin

z ClZ
(^

\Z ftj/ J

with .- at least ; thus Scj must therefore also vanish.
Z-'

Hence for a function /(^r) which has no singularity at z=co and no

zeros anywhere in the plane and of which the only singularities are the n

essential singularities at aj, a.,,..., tin, we have

1 df(z)^
I -^+ % ~\g-^ ^

f{z) dz i=iz-ai i^idz] '\z-a

where the coefficients d are integers subject to the condition

n

If a,i= 00 , so that 2 = 00 is an essential singularity in addition to Oj, do,...,

ttn-i, there is a term G (z) instead of Gni —
)

; there is no term, that corre-
\z — ctn/

spends to —-—
, but there may be a constant G. Writing

Z — O/n

with the condition that G {z) vanishes when z = 0, we then have

JTz) -JT - h J^a, -^ S 1^ <">! +
,.?, dzr U - aJ]

•
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where the coefficients c,: are integers, but are no longer subject to the

condition that their sum vanishes.

Let R* (z) denote the function

U(z-ai)%
i = i

the product extending over the factors associated with the essential sin-

gularities of y'(^^) that lie in the finite part of the plane; thus R*(2) is a

rational algebraical meroniorphic function. Since

1 dR*{z) ^ a
R*(z) dz

we have
i-i z — Cli

1 df{z) L^'l^Kf)
f{z) dz R*(z) dz t=i dz I z — a.

where Ghi I ) i

\z - aJ
is to be replaced by G (z) if o„ = co , that is, if ^ = go be an

essential singularity off{z). Hence, except as to an undetermined constant

factor, we have

«< (~)
f{z) = M*(^)U e

1 = 1

which is therefore an a7ialytical representation of a function with n essential

fiingalarities, no accidental singularities, and no zeros : and the i^ational alge-

braical function R* (z) becomes zero or oo onlg at the singularities off(z).

If z— oo be not an essential singularity, then R* (z) for ^^ = oo is equal to

n

unity because S Ci — 0.

1=1

Corollary. It is easy to see, from | 43, that, if the point at be only an

accidental singularity, then Cj is a negative integer and Gi
z — a,

IS zero : so

that the polar property at ai is determined by the occurrence of a factor

{z — aif' solely in the denominator of the rational meromorphic function R* {z).

And, in general, each of the integral coefficients Ci is determined from the

expansion of the function /'(^^) 4-/(2^) in the vicinity of the singularity

with which it is associated.

68. Another form of expression for the function can be obtained from

the preceding; and it is valid even when the function has zeros not

absorbed into the essential singularities i*.

Consider a function with one essential singularity, and let a be the

point ; and suppose that, within a finite circle of centre a (or within a finite

simple curve which encloses a), there are m simple zeros a, ^,...,\ of the

t See Guichard, Theurie des points singuUcrs cssentiels, (These, Gauthier-Villars, Paris, 1883),

especially the first part.
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function f{z)—rii being assumed to be finite, and it being also assumed that

there are no accidental singularities within the circle. Then, if

f{z)^{z-o.){z-^)...{z-X)F{z),

the function F {z) has a for an essential singularity and has no zeros within

the circle. Hence, for points z within the circle,

where Gi ( 1 converges everywhere in the plane and vanishes with ,

and F(z — a) is an integral function converging uniformly and unconditionally

within the circle ; moreover, c is an integer. Thus

F(z) = A(z- ay e^' ^^^ gZ-PC-- «)rf-

.

Let (^-a)(^-^)...(^-\) = (^-a)"^|l + -^'-^+...+
^^^„|

then f{z) = (z- ay-g, (^-l^J F{z)

= A{z- ay^^^g, I -1-) e
^' (-«) e

^''''-"' '"
.

^z — a

Now of this product-expression for/(2;) it should be noted:

—

(i) That m + c is an integer, finite because m and c are finite :

(ii) The function e ' ^--"'^ can be expressed in the form of a series con-

verging uniformly and unconditionally everywhere, except at z = a, and

proceeding in powers of in the form

h, 6,1+

—

- + .—^2 + ....
z — a {z — af

It has no zero within the circle considered, forF {z) has no zero. Also ^^i (
— —

)

is an algebraical function of , beginning with unity and containing only

a finite number of terms : hence, multiplying the two series together, we have

as the product a series proceeding in powers of in the form

L Ju
1 +—^ + ,—^+.-.,

z — a {z — ay

which converges uniformly and unconditionally everywhere outside any small

circle round a, that is, everywhere except at a. Let this series be denoted by
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H ( ); it has an essential singularity at a and its only zeros are the

points a, /3,..., X, for the series multiplied by g^ i
J

has no zeros:

(iii) The function JP (z — a) dz is a series of positive powers of z — a,

converging uniformly in the vicinity of a\ and therefore e/^(2-a)<^2 can be

expanded in a series of positive integral powers of ^ — a which converges

in the vicinity of a. Let it be denoted by Q{z — a) which, since it is a

factor of i'^(^), has no zeros within the circle.

Hence we have

f(z) = A(z-arQ(z-a)H(^^),

where fi is an integer ; H ( j is a series that converges everywhere except

at a, is equal to unity when vanishes, and has as its zeros the (finite)

number of zeros assigned to f{z) within a finite circle of centre a ; and

Q{z — a)\s, a series of positive powers of ^ — a beginning with unity which

converges—but has no zero—within the circle.

The foregoing function f{z) is supposed to have no essential singularity

except at a. If, however, a given function have singularities at points

other than a, then the circle would be taken of radius less than the distance

of a from the nearest essential singularity.

Introducing a new function f^ {z) defined by the equation

f{z)^A{z-aYH[^^^f,{z),

the value of /i(2^) is Q{z — a) within the circle, but it is not determined by

the foregoing analysis for points without the circle. Moreover, as {z — cCf-

and also Jl (

j
are finite everywhere except possibly at a, it follows

that essential singularities of /(^) other than a must be essential singu-

larities of /i {z). Also since /i {z) is Qiz — a) in the immediate vicinity of a,

this point is not an essential singularity of/i iz).

Thus /i {z) is a function of the same kind as f{z) ; it has all the essential

singularities o{ f{z) except a, but it has fewer zeros, on account of the m

zeros o{ f{z) possessed by H I
j

. The foregoing expression for f{z) is

the one referred to at the beginning of the section.

If we choose to absorb into fi{z) the factors e
' \=-«/ and q^^^--"'^'^'^

which occur in

{z - ay"+'^ r/i I j e^' t-a)
SP{z-a)dz

e

J
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an expression that is valid within the circle considered, then we obtain a

result that is otherwise obvious, by taking

where now g^ i j is algebraical and has for its zeros all the zeros within

the circle
;

yu- is an integer; and/i {z) is a function of the same kind as f{z),

which now possesses all the essential singularities of f(z) but has zeros fewer

by the m zeros that are possessed by c/i

z — a

69. Next, consider a function f(z) with n essential singularities Oj,

tto,..., a,j but without accidental singularities; and let it have any number of

zeros.

When the zeros are limited in number, they may be taken to be isolated

points, distinct in position from the essential singularities.

When the zeros are unlimited in number, then at least one of the

singularities must be such that an infinite number of the zeros lie witi)in

a circle of finite radius, described round it as centre and containing no other

singularity. For if there be not an infinite number in such a vicinity

of some one point (which can only be an essential singularity, otherwise the

function would be zero everywhere), then the points are isolated and there

must be an infinite number a,t z = oo . If 2r = oo be an essential singularity, the

above alternative is satisfied : if not, the function, being continuous save at

singularities, must be zero at all other parts of the plane. Hence it follows

that if a uniform function have a finite number of essential singularities and

an infinite number of zeros, all but a finite number of the zeros lie within

circles of finite radii described round the essential singularities as centres

;

at least one of the circles contains an infinite number of the zeros, and some

of the circles may contain only a finite number of them.

We divide the whole plane into regions, each containing one but only one

singularity and containing also the circle round the singularity ; let the

region containing a^ be denoted by Ci, and let the region G^ be the part of

the plane other than C\, G^, , C„_i.

If the region Cj contain only a limited number of the zeros, then, by § 68,

we can choose a new function fi (z) such that, if

/(^) = (^-a,^G'.(^j/(4

the function f^ (z) has Ui for an ordinary point, has no zeros within the region

Cj, and has aj, 0,3, , cin for its essential singularities.

If the region Cj contain an unlimited number of the zeros, then, as in

Corollaries II. and III. of § 68, we construct any transcendental function
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(} (
I

) havino- ch for its sole essential singularity and the zeros in C^ for

all its zeros. When we introduce a function g^ (z), defined by the e(]uation

the function gi{z) has no zeros in Cj and certainly has a., o^,....^, a„ for

essential singularities ; in the absence of the generalising ftictor of G^, it can

have «! for an essential singularity. By § G7, the function 'g^ {z), defined by

g, {z) = {z- a,)"' /'^^ ,

has no zero and no accidental singularity, and it has a^ as its sole essential

singularity : hence, properly choosing c^ and Ih, we may take

gi{z) = gi{z)f,{z),

so that /i {z) does not have «i as an essential singularity, but it has all the

remaining singularities of ^i {z), and it has no zeros within G^.

In either case, we have a new function /i {z) given by

f{z) = {z-a,Y^G,{j^^Mz),

where jji^ is an integer, the zeros of/(2^) that lie in Cj are the zeros of G^ ;
the

function /i (2^) has «2, a^, , «„ (but not «i) for its essential singularities,

and it has the zeros of f{z) in the remaining regions for its zeros.

Similarly, considering C^, we obtain a function/, (2;), such that

Mz) = {z-a.;)^^G.^[^)f.M,

where fi^. is an integer, G^ is a transcendental function finite everywhere except

at a.2 and has for its zeros all the zeros of / {z)—and therefore all the zeros of

y(2)—that lie in G»/, then f^>{z) possesses all the zeros oi f{z) in the regions

other than Cj and G„, and has a^, a^,..., a^ for its essential singularities.

Proceeding in this manner, we ultimately obtain a function /„ {z) which

has none of the zeros oif{z) in any of the n regions Cj, C2,..., Cn-, that is, has

no zeros in the plane, and it has no essential singularities ; it has no acci-

dental singularities, and therefore fniz) is a constant. Hence, when we
n

substitute, and denote hy 8* {z) the product 11 {z-aiY\ we have
i=\

f{z) = SHz)liGA-^

tt.<? tite most general form of a function having n essential singularities, no

accidental singularities, and any number of zeros. The fmiction S* (z) is a

rational algebraical function of z, usually meromorphic in form, and it lias the

essential singularities off(z) as its zeros and poles ; and the zeros off {z) are

distributed among the functions Gi.

As however the distribution of the zeros by the regions G and therefore
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the functions G [ ) are somewhat arbitrary, the above form though general

is not unique.

If any one of the singularities, say «,„, had been accidental and not

essential, then in the corresponding form the function G^n ( ) would be

algebraical and not transcendental.

70. A function f{z), which has any finite number of accidental singu-

larities in addition to n assigned essential singularities and any number of

assigned zeros, can be constructed as follows.

Let A {z) be the algebraical polynomial which has, for its zeros, the

accidental singularities oi f{z), each in its proper multiplicity. Then the

product

f{^)A{z)

is a function which has no accidental singularities ; its zeros and its essential

singularities are the assigned zeros and the assigned essential singularities of

f {z) and therefore it is included in the form

^•wnjo.-(^,)}

tW^)\

where 8* {z) is a rational algebraical meromorphic function having the points

«!, a»,..., an for zeros and poles. The form of the function /(^•) is therefore

71. A function y (^^), which has an unlimited number of accidental singu-

larities in addition to n assigned essential singularities and any number of

assigned zeros, can be constructed as follows.

Let the accidental singularities be a', /S',.... Construct a function /, (2),

having the n essential singularities assigned to f (z), no accidental singu-

larities, and the series a, ^' ,... of zeros. It will, by § 69, be of the form of a

product of n transcendental functions Gn+\,---, G..,i which are such that a

function G has for its zeros the zeros off{z) lying within a region t)f the plane,

divided as in § 69 ; and the function Gn+i is associated with the point oi.

Thus f(z) = T*iz)U G„^J~\\

where T* (z) is a rational algebraical meromorphic function having its zeros

and its poles, each of finite multiplicity, at the essential singularities off{z).

Because the accidental singularities of f{z) are the same points and have

the same multiplicity as the zeros of f (z), the function / (z) f (z) has no

accidental singularities. This new function has all the zeros oi f{z), and

ttj,..., a,i are its essential singularities; moreover, it has no accidental singu-

larities. Hence the product/ (2') /i {z) can be represented in the form
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and therefore we have

T*(^)
Or

V^ - ciiJ

as an expression of the function.

But, as by their distribution through the n selected regions of the plane

in § 09, the zeros can to some extent be arbitrarily associated with the

functions (xi, G^,..., Gn and likewise the accidental singularities can to some

extent be arbitrarily associated with the functions Gn+i, Gn+i,..., G^n, the

product-expression just obtained, though definite in character, is not unique

in the detailed form of the functions which occur.

S* (z)
The fraction ~T*7~^

is alo-ebraical and rational ; and it vanishes or becomes infinite only at the

essential singularities a^, a.,..., an, being the product of fiictors of the form

(^ — a,:)'"s for i = l, 2,...,n. Let the power (^ — af)'"* be absorbed into the

function Gi/Gn+i for each of the n values of i ; no substantial change in the

transcendental character of Gi and of Gn+i is thereby caused, and we may

therefore use the same symbol to denote the modified function after the

absorption. Hence-}- the most general product-expression of a uniform

function of z which has n essential singularities a^, a.,..., an, any unlimited

number of assigned zeros and any unlimited number of assigned accidental

singidarities is

n ^i"—
/ 1

Gr. . . .

au

The resolution of a transcendental function with one essential singularity

into its primary factors, each of which gives only a single zero of the function,

has been obtained in § 63, Corollary IV.

We therefore resolve each of the functions G^,..., G.n into its primary

factors. Each factor of the first n functions will contain one and only one zero

of the original functions /(^) ; and each factor of the second n functions will

contain one and only one of the poles oi f{z). The sole essential singularity

of each primary factor is one of the essential singularities of/(^). Hence we

have a method of constructing a uniform function with any finite number of

essential singularities as a uniformly converging product of any number of

primary factors, each of which has one of the essential singularities as its sole

essential singularity and either (i) has as its sole zero either one of the zeros

t Weierstrass, I.e., p. 48.
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or one of the accidental singularities oif{z), so that it is of the form

z

z — c

or (ii) it has no zero and then it is of the form

When all the primary factors of the latter form are combined, they constitute

a generalising factor in exactly the same way as in § 52 and in § 03,

Cor. III., except that now the number of essential singularities is not

limited to unity.

Two forms of expression of a function with a limited number of essential

singularities have been obtained: one (§ 65) as a sum, the other (§ 09) as a

product, of functions each of which has only one essential singularity. Inter-

mediate expressions, partly product and partly sum, can be derived, e.g.

expressions of the form

, = 1 \z-cu

i=\ \Z-Ci/

But the pure product-expression is the most general, in that it brings into

evidence not merely the n essential singularities but also the zeros and the

accidental singularities, whereas the expression as a sum tacitly requires that

the function shall have no singularities other than the n which are essential.

JVote. The formation of the various elements, the aggregate of which is the complete

representation of the function with a limited numlier of essential singularities, can be

carried out in the same manner as in § 34 ; each element is associated with a particular

domain, the range of the domain is limited by the nearest singularities, and the aggregate

of the singularities forms the boundary of the region of contiimity.

To avoid the practical difficulty of the gradual formation of the region of continuity

by the construction of the successive domains when there is a limited number of

singularities (and also, if desirable to be considered, of branch-points), Fuchs devised

a method which simplifies the process. The basis of the method is an appropriate change

of the independent variable. The result of that change is to divide the plane of the

modified variable f into two portions, one of which, G.^, is finite in area and the other of

which, 6*1, occupies the rest of the i)lanc; and the boundary, common to G^ and G.,, is a

circle of finite radius, called the discriminating circle* of the function. In G^ the

modified function is holomorphic ; in G^ the function is holomorphic except at f= ao
;

and all the singularities (and the branch-points, if any) lie on the discriminating circle.

The theory is given in Fuchs's memoir " ITeber die Darstellung der Functioncn com-

plexer Variabeln, ," Crelle, t. Ixxv, (1872), pp. 17G—223. It is corrected in details

and is amplified in Crellc, t. cvi, (1890), pp. 1— 4, and in Crelle, t. cviii, (1891),

pp. 181—192; see also Nekrassoff", Math. Ann., t. xxxviii, (1891), j^p. 82—90, and

Anissimoff, Math. Ann., t. xl, (1892), pp. 145—148.

* Fuchs calls it Grenzkrcis.



CHAPTER VII.

Functions with unlimited Essential Singularities, and Expansion

in series of functions.

72. It now remains to consider functions which have an infinite number

of essential singularities*. It will, in the first place, be assumed that the

essential singularities are isolated points, that is, that they do not form a

continuous line, however short, and that they do not constitute a continuous

area, however small, in the plane. Since their number is unlimited and

their distance from one another is finite, there must be at least one point in

the plane (it may be at 2^ = cjo ) where there is an infinite aggregate of such

points. But no special note need be taken of this fact, for the character of an

essential singularity has not yet entered into question ; the essential singu-

larity at such a point would merely be of a nature different from the essential

singularity at some other point.

We take, therefore, an infinite series of quantities a,, a», as,... arranged in

order of increasing moduli, and such that no two are the same : and so we

have infinity as the limit of a^, when v—oc.

Let there be an associated series of uniform functions of z such that

for all values of t, the function Gi (
)

, vanishing with , has a^ as its

* The results in the present chapter ai'e fonnded, except where other particular references are

given, upon the researches of Mittag-Leffler and Weierstrass. The most important investigations

of Mittag-Leffler are contained in a series of short notes, constituting the memoir " Sur la th^orie

dfs fonctions uniformes d'une variable," Comptes Rendus, t. xciv, (1882), pp. 414, 511, 713, 781,

938, 1040, 1105, 1163, t. xcv, (1882), p. 335 ; and in a memoir " Sur la representation aualytique

des fonctions mouog^nes uniformes," Acta Math., t. iv, (1884), pp. 1—79. The investigations of

"Weierstrass referred to are contained in his two memoirs " Ueber einen functionentheoretischen

Satz des Herm G. Mittag-Leffler," (1880), and " Zur Functioneulehre," (1880), both included in

the volume AbhaiuUungen ans der Fmictionenk'hre, pp. 53—66, 67—101, 102—104. A memoir by

Hermite " Sur quelques points de la theorie des fonctions," Acta Soc. Fenn., t. xii, pp. 67—94,

Crelle, t. xci, (1881), pp. 54—78 may be consulted with great advantage.

i
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sole singularity ; the singularity is essential or accidental according as

Gi is transcendental or algebraical. These functions can be constructed

by .theorems already proved. Then we have the theorem, due to Mittag-

Leffler:

—

It is aliuays possible to construct a ^iniform analytical function F (z),

having no singularities other than a^, a^, ttg, ... and such that for each deter-

minate value of V, the difference F {z) — G^ i ) is finite for z = a^ and

therefore, in the vicinity ofa^, is expressible in the form P (z — a^).

73. To prove Mittag-Leffler's theorem, we first form subsidiary functions

F^(z), derived from the functions G as follows. The function G^,( )
\z ft|,/

converges everywhere in the plane except at the point «„ ; hence within a

circle |2|< |a„| it is a monogenic analytic function of z, and can therefore be

expanded in a series of positive powers of z which converges uniformly

within the circle, say

gJ—-)= i v,z-,
\z — ayj ^=0

for values of z such that |2;|<|a^|. If a^, be zero, there is evidently no

expansion.

Let e be a positive quantity less than 1, and let 6i, e.,, Cs, ... be arbitrarily

chosen positive decreasing (quantities, subject to the single condition that 2e

is a converging series, say of sum A : and let €« be a positive quantity inter-

mediate between 1 and e. Let g be the greatest value of G^, f 1

\z ci„/

points on or within the circumference
|

2^
|

= €« |

a^
|

; then, because the series

00

S VyZ^ is a converging series, we have, by § 29,
^1 =

to
I
"'V

I

Hence, with values of z satisfying the condition |^|^€|rtj, we have, for

any value of m,

for

2 v^,z^

fi.=m

5 e'^ g /€\"'

60

since e < €„. Take the smallest integral value of m such that

1-^ (0
^

' ' ^ e.

F,
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it will be finite and may be denoted by 7?2„: and thus we have

[73.

ix = m^
<e^,

for values of z satisfying the condition |2^| ^ e |a-^|.

We now construct a subsidiary function Fv{z) such that, for all values of 2',

F,.{z) = gJ-^^)- 1 v,z>^-
\z-aj ^=0

then for values of |2-|, which are ^ e |a^|,

\F,{z)\^e,.

Moreover, the function S i/^2'^ is finite for all finite values of z so that, if we

take
, m —1

then (f)i,(z) is zero at infinity, because, when z=cc, G„( ) is finite by

hypothesis. Evidently (f)i,(z) is infinite only at z = a^, and its singularity is

of the same kind as that of (r^ (
|

.

\z — aJ

74. Now let c be any point in the plane, which is not one of the points

ttj, tto, ^3, ...; it is possible to choose a positive quantity p such that no one

of the points a is included within the circle

1^ — c| = p.

Let a^, be the singularity, which is the point nearest to the origin satisfy-

ing the condition |a„|>|c|+p; then, for points within or on the circle, we

have
z- <^,
(Is

when s has the values v, v +1, v + 2, .... Introducing the subsidiary functions

F^ (z), we have, for such values of z,

and therefore t Fs(z)\^i \Fs(z)\
S=v

I S=v

00

^ 2 e.

00

a finite quantity. It therefore follows that the series 2 F^ (z) converges uni-

formly and unconditionally for all values of z which satisfy the condition
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')

\z—c\^p. Moreover, all the functions Fi{z), F.,{z), ..., Fr-i(z) arc finite fur

such values of z, because their singularities lie without the circle \2 — c'= p;

and therefore the series

2 Friz)
r=l

converges uniformly and unconditionally for all points z within or on the

circle \z — c\=p, where p is chosen so that the circle encloses none of the

points a.

The function, represented by the series, can therefore be expanded in the

form P (z — c), in the domain of the point c.

If a,„ denote any one of the points a^, cu, ..., and we take p' so small that

all the points, other than a„i, lie without the circle

k — f*»/i
i

= p\

then, since F^ (z) is the only one of the functions F which has a singularity

at a^, the series

i [Fr{z)]-F„,{z)

converges regularly in the vicinity of a, and therefore it can be expressed in

the form F (z — a„t). Hence

i Fr{z) = F,,(z) + P{z-am)
r=l

= Gm( ) + P,(z-a,n),

the difference of F^ and Gm. being absorbed into the series P to make Pj. It

00

thus appears that the series 2 F,. (z) is a function which has infinities only
?• = !

at the points a^, a.,, ..., and is such that

00

can be expressed in the vicinity of a,„ in the form P (z — cim). Hence S Fr (z)

is a function of the required kind.

75. It may be remarked that the function is by no means unique. As

the positive quantities e were subjected to merely the single condition that

they form a converging series, there is the possibility of wide variation in

their choice : and a difference of choice might easily lead to a difference

in the ultimate expression of the function.

This latitude of ultimate expression is not, however, entirely unlimited.

For, suppose there are two functions F{z) and F (z), enjoying all the assigned

properties. Then as any point c, other than a^, cu, ..., is an ordinary point for

both F (z) and F (z), it is an ordinary point for their difference : and so

F{z)-F{z) = P{z-c)
8—2
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for points in the immediate vicinity of c. The points a are, however,

singularities for each of the functions : in the vicinity of such a point a^

we have

since the functions are of the required form : hence

F{z)-F{z) = P{z-ai)-P{z-ai),

or the point ai is an ordinary point for the difference of the functions. Hence

every finite point in the plane, whether an ordinary point or a singularity

for each of the functions, is an ordinary point for the difference of the

functions : and therefore that difference is a uniform integral function of z.

It thus appears that, if F(z) be a function with the requii^ed properties, then

every other functioji luith those properties is of the form

F{z) + G(z),

where G (z) is a uniform integral function of z either transcendental or

algebraical.

The converse of this theorem is also true.
00

Moreover, the function G (z) can always be expressed in a form S g^i^:), if

it be desirable to do so : and therefoi-e it follows that any function with the

assigned characteristics can be expressed in the form

1 {F,{z) + g,(z)].
v= l

76. The following applications, due to Weierstrass, can be made so as to

give a new expression for functions, already considered in Chapter VI., having

2: = 00 as their sole essential singularity and an unlimited number of poles at

points Oi, a-2, ...

.

If the pole at a^ be of multiplicity mi, then {z — ai)""' f{z) is regular at

the point at and can therefore be expressed in the form
CO

S c^iz-aiY.

mi—l

Hence, if we take f (z) = % c^{z - ai)-^'^+'^,

M =

we have f{z) =fi (z) + P (z— ai).

Now deduce from fi{z) a function Fi(z) as in § 73, and let this deduction be

effected for each of the functions /j (2^). Then we know that

i Fi{z)
i= l

is a uniform function of z having the points ai, a^, ... for poles in the proper
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multiplicity and no essential singularity except z = -x^ . The most general

form of the function therefore is

i [Fr{z) + gr{z)].
r=\

Hence any uniform analytical function which has no essential singularity

except at infinity can he expressed as a sum offunctions each of which has only

one singularity in the finite part of the plane. The form of Fr (z) is

fr(z)-Gr{z),

where fr (z) is infinite at z = ar and (r,. (z) is a properly chosen integral

function.

We pass to the case of a function having a single essential singularity at

c and at no other point and any number of accidental singularities, by taking

z' = as in S 63, Cor. II.: and so we obtain the theorem :

z — c
'

Any uniform function luhich has only one essential singularity, wliich is

at c, can be expressed as a sum of uniform functions each of which has only

one singularity differentfrom c.

Evidently the typical summative function F,. (z) for the present case is of

the form

77. The results, which have been obtained for functions possessed of

an infinitude of singularities, are valid on the supposition, stated in § 72,

that the limit of a^ with indefinite increase of v is infinite ; the series

ai,a«, ... tends to one definite limiting point which is 2r=x and, by the

substitution z' {z — c) = \, can be made any point c in the finite part of the

plane.

Such a series, however, does not necessarily tend to one definite limiting

point : it may, for instance, tend to condensation on a curve, though the

condensation does not imply that all points of the continuous arc of the curve

must be included in the series. We shall not enter into the discussion

of the most general case, but shall consider that case in which the scries of

moduli |ai|, |ao|, ... tends to one definite limiting value so that, with in-

definite increase of v, the limit of |«^| is finite and ecjual to R\ the points

«!, tta, ... tend to condense on the circle \z\ = R.

Such a series is given by
'Ikiti

for ^ = 0, 1, ..., n, and n= \, 2, ... ad inf.; and another* by

«„= {!+( _l)»c»}e'^"'''^^

where c is a positive proper fraction.

* The first of these examples is given by Mittag-Lefiier, Acta Math., t. iv, p. 11 ; the second

was stated to me by Mr Buruside.
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With each point a,„ we associate the point on the circumference of the

circle, say 6,„, to which a,„ is nearest: let

SO that pm approaches the limit zero with indefinite increase of m. There

cannot be an infinitude of points a^, such that p^, ^0, any assigned positive

quantity ; for then either there would be an infinitude of points a within or

on the circle \z\= R — ^, ox there would be an infinitude of points a wathin

or on the circle \z\ = R-\-%, both of which are contrary to the hypothesis

that, with indefinite increase of v, the limit of \a^\ is R. Hence it follows

that a finite integer n exists for every assigned positive quantity ©, such that

\am-hm\<®
when m ^ n.

Then the theorem, which corresponds to Mittag-Lefller's as stated in § 72

and which also is due to him, is as follows :

—

It is always possible to construct a uniform analytical function of z which

exists over the whole plane, ejxept at the points a and b, and u'hich, in the

immediate vicinity of each one of the singularities a, can be expressed in theform

Gi(^^) + P{z-ai),
\z — a;)

ivhere the functions Gi are assigned functions, vanishing with and finite

everywhere in the plane except at the single points ui luith which they are

respectively associated.

In establishing this theorem, we shall need a positive quantity e less than

unity and a converging series ei, e., e--, ... of positive ([uautities, all less than

unity.

Let the expression of the function Gn be

''\z-aj z-ttn {z-anf {z-anf

Then, since z - a,, = (^ - ^n)
]
1 - YZ'h\ '

the function G,, can be expressed* in the form

\Z-(tn/ ^ = 1 \Z-bn
for values of z such that

\
z-b^

and the coefficients A are given by the equations

<e;

, ^ ^ Cn,r (/^-l)!
""^ .Zxian-bnY {^--r)\{r-l)V

The justification of this statement is to be found in the proposition in § 82.
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Now, because Gn is finite everywhere in the plane except at a„, the series

~~t
*" t^r "*"

fcTT + • • •

^n ^n ^n

has a finite value, say g, for any non-zero value of the positive quantity ^„

;

then

\Cn,r\<g^n-

Hence

< ^ 9

i|a„-6^|'-(/a-r)!(r-l)!

=i^|an-6„|'-(/i-r)!(r-l)!

9^n
1 +

fi-1

I
(hi ^n

I ( I
^n t>n

Introducing a positive quantity a such that

(l+a)6<l,

we choose ^n so that ^,i < a\an — hn\',

and then \An,^\<ga(l + aY~\

Because (1 + a) e is less than unity, a quantity exists such that

(l + a)6<6'<l.

Then for values of z determined by the condition
2-bn

< €, we have
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To prove it, let c be any point iu the plane distinct from any of the points

a and b ; we can always find a value of p such that the circle

\z-c\=p

contains none of the points a and b. Let I be the shortest distance between

this circle and the circle of radius R, on which all the points b lie ; then for

all points z within or on the circle \z — c\= p we have

\z-b>n\>l.

Now we have seen that, for any assigned positive quantity ©, there is a

finite integer n such that

la,„-6,«|<0

when m ^ n. Taking © = e^, we have

am — h,,^m ^m < €
Z-br^_

,

when m'^n,n being the finite integer associated with the positive quantity e^.

It therefore follows that, for points z within or on the circle \z — c\ = p,

when m is not less than the finite integer n. Hence
00

S
1
F,n (z) \<en + 6,1+1 + e«+2 + . .

.

,

m=n

a finite quantity because ej , e^ , . . . is a converging series ; and therefore

i Fm(z)
m = n

is a converging series. Each of the functions F^{z), F..{z), ..., Fn-i{z) is

finite when \z — c\^p; and therefore

S F„,(z)
m = 1

is a series which converges uniformly and unconditionally for all values of z

included in the region

\z — c\^p.

Hence the function represented by the series can be expressed in the form

P (z — c) for all such values of z. The function therefore exists over the

whole plane except at the points a and b.

It may be proved, exactly as in § 74, that, for points z in the immediate

vicinity of a singularity a,^,

F(z) = G,J-^\-)+P(z-a,,).
\Z i-lm'

The theorem is thus completely established.

The function thus obtained is not unique, for a wide variation of choice of

the converging series ei + e., + . . . is possible. But, in the same way as in the
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corresponding case in § 75, it is proved that, if F (z) be a function ivith the

requir^ed properties, every other function ivith those propei'ties is of the form

F{z)+G{z),

where G (z) behaves regularly in the immediate vicinity of every point in the

plane except the points b.

78. The theorem just given regards the function in the light of an

infinite converging series of functions of the variable : it is natural to suppose

that a corresponding theorem holds when the function is expressed as an

infinite converging product. With the same series of singularities as in

§ 77, when the limit of ja^l with indefinite increase of v is finite and
equal to R, the theorem * is :

—

It is always possible to construct a uniform analytical function which

behaves regularly everywhere in the plane except at the points a and b and
which in the vicinity of any one of the points a„ can be expressed in the

form
(z - a^y'" e^ ^'-''"^

where the numbers n^, n.2, ... are any assigned integers.

The proof is similar in details to proofs of other propositions and it will

therefore be given only in outline. We have

> 7 ^

provided

such values of z,

z-a^ z-b^ z -b^ ^=x\z-b,

"_," <€, the notation being the same as in § 77. Hence, for

If we denote

\ z-bj

by E^ (z), we have E^ (z) = e

Hence, if F(z) denote the infinite product

n E^(z),

we have F(z) = e
"" ^

-'».+im V.-^ 7 I

,

and F{z) is a determinate function provided the double scries in the index of

the exponential converge.

* Mittag-Lofller, Acta Math., t. iv, p. 32; it may be compared with Weicrstrass's theorem in

§67.
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Because n^ is a finite integer and because

is a converging series, it is possible to choose an integer 7>i^ so that

1 /a^ — b^Y2^ /a^ — b^V

a\z-bj <Vu,

where 77^ is any assigned positive quantity. We take a converging series of

positive quantities 7}^ : and then the moduli of the terms in the double series

form a converging series. The double series itself therefore converges

uniformly and unconditionally ; and then the infinite product F (z) converges

uniformly and unconditionally for points z such that

a^ — b^

z — b.
< 6.

As in § 77, let c be any point in the plane, distinct from any of the

points a and b. We take a finite value of p such that the circle \z — c\=p

contains none of the points a and b ; and then, for all points within or on this

circle,

tttn, "r..

< e
Z - br,_

when m^ 71,71 being the finite integer associated with the positive quantity

e^. The product

n E^{z)
v=n

is therefore finite, for its. modulus is less than

the product U E,(z)

is finite, because the circle \z — c\ = p contains none of the points a and b;

and therefore the function F(z) is finite for all points within or on the circle.

Hence in the vicinity of c, the function can be expanded in the form P (z — c);

and therefore the function exists everywhere in the plane except at the points

a and b.

The infinite product converges ; it can be zero only at points which make
one of the factors zero and, from the form of the factors, this can take place

only at the points a^ with positive integers n„. In the vicinity of a^ all

the factors of F(z) except F^(z) are regular; hence F{z)/F^,{z) can be

expressed as a function of z — a^ in the vicinity. But the function has no

zeros there, and therefore the form of the function is
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Hence in the vicinity of a^, we have

= (^-a,)"''e'''^-«''',

on combining with Pj (^ — a^) the exponential index in E^{z). This is the

required property.

Other general theorems will be found in Mittag-Leffler's memoir just

quoted.

79. The investigations in §§ 72—75 have led to the construction of a

function with assigned properties. It is important to be able to change, into

the chosen form, the expression of a given function, having an infinite series

of singularities tending to a definite limiting point, say to ^ = x . It is

necessary for this purpose to determine (i) the functions Fr{z) so that the
00

series S F^ {z) may converge uniformly and (ii) the fimction G {z).
>•= !

Let <I> {z) be the given function, and let *S be a simple contour embracing

the origin and fjt, of the singularities, viz., a^, , a^: then, if t be any

point, we have

where / implies an integral taken round a very small circle centre a.

If the origin be one of the points a^, a.,, , then the first term will be

included in the summation.

Assuming that z is neither the origin nor any one of the points a^, ..., a^,

we have

so that

Nc

27nj t — z\tj 27riJ t-z\tj

~2^t.rJ t^z\t)
'^^

2-Tri] t-z\tj

(m-1)!

{m-iy.
z^

(m-1)!

dt^-^t-z

dP''-A z
"^

z" ^ "

-<!>"»-' (0)
4- "^ ,^^"'--(0) +

z 2"*"' <f)'«-i (C\\

= -GW.
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unless z = he a singularity and then there will be no term G (z). Similarly,

it can be shewn that

^TTlJ t-z\t)

is equal to G,(^j - "^^ .. (i-)' = F, (.).

where qA^-) =--"-.[" f-^dt
\z — a^J ziri J t — z

and the subtractive sum of m terms is the sum of the first m terms in the

development of G^ in ascending powers of z. Hence

If, for an infinitely large contour, m can be chosen so that the integral

27ri]t-z\t) "^^

diminishes indefinitely with increasing contours enclosing successive singu-

larities, then
CO

^(z) = G(z) + tF,(z).
v = l

The integer m may be called the critical integer.

If the origin be a singularity, we take

F,(z) = G,Q,

and there is then no term G (z) : hence, including the origin in the summa-

tion, we then have

-^^^--i/'^^^-i,rmT^-'
so that if, for this case also, there be some finite value of m which makes

the integral vanish, then

Other expressions can be obtained by choosing for m a value greater than

the critical integer ; but it is usually most advantageous to take m equal to

its least lawful value.

Kv. 1. The singularities of the function TrcotTr^ are given by s= X, for all integer

values of X from - oo to + cc including zero, so that the origin is a singularity.

The integral to be considered is

cot TTi;
/^\'»

2niJ t-z \t
dt.

We take the contour to be a circle of very large radius R chosen so that the circumference

does not pass infinitesimally near any one of the singularities of it cot tt^ at infinity; this
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is, of course, possible because there is a finite distaucc between any two of them. Then,

round the circumference so taken, n cot nt is never infinite : hence its uioduhis is never

greater than some finite quantity M.

Let t = Re^\ so that =idd; then

1 C^^ z /sN"'-!J= jr- I TT cot 77^ - - I
- (16,

^ir J Q t— z \t J

and therefore
| / 1

^ i/" . -L-*-7 - ,

for some point t on the circle. Now, as the circle is very large, we have \t-z\ infinite:

hence
|
J

|
can be made zero merely by taking m unity.

Thus, for the function tt cot ttz, the critical integer is unity.

Hence from the general theorem we have the equation

1 Ttt cot Trt z ,

TT cot 7r^= - --
. 2 --; - dt,

2ni J t-z t

the summation extending to all the points X for integer values of X = - x to + oo , and

each integral being taken round a small circle centre X.

•>rr r 1 A*) TT cot TTt Z ,Now If, m --.j -^m'^'^
we take <= X + f, we have

^cot7ri= l+ P(0,

where /^(0 = when f=0; and therefore the value of the integral is

27ri j X-.-+ C X + f ^

2niJ{\-z+ C){'>^ + C
In the limit when \(\ is infinitesimal, this integral

{X-z)\

1 1

X-s X'

1 1
and therefore F. (z) = 1- ,

~ — X X

if X be not zero.

And for the zero of X, the value of the integral is
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so that F^ (z) is - . In ftxct, in the notation of § 72, we have

and the expansion of (/^ needs to be carried only to one term.

We thus have 7rcot7rJ= -+ 2' ( 1-^))

tlie summation not inchiding the zero vahie of X.

Ex. 2. Obtain, ab initio, the I'elation

1 ^="" 1

sin2 2 ^=_^(z~-\7rY'

Ex. 3. Shew that, if

,, TTCOtTTZ 1 „ "^^ 1 1

(Gylddn, Mittag-Leffler.)

Ex. 4. Obtain an expression, in the form of a sum, for

IT cot irz

where Q{z) denotes (1 -2) (l -|)Yl -|)^ (^ "^T"

80. The results obtained in the present chapter relating to functions

which have an unlimited number of singularities, whether distributed over

the whole plane or distributed over only a finite portion of it, shew that

analytical functions can be represented, not merely as infinite converging

series of powers of the variable, but also as infinite converging series of

functions of the variable. The properties of functions when represented by

series of powers of the variable depended in their proof on the condition that

the series proceeded in powers ; and it is therefore necessary at least to

revise those properties in the case of functions when represented as series

of functions of the variable.

Let there be a series of uniform functions f^ (z), f. (z), ... ; then the

aggregate of values of z, for which the series

2 = 1

has a finite value, is the region of continuity of the series. If a positive

quantity p can be determined such that, for all points z within the circle
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00

the scries 2 fi{z) converges uniformly and unconditionally*, the series is

said to converge in the vicinity of a. If R bo the greatest value of p for

which this holds, then the area within the circle

\z — a\ = R
is called the domain of a; and the series converges uniformly and uncon-

ditionally in the vicinity of any point in the domain of a.

It will be proved in § 82 that the function can be represented by power-

series, each such series being equivalent to the function within the domain of

some one point. In order to be able to obtain all the power-series, it is

necessary to distribute the region of continuity of the function into domains

of points where it has a uniform, finite value. We therefore form the domain

of a point h in the domain of a from a knowledge of the singularities of the

function, then the domain of a point c in the domain of h, and so on ; the

aggregate of these domains is a continuous part of the plane which has

isolated points and which has one or several lines for its boundaries. Let

this part be denoted hy A^.

For most of the functions, which have already been considered, the region

A-i, thus obtained, is the complete region of continuity. But examples will

be adduced almost immediately to shew that A^ does not necessarily include

all the region of continuity of the series under consideration. Let a' be a

point not in A-^ within whose vicinity the function has a uniform, finite

value ; then a second portion A., can be separated from the whole plane, by

proceeding from a' as before from a. The limits of A^ and An may be wholly

or partially the same, or may be independent of one another : but no point

within either can belong to the other. If there be points in the region of con-

tinuity which belong to neither A^ nor A„, then there must be at least another

part of the plane A^ with properties similar to A-^ and A^. And so on. The
00

series 2 fi{z) converges uniformly and unconditionally in the vicinity of
t=i

every point in each of the separate portions of its region of continuity.

It was proved that a function represented by a series of powers has a

definite finite derivative at every point lying actually within the circle

of convergence of the series, but that this result cannot be affirmed for a

point on the boundary of the circle of convergence even though the value of

the series itself should be finite at the point, an illustration being provided

by the hypergeometric series at a point on the circumference of its circle of

* In connection with most of the investigations in the remainder of this chapter, Weierstrass's

memoir " Zur Functionenlehre " already quoted (p. 112, note) should be consulted.

It may be convenient to give here Weierstrass's definition (I.e., p. 70) of uniform, unconditional

convergence. A series S/„ converges uniformly, if an integer 7/1 can be determined so that I S /„
71=1 U=m \

can be made less than any arbitrary positive quantity, however small ; and it converges uncon-

ditionally, if the uniform convergence of the series be independent of any special arrangement

of order or combination of the terms.
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convergence. It will appear that a function represented by a series of

functions has a definite finite derivative at every point lying actually within

its region of continuity, but that the result cannot be affirmed for a point

on the boundary; and an example Avill be given (§ 83) in which the derivative

is indefinite.

Again, it has been seen that a function, initially defined by a given power-

series, is, in most cases, represented by different analytical expressions in

different parts of the plane, each of the elements being a valid expression of

the function within a certain region. The questions arise whether a given

analytical expression, either a series of powers or a series of functions

:

(i) can represent different functions in the same continuous part of its region

of continuity, (ii) can represent different functions in distinct (that is, non-

continuous) parts of its region of continuity.

81. Consider first a function defined by a given series of powers.

Let there be a region A' in the plane and let the region of continuity of

the function, say g{z), have parts common with A'. Then if cIq be any point

in one of these common parts, we can express g (z) in the form P (z — cio) in

the domain of Qq.

As already explained, the function can be continued from the domain of

tto by a series of elements, so that the whole region of continuity is gradually

covered by domains of successive points ; to find the value in the domain of

any point a, it is sufficient to know any one element, say, the element in the

domain of Uo. The function is the same through its region of continuity.

Two distinct cases may occur in the continuations.

First, it may happen that the region of continuity of the function g {z)

extends beyond A'. Then we can obtain elements for points outside A',

their aggregate being a uniform analytical function. The aggregate of

elements then represents Avithin A' a single analytical function : but as that

function has elements for points -svithout A', the aggregate within A' does

not completely represent the function. Hence

If a function he defined within a continuous region of a 'plane hy an

aggregate of elements in the form of power-seines, which are continuations of

one another, the aggregate represents in that part of the plane one {and only

one) analytical function: hut if the power-series can he continued heyond the

boundary of the region, the aggregate of elements luithin the region is not the

complete representation of the analytical function.

This is the more common case, so that examples need not be given.

Secondly, it may happen that the region of continuity of the function does

not extend beyond A' in any direction. There are then no elements of the

function for points outside A' and the function cannot be continued beyond

the boundary of A'. The aggregate of elements is then the complete

representation of the function and therefore

:
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If a function he defined within a continuous region of a plane by an

aggi'egate of elements in tlte form of pmoer-series, which are continuations of

one another, and if the potuer-series cannot he continued across the boundary of

that region, the aggregate of elements in the region is the complete representa-

tion of a single uniform monogenic function wJiich exists only for values of the

variable within the region.

The boundary of the region of continuity of the function is, in the latter

case, called the natural limit of the function*, as it is a line beyond which

the function cannot be continued. Such a line arises for the series

1 + 2^ + 2^ + 209+ ...
,

in the circle \z\ = 1, a remark due to Kronecker; other illustrations occur in

connection with the modular functions, the axis of real variables being the

natural limit, and in connection with the automorphic functions (see Chapter

XXII.) when the fundamental circle is the natural limit. A few examples

will be given at the end of the present Chapter.

It appears that Weierstrass was the first to announce the existence of natural limits

for analytic functions, Berlin Monatsher. (1866), p. 617; see also Schwarz, Gcs. Werke,

t. ii, pp. 240—242, who adduces other illustrations and gives some references; Klein and

Fricke, Vorl. iiher die Tlieorie der elliptiscJien Modidfiuietionen, t. i, (1890), p. 110; Jordan,

Cours d^Analyse, t. iii, pp. 609, 610. Some interesting examples and discussions of

functions, which have the axis of real variables for a natural limit, are given by Hankel,

" Untorsuchungen iibcr die unendlich oft oscillircndcn uud unstctigen Functionen,"

Math. Ann., t. xx, (1870), pp. 63—112.

82. Consider next a series of functions of the variable ; let it be

2 fi{z).
i= l

The region of continuity may be supposed to consist of several distinct parts,

in the most general case ; let one of them be denoted by .^1. Take some

point in A, say the origin, which is either an oi-dinary point oi- an isolated

singularity ; and let two concentric circles of radii R and W be drawn in A,

so that

R<\z\=r<R',
and the space between these circles lies within A. In this space, each term

of the series is finite and the whole series converges uniformly and uncon-

ditionally.

Now let fi(z) be expanded in a series of powers of z, which series con-

verges within the space assigned, and in that expansion let i^^ be the co-

00

efficient of zi^
; then we can prove that 2 i^ is finite and that the series

i=0

Die natihiiche Grenze, accoriling to German mathematicians.
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converges uniformly and unconditionally within this space, so that

[82.

Because the infinite series S ft (z) converges uniformly and uncon-
2 = 1

'

ditionally, a number 7i can be chosen so that

i=n
fi{^) <u%

where k is an arbitrary finite quantity, ultimately made infinitesimal ; and

therefore also

fii^) < Jc,

where n > n and is infinite in the limit. Now since the number of terms in

the series

is not infinite before the limit, we have

But the original series converges unconditionally, and therefore k is not less

n
than the greatest value of the modulus of 2 fi (z) for points within the

region ; hence, by § 29, we have

S i. < kr-f^.

Moreover, k is not less than the greatest value of the modulus of 2 fi{z)
i=n

in the given region ; and so

00 I

2 V Kkr-f".
i=n

I

Now, by definition, k can be made as small as we desire by choice of n ; hence

the series

00

2 V
i=\

is a converging series. Let it be denoted by ^^.

Let W, = A;, 2v = ^/';
x=l i=n

then, by the above suppositions, we can always choose n so that

|^/l<^7-^
k being any assignable small quantity.
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When two new quantities r^ and r, are introduced, as in § 28, satisfying

the inequalities

R<ri<\z\<r.,<R',

the integer n can be chosen so that

\A''\ <kr->^< kr-r*^.

Then

and

so that

X |^/>|<A; S -] <k "

^=0 ^=0 \^2/ r., — ?'

S \A''2'^\<k^'—+k "
r — r, r» — r

Hence the series 2 A^'zi^ can by choice of n be made to have a

modulus less than any finite quantity ; and therefore, since

H=ao n-1

s a;z>^= X Mz),

(for there is a finite number of terms in the coefficients on each side, the

expansions are converging series, and the sum on the right-hand side is a

finite quantity), it follows that the series

2 A^z>^

converges uniformly.

Finally, we have

i f,{z) - tA,z<^ = xfi (z) - xa;z^ - ^a;'z^

and therefore XMz)-^A,z>^\ = tf,{z)-i.A;'z^

< X 1/(^)1 + S|^;v|

7 7 ^1 7
^•'

< k + k ——I- k—— ,

r — 7\ i\ — r

which, as k can bo diminished indefinitely, can be made less than any finite

/i=00

quantity. Hence the series S A^zi^ converges unconditionally, and there-
H= —00

fore we have

provided

00 fJ.~ CD

X fi{z)= S A,z>^,
1= 1 fj.= - cc

R<\z\<R'.

0—2
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When we take into account all the parts of the region of continuity

of the series, constituted by the sum of the functions, we have similar

expansions in the form of successive series of powers of z — c, converging

uniformly and unconditionally in the vicinities of the successive points c.

But, in forming the domains of these points c, the boundary of the region of

continuity of the function must not be crossed ; and a new series of powers is

requii'ed when the circle of convergence of any one series (Ipng within the

region of continuity) is crossed.

It therefore appears that a converging series of functions of a variable

can be expressed in the form of series of powers of the variable which

converge within the parts of the plane where the series of functions

converges uniformly and unconditionally ; but the equivalence of the two

expressions is limited to such parts of the plane and cannot be extended

beyond the boundary of the region of continuity of the series of functions.

If the region of continuity of a series of functions consist of several parts

of the plane, then the series of functions can in each part be expressed in

the form of a set of converging series of powers : but the sets of series of

powers are not necessarily the same for the different parts, and they are not

necessarily continuations of one another, regarded as power-series.

Suppose, then, that the region of continuity of a series of functions

F{z)=IMz)
i=l

consists of several parts A^, A.^, Within the part A^ let F (z) be

represented, as above, by a set of power-series. At every point within Ai,

the values of F{z) and of its derivatives are each definite and unique ; so

that, at every point which lies in the regions of convergence of two of the

power-series, the values which the two power-series, as the equivalents of i^(^)

in their respective regions, furnish for F(z) and for its derivatives must be

the same. Hence the various power-series, which are the equivalents of ^(^)

in the region A^, are continuations of one another: and they are sufficient to

determine a uniform monogenic analytic function, say F^ (z). The functions

F{z) and Fi{z) are equivalent in the region Aj] and therefore, by § 81, the

seines of functions represents one and the same function for all points luithin

one continuous part of its region of continuity. It may (and frequently does)

happen that the region of continuity of the analytical function F^ {z) extends

beyond A^ ; and then F^ (z) can be continued beyond the boundary of ^j by

a succession of elements. Or it may happen that the region of continuity

of i''i(^) is completely bounded by the boundary of ^, ; and then the function

cannot be continued across that boundary. In either case, the equivalence

of F^(z) and 2 fi(z) does not extend beyond the boundary of A^, one
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00

complete and distinct part of the region of continuity of S fi{z)\ and
i= \

therefore, by using the theorem proved in § 81, it follows that

:

A series offunctions of a variable, which converges luithin a continuous part

of the 2)la.ne of the valuable z, is eltlier a partial or a complete representation

of a single uniform, analytic function of the variable in that jMrt of the plane.

83. Further, it has just been proved that the converging series of

functions can, in any of the regions A, be changed into an equivalent

uniform, analytic function, the e(piivalence being valid for all points in

that region, say

if(z) = F,(z).

But for any point within A, the function Fi(z) has a uniform finite derivative
00

(§ 21); and therefore also S fiz) has a uniform finite derivative. The
i = l

equivalence of the analytic function and the series of functions has not been

proved for points on the boundary; even if they are equivalent there, the

function Fi (z) cannot be proved to have a uniform finite derivative at every
00

point on the boundary of A, and therefore it cannot be affirmed that S fi{z)
1=1

has, of necessity, a uniform, finite derivative at points on tJie boundary of A, even

though the value of X fi{z) be uniform and finite at every j^oint on the
i = \

boundary*

.

Ex. In illustration of the inference just obtained, regarding the derivative of a

function at a point on the boundary of its region of continuity, consider the series

where 6 is a positive quantity less than unity, and a is a positive quantity which will be

taken to be an odd integer.

For points within and on the circumference of the circle |i| = l, the series converges

uniformly and unconditionally; and for all points without the circle the series diverges.

It thus defines a function for points within the circle and on the circumference, but not

for points without the circle.

Moreover for points actually within the circle the function has a first derivative and
consequently has any number of derivatives. But it cannot be declared to have a
derivative for points on the circle: and it will in ftict now be proved that, if a certivin

condition be satisfied, the derivative for variations at any point on the circle is not merely

infinite but that the sign of the infinite value depends upon the direction of the variation,

so that the function is not monogenic for the circumference t.

* It should be remarked here, as at the end of § 21, that the result in itself does not contravene

Eiemann's definition of a function, according to which (g 8) — must have the same value what-

ever be the direction of the vanishing quantity dz ; at a point on the boundary of the region

there arc outward directions for which dw is not defined.

t The following investigation is due to Weierstrass, who communicated it to Du Bois-Eeymoud

:

see Crelle, t. Ixxix, (1875), pp. 29—31.
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Let z= e^^ : theu, as the function converges unconditionally for all points along the

circle, we take

f{6)= 2 6»e""^\

where 6 is a real variable. Hence

f{&+ <i>)-f{6)^ih^ n
(6+4.) i_ ^a-Bi.

(f>
n^O 4>

m-i (•gO"(»+*)«_ga"fln

,.=0 [ a"0 J

+ Jo^"""i ^—}'

assuming m, in the first place, to be any positive integer. To transform the first sum ou

the right-hand side, we take

e«"
(^+*) ' - e""^'= 2{e*" (^+**) ^ sin (ia»0),

and therefore 2 (abY ;

if ab>l. Hence, on this hypothesis, we have

=0 t a"0 J
' ab-l

where y is a complex quantity with modulus < 1

.

a

To transform the second sum on the right-hand side, let the integer nearest to a'" -

be a„j, so that
a

1 "> n^l n ^ — i
2 =^ "• ^m -^ 2

TT

for any value of 7ii : then taking

,V= a'"'6-7Tam,

we have ^Tr'^x> — ^,
and cos .r is not negative. We choose the quantity so that

and therefore rf) = ,
'^

a>"-
'

which, by taking m sufficiently large {a is > 1), can be made as small as we please. We
now have

a"'+"{6 + </)) i _ „a"n-i (1 + am)_ _ / _ i n"™

if a be an odd integer, and
a"'+"6i a"i (x + iram)

f _ i sf^m M"xi

Hence — = _ ( - l
)«- '^ - - a"^,

and therefore 2 6"' + » J —^^ I = _ ( _ i
)<^ "iJL ^ ft'' ( l-h e«"^).

,1=0 ( <p J TT — .^' „=o

2
11=0
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The real part of the series on the right-hand side is

2 6"{l+cosa"jr};

every term of this is positive and therefore, as the first term is 1 + cos jc, the real part

> 1 + cos a;

>1

for cos^r is not negative; and it is finite, for it is
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quantity with its real part opposite in sign to the real part of the complex infinite quantity

which is the limit of ^ [f{d-x)'f{6)] for ;^
= 0. If /(^) had a diflerential coefficient

A.

these two limits would be equal : hence / {$) has not, for any vahie of 6, a determinate

differential coefficient.

From this result, a remarkable result relating to real functions may be at once derived.

The real part of / {6) is

2 ?;" cos (a"(9),

which is a series converging uniformly and unconditionally. The real parts of

-(-ir(a6)'"C

and of +(-!)""'(«?')%

arc the corresponding magnitudes for the series of real quantities : and they are of opposite

signs. Hence for no value of 6 has the series

2 6«cos(a»(9)
ti=0

a determinate differential coefficient, that is, we can choose an increase (^ and a decrease x
of Of both being made as small as we please and ultimately zero, such that the limits of

the expressions

fie+^lzIM^ .f(^-x)-fio)

are diffijrent from one another, provided a be an odd integer and a6 > 1 + \in.

The chief interest of the above investigation lies in its application to functions of real

variables, continuity in the value of which is thus shewn not necessarily to imply the

existence of a determinate diflerential coefficient defined in the ordinary way. The

application is due to Weierstrass, as has already been stated. Further discussions will

be found in a paper by Wiener, Crelle, t. xc, (1881), pp. 221—252, in a remark by

Weierstrass, Abh. aiis der Functionenlehre, (1886), p. 100, and in a paper by Lerch, Crelle,

t. ciii, (1888), pp. 126^138, who constructs other examples of continuous functions of

real variables ; and an example of a continuous function without a derivative is given by

Schwarz, Ges. Werke, t. ii, pp. 269—274.

The simplest classes of ordinary functions are characterised by the properties :

—

(i) Within some region of the plane of the variable they are uniform, finite and

continuous

:

(ii) At all points within that region (but not necessarily on its boundary) they have

a differential coefficient

:

(iii) When the variable is real, the number of maximum values and the number of

minimum values within any given range is finite.

The function 2 6" cos (a"^), suggested by Weierstrass, possesses the first but not the
ji=0

second of these j)roperties. Kopcke {Math. Ann., t. xxix, pp. 123—140) gives an example

of a function which possesses the first and the second but not the third of these

properties.

84. In each of the distinct portions ^i, A.2y... of the complete region of

continuity of a series of functions, the series can be represented by a

monogenic analytic function, the elements of which are converging power-

series. But the equivalence of the function-series and the monogenic
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analytic function for any portion Ai is limited to that region. When the

monogenic analytic function can be continued from Ai into A.^, the continua-

tion is not necessarily the same as the monogenic analytic function which is

the equivalent of the series 2 fi(z) in A.. Hence, if the monogenic analytic
i = l

functions for the two portions A^ and A.^ be different, the function-series

represents different functions in the distinct parts of its region of continuity.

A simple example will be an effective indication of the actual existence

of such variety of representation in particular cases ; that, which follows, is

due to Tannery*.

Let a, b, c be any three constants ; then the fraction

a + hcz^

I +"&?^ '

when m is infinite, is equal to a if
|

^^
|

< 1, and is equal to c if
j

^
|
> 1.

Let m^, oui, iiu,... be any set of positive integers arranged in ascending

order and be such that the limit of m^, when n—cc, is infinite. Then,

since

a + bc^''" _a + bcz'"'o ^ (a + bcz"h a -f- 6c2"'-0

T+ bz^ ~ TTbz^ "^
iZi 1 1 + bz'^i

~
l + bz'^'i-i}

tlie function (f){z), defined by tJie equation

,,. a + bcz'"'^ ,, ,^ f
(2'«i^«i-i-l)^%-i ]

^ ("> = TTVz^ + ^ ^' - ^^>
,!, 1(1 +6.-.) (1 + 6^^1

'

converges uniformly and tmconditionally to a value a if \z\<\, and converges

uniformly and unconditionally to a value c if \z\>\. But it does not con-

verge uniformly and unconditionally if
1

2^
]

= 1.

The simplest case occurs when b — — \ and ?»,: = 2'; then, denoting the

function by ^ {z), we have

<^ (^) = %—7 + (a - c) 2 -:^^r—.
X. — Z 2 = -2 — 1

a-cz , .{ z z- ^ z*
^ ]

that is, the function ^ (z) is equal to a if
|

2
|

< 1, and it is e(|ual to c if

\z\>l.

* It is contained in a letter of Tannery's to Weierstrass, who communicated it to the Berlin

Academy in 1881, Ahh. aus der Functioncnlchre, pp. 103, 104. A similar series, which indeed is

equivalent to the special form of (2), was given by Schroder, ScliVm. Zeitschrift, t. xxii, (187fi),

p. 184; and Pringsheim, Math. Ann., t. xxii, (1883), p. 110, remarks that it can be deduced,

without material modifications, from an expression given by Seidel, CrcUe, t. Ixxiii, (1871),

pp. 297- •299.
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When |2r| = 1, the function can have any vakie whatever. Hence a chicle

of radius unity is a line of singularities, that is, it is a line of discontinuity

for the series. The circle evidently has the property of dividing the plane

into two parts such that tJie analytical expression represents different

functions in the two parts.

If we introduce a new variable t, connected with z by the relation*

then, if ^= ^ + 1*7/ and z — x + iy, we have

1 - ar - f-^-
{l-xf +f

so that ^ is positive when \z\< 1, and ^ is negative when
|
^^ | > 1. If then

the function %(^) is equal to a or to c according as the real part of f is

positive or negative.

And, generally, if we take ^ a rational function of z and denote the

modified form of <^ (^), which will be a sum of rational functions of z, by

01 {z), then <^i {z) will be equal to a in some parts of the plane and to c

in other parts of the plane. The boundaries between these parts are lines

of singular points : and they are constituted by the i;-curves which correspond

to 1^1 = 1.

85. Now let F{z) and G{z) be two functions of z with any number of

singularities in the plane : it is possible to construct a function which shall

be equal to F{z) within a circle centre the origin and to G{z) without the

circle, the circumference being a line of singularities. For, when we make

a = \ and c = in <^ {z) of § 84, the function

is unity for all points within the circle and is zero for all points without it

:

and therefore

G{z) + [F{z)-G{z)]e{z)

is a function which has the required property.

Similarly F,{z) + {F,{^- F,{^] 6 {z) + {F.,{z)- F,{z)}e
(^^

is a function which has the value F^^ {z) withiu a circle of radius unity, the value F^ (2)

between a circle of radius unity and a concentric circle of radius r greater than unity, and

the value F^{z) without the latter circle. All the singularities of the functions i^j, F^,, F^

are singularities of the function thus represented; and it has, in addition to these, the

two lines of singularities given by the circles.

* The significance of a relation of this form will be discussed iu Chapter XIX.
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G{z) + {F{z)-G{z)]e
\-\

is a function of z, wliiuh is equal to F{z) on the positive side of tlicuxis of ?/, and is equal

to G (z) on the negative side of that axis.

1 +2
Also, if we take ^e '"'

-pi = , ,

1 — z

where a^ and pi are real constants, as an equation defining a new variable | + irj, we have

^ cos oi + T] sin a^-pi-
r

so that the two regions of the --plane determined by \z\< 1 and |s|>l correspond to the

two regions of the f-plane into which the line ^cosaj + r;sin ai-^i = divides it. Let

(2):

Pl^1)

so that on the positive side of the line ^cosai + 7;sinai-jOi = the function 6^ is unity and

on the negative side of that line it is zero. Take any three lines dctined by a,, pi ; 02, P2;

03, P3 respectively ; then

i{-F+Fid,+e,+e,)}

is a function which has the value F within

the triangle, the value - F in three of the

spaces without it, and the value zero in the

remaining three spaces without it, as indi-

cated in the figure (fig. 13).

And for every division of the plane by

lines, into which a circle can be transformed (3)

l>y rational equations, as will be explained ~ / \
when conformal representation is discussed (1) / \ (2)

hereafter, there is a possibility of represent- Fig. 13.

ing discontinuous functions, by expressions similar to those just given.

These examples are sufficient to lead to the following result*, which is

complementary to the theorem of § 82 :

When the region of continuity/ of an infinite series of functions consists

of several distinct parts, the series represents a single function in each pai't

but it does not necessarily represent the same function in different parts.

It thus appears that an analytical expression of given form, which con-

verges uniformly and unconditionally in different parts of the plane separated

from one another, can represent different functions of the variable in those

different parts ; and hence the idea of monogenic functionality of a complex

variable is not coextensive tuith the idea of functional dependence expressible

through arithmetical operations, a distinction first established by Weierstrass.

86. We have seen that an analytic function has not a definite value at

an essential singularity and that, therefore, every essential singularity is

excluded from the region of definition of the function,

* Weierstrass, I.e., p. 1)0.
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Again, it has appeared that not merely must single points be on occasion

excluded from the region of definition but also that functions exist with

continuous lines of essential singularities which must therefore be excluded.

One method for the construction of such functions has just been indicated

:

but it is possible to obtain other analytical expressions for functions which

possess what may be called a singular line. Thus let a function have a

circle of radius c as a line of essential singularity*; let it have no other

singularities in the plane and let its zeros be a^, a., a^,..., supposed arranged

in such order that, if pne'^" = a™, then

\pn — c\^\ pn+i -C\,

so that the limit of p„, when n is infinite, is c.

Let Cn = ce'\ a point on the singular circle, corresponding to a^ which is

assumed not to lie on it. Then, proceeding as in Weierstrass's theory in § 51,

if

w = 1 [^ ^n

where ^„(.)=—-+ ^ (^—^j +...+ ^^^--^ (^^-^

G {z) is a uniform function, continuous everywhere in the plane except along

the circumference of the circle which may be a line of essential singularities.

Special simpler forms can be derived according to the character of the

.series of quantities constituted by
|
«„ - c,i|. If there be a finite integer m,

00

such that 2 \an — Cn\^ is a converging series, then in g^iz) only the first

H= l

m — 1 terms need be retained.

Ex. Construct the function when

m being a given positive integer and r a positive quantity.

Again, the point c^ was associated with a^ so that they have the same

argument : but this distribution of points on the circle is not necessary and

can be made in any manner which satisfies the condition that in the limited
CO

case just quoted the series 2
|
«„ — Cn |'" is a converging series.

M = l

Singular lines of other classes, for example, sections\ in connection with functions

defined by integrals, arise in connection with analytical functions. They are discussed

by Painlcve, "Sur les ligncs singulieres des fonctions analytiques," (Tliise, Gauthier-

Villars, Paris, 1887).

Ex. Shew that, if the zeros of a function be the points

. _h-\-G — {a — d)i

a-\-d-\-{}) — G) V
* This investigation is due to Picard, Comptes liendus, t. xci, (1881), p^j. GDO—6U2.

t Called conpures by Hermite ; see § 103.
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where a, h, e, d arc integers satisfying the condition ad-hc—\^ so that the function

lias a circle of radius luiity for an essential singular line, then if

-n_ h-^di

d+hP

the function n r-—j. e" !•

,

where the product extends to all positive integers subject to the foregoing condition

ad-hc= \, is a uniform function finite for all points in the plane not lying on the

circle of radius unity. (Picard.)

87. In the earlier examples, instances were given of functions which

have only isolated points for their essential singularities : and, in the later

examples, instances have been given of functions which have lines of

essential singularities, that is, there are continuous lines for wliich the

functions do not exist. We now proceed to shew how functions can be

constructed which do not exist in assigned continuous spaces in the plane,

these spaces being aggregates of essential singularities. Weierstrass was

the first to draw attention to laciinary functions, as they may be called
;

the following investigation in illustration of Weierstrass's theorem is due to

Poincar^*.

Take any convex curve in the plane, say C ; and consider the function

where the quantities A are constants, subject to the conditions

(i) The series 2 |^| converges uniformly and unconditionally:

(ii) Each of the points h is either within or on the curve G

:

(iii) The points h are the aggregate of all rational
:|:
points within and

on C : then the function is a uniform analytical function for all points

without G and it has the area of G for a lacunary space.

First, it is evident that, if z = b, then the series does not converge.

Moreover as the points h arc the aggregate of ail the i-ational points within

or on G, there will bo an infinite number of singularities in the immediate

vicinity of 6 : we shall thus have an unlimited number of terms each intinite

of the first order, and thus (§ 42) the point h will be an essential singuhirity.

As this is true of all points z within or on G, it follows that the area G is a

lacunary space for the function, if the function exist at all.

Secondly, let z be a point without (*; and let d be the distance of ^^ from

the nearest point of the bounchiry of Gf, so that d is not a vani;shing ((uantity.

* Acta Soc. Fimn., t. xii, (1883), pp. 341—3o0.

X national points witliin or on C are points whose positions can be determined rationally in

terms of the coordinates of assigned points on C ; examples will be given.

t This will be either the shortest normal from z to the boundary or the distance of z from

some point of abrupt change of direction, as for instance at the angular point of a polygon.
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Then \z — b\^d; and therefore

1
A

I

so that

z-b

2
A
z-h

z-h

<t

\A\

z-h
A\

~d

a '
'

Now S 1^1 converges uniformly and unconditionally and therefore, as d does

not vanish,

,
A
z-h

converges uniformly and unconditionally, that is.

^-\
z —b

is a function of z which converges uniformly and unconditionally for every

point without C. Let it be denoted by ^ {z).

Let c be any point without C, and let r be the radius of the greatest

circle centre c which can be drawn so as to have no point of G within itself

or on its circumference, so that r is the radius of the domain of c; then

1

6 — c
I

>r, for all points b.

If we take a point z within this circle, we have \z — c\ = Or, where ^ < 1.

Now for all points within this circle the function (z) converges uniformly,

and every term j of cf) (z) is finite. Also, for points within the circle, we

A
can expand

-J
in powers of z — c in the form

A . ^ {z-cY= A S2-b m=o(i-c)-+i

of a converging series. Hence, by § 82, we have

4>iz)= i 5,,(^-c)-,

a series converging uniformly and unconditionally for all points within the

circle centre c and radius 7; which circle is the circle of convergence of the

series. The function can be expressed in the usual manner over the whole of

the region of continuity, which is the part of the plane without the curve G.

Thus
(f)

{z) is a uniform analytical function, having the area of G for a

lacunary space.

As an example, take a convex polygon having a^,. '....., a^ for its angular points;

then any point

'm^a^ + +mpap

^1 + +?ttj, '

whore m^, , m^ are positive integers or zero (simultaneous zeros being excluded), is
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either within the polygon or on its boundary : and any rational point within the iwlygon

or on its boundary can be represented by
p

r=l

P '

2 TTlr

by proper choice of Wj, , lUp, a choice which can be made in an infinite number of ways.

Let Mj, , Uphe given quantities, the modulus of each of which is less than unity:

then the series

SWi"'' Up""'

converges uniformly and unconditionally. Then all the assigned conditions are satisfied

for the function

A <'' ^'<r
I

[
Wi + +TOp

J

and therefore it is a function which converges uniformly and unconditionally everywhere

outside the polygon and which has the i)olygonal space (including the boundary) for

a lacunary space.

If, in particular, jj = 2, we obtain a function which has the straight line

joining a^ and a., as a line of essential singularity. When we take a, = 0,

tta = 1 and slightly modify the summation, we obtain the function

i Zi ———^
,

n=l w=0 ''^i

Z
n

which, when |^(i|<l and |ii.j|<l, converges uniformly and unconditionally

everywhere in the plane except at points between and 1 on the axis of real

quantities, this part of the axis being a line of essential singularity.

For the general case, the following remarks may be made

:

(i) The quantities u^,u^^,... need not be the same for every term; a

numerator, quite diflforcnt in form, might be chosen, such as

(mi-+ ... +??i/)~'" where 2fx>p; all that is requisite is that the

series, made up of the numerators, should converge uniformly

and unconditionally,

(ii) The preceding is only a particular illustration and is not necessarily

the most general form of function having the assigned lacunary

space.

It is evident that the first step in the construction of a function, which
shall have any assigned lacunary space, is the formation of some expression

which, by the variation of the constants it contains, can be made to

represent indefinitely nearly any point within or on the contour of the

space. Thus for the space between two concentric circles of radii a and c

and centre the origin we should take

m^a + (n - m^) b ^ 2ni

n
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which, by giving nii all values from to n, tiu all values from to ?i — 1 and

n all values from 1 to infinity will represent all rational points in the space

:

and a function, having the space between the circles as lacunary, would be

given by
" " ' " u"iu"'ni.,"00 n n-1 r

2 S S
n= l m, = ;H.i= in^a + (n — mi) b ^~ 27rt

n

provided \u\< 1, \i(i\ < 1, |?<2| < 1.

In particular, if a= b, then the common circumference is a line of essential singularity

for the corresponding function. It is easy to see that the function

«=0 7a=0

2n-l
" ^
m,n m.n

, — ae n

oa 2n-l m n
provided the series 2 2 « v

?(=1 Hi=0 m, n m, n

converges uniformly and unconditionally, is a function having the circle |£:|=a as a line of

essential singularity.

Other examples will be found in memoirs by Goursat* Poincaref, and Homen|.

Kv. 1. Shew that the function

7)i=oo n=oo

2 2 (m+ ?!.s)-2-r,

m=-cc n=—oo

where r is a real positive quantity and the summation is for all integers m and n between

the jiositive and the negative infinities, is a uniform function in all parts of the plane

except the axis of real quantities which is a line of essential singularity.

JSx. 2. Discuss the region in which the function

1
— 2/>« — 2,y) — 2

2 2
n~^'m,~'^p'

n=l »n=l p=l ^_ I P I

is definite. (Homen.)

Kv. 3. Prove that the function

2 2-".t-3"

exists only within a circle of radius unity and centre the origin. (Poincare.)

Kv. 4. An infinite niimber of points a^, a.>, a^, are taken on the circumference of

a given circle, centre the origin, so that they form the aggregate of rational points on the

circumference. Shew that the series

- 1 z

n=l n^ «»-2

can be expanded in a series of ascending powers of z which converges for points within the

circle, but that the function cannot be continued across the circumference of the circle.

(Stieltjes.)

* Compter Rnidus, t. xciv, (1882), pp. 715—718; Bulletin dc Darhonx, 2"' Ser., t. xi, (1887),

pp. 109—114.

t In the memoir, quoted p. 138, and Comptes Rendus, t. xcvi, (1883), j^p. 1134—1136.

t Acta Soc. Fenn., t. xii, (1883), pp. 445—464.
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Ex. 5. Prove that the series

2
(3+ 3-1) + - 2^ 2^ 1(1 _ 2m - 2nd) {2m+ 2nzi^^]

"^TT _oo _^aot(l-2m-2n3-it)(2m+2n3-it)2J '

where the summation extends over all positive and negative integral values of m and of n

except simultaneous zeros, is a function which converges uniformly and unconditionally

for all points in the finite part of plane which do not lie on the axis of y ; and that

it has the value +1 or — 1 according as the real part of :; is positive or negative.

(Weierstra.ss.)

Ex. 6. Prove that the region of continuity of the series

" 1

consists of two parts, separated by the circle \z\ = \ which is a line of infinities for

the series : and that, in these two parts of the plane, it represents two different

functions.

Ol'jT

If two complex quantities <u and w' be taken, such that z = e <^i and the rejil part of

—
. is positive, and if they be associated with the elliptic function ^ («) as its half-periods,

then for values of z which lie within the circle |2| = 1

2 1 ^ a> 0-3(0)) 1

,1=0 2"+ 2-" 27r (r(a)) *'

in the usual notation of Weierstrass's theory of elliptic functions.

Find the function which the series represents for values of 3 without the circle |2| = 1.

(Weierstrass.)

Ex. 7. Four circles are drawn each of radius -^ having their centres at the ^wints

1, i, - 1, -i respectively
; the two parts of the plane, excluded by the four circumferences,

are denoted the interior and the exterior parts. Shew that the function

"=°° sin Ititt f 1 L_ . _L . _I I
n=i 2^^i 1(1 - 2)" (1 +^^)" (1 +2)" (1 - izY)

is equal to tt in the interior part and is zero in the exterior part. (Appell.)

E.v. 8. Obtain the values of the function

»= oc l_/l)n

V^"'^" (3+1)" (S-1)"|

in the two parts of the area within a circle centre the origin and radius 2 which lie

without two circles of radius unity, having their centres at the points 1 and -

1

respectively. (Appell.)

and U,^=F,,,{z)- -l- + {z-a„,-\) j^_^ + -^_-+ 1

where the regions of continuity of the functions F extend over the whole plane, then f {z)

is a function existing everywhere except within the circles of radius unity described round
the points a^, a.,, , a„. (Teixcira.)

F. 10
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Ex. 10. Let there be n circles having the origin for a common centre, and let

C^, Co, ) Cn, Cn + i
he n + l arbitrary constants; also let a^, a^^, , «„ be any n points

lying respectively on the ciz'cumferences of the first, the second, , the nth circles.

Shew that the expression

has the value (7,„ for points z lying between the {m - l)th and the with circles and the

value (7,1 + 1 f<^^ points lying without the ?ith circle.

Construct a function which shall have any assigned values in the variovxs bands into

which the plane is divided by the circles. (Pincherle.)

88. In I
32 it was remarked that the discrimination of the various

species of essential singularities could be effected by means of the properties

of the function in the immediate vicinity of the point.

Now it was proved, in § 63, that in the vicinity of an isolated essential

singularity h the function could be represented by an expression of the form

eG46)+^(-^)

for all points in the space without a circle centre h of small radius and within

a concentric circle of radius not large enough to include singularities at

a finite distance from h. Because the essential singularity at h is isolated,

the radius of the inner circle can be diminished to be all but infinitesimal

:

the series P {z — h) is then unimportant compared with G ( -,

J
, which

can be regarded as characteristic for the singularity of the function.

Another method of obtaining a function, which is characteristic of the

singularity, is provided by § 68. It was there proved that, in the vicinity of

an essential singularity a, the function could be represented by an expression

of the form

where, within a circle of centre a and radius not sufficiently large to include

the nearest singularity at a finite distance from a, the function Q{z — a) is

finite and has no zeros : all the zeros of the given function within this circle

(except such as are absorbed into the essential singularity at a) are zeros of

the factor H ( 1 , and the integer-index n is affected by the number of these

zeros. When the circle is made small, the function

(z-aTH(^\
\z — a)

can be regarded as characteristic of the immediate vicinity of a or, more

briefly, as characteristic of a.
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It is easily seen that the two characteristic functions are distinct. For

if F and Fi be two functions, which have essential singularities at a of the

same kind as determined by the first characteristic, then

F{z)-F,{z) = P{z-a)-P,{z-a)

= P,{z-a),

while if their singularities at a be of the same kind as determined by the

second characteristic, then

in the immediate vicinity of a, since Qi has no zeros. Two such equations

cannot subsist simultaneously, except in one instance.

Without entering into detailed discussion, the results obtained in the

preceding chapters are sufficient to lead to an indication of the classification

of singularities*.

Singularities are said to be of the first class when they are accidental

;

and a function is said to be of the first class when all its singularities are of

the first class. It can, by § 48, have only a finite number of such singularities,

each singularity being isolated.

It is for this case alone that the two characteristic functions are in

accord.

When a function, otherwise of the first class, fails to satisfy the last

condition, solely owing to failure of finiteness of multiplicity at some point,

say at z = oo , then that point ceases to be an accidental singularity. It has

been called (§ 32) an essential singularity ; it belongs to the simplest kind of

essential singularity ; and it is called a singularity of the second class.

A function is said to be of the second class when it has some singularities

of the second class ; it may possess singularities of the first class. By an

ai'gumcnt similar to that adopted in § 48, a function of the second class

can have only a limited number of singularities of the second class, each

singularity being isolated.

When a function, otherwise of the second class, fails to satisfy the last

condition solely owing to unlimited condensation at some point, say at ^^ = oo
,

of singularities of the second class, that point ceases to be a singularity

of the second class : it is called a singularity (necessarily essential) of the

third class.

* For a detailed discussion, reference should be made to Guichard, " Th6orio des points

singuliers esscntiels " (Th^se, Gauthier-Villars, Paris, 1883), who gives adequate references to the

investigations of Mittag-LelHer in the introduction of the classification and to the researches of

Cantor. See also Mittag-LefHer, Acta Math., t. iv, (1884), pp. 1—79 ; Cantor, Crelle, t. Ixxxiv,

(1878), pp. 242—258, Acta Math., t. ii, (1883), pp. 311—328.

10—2
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A function is said to be of the third class when it has some singularities

of the third class ; it may possess singularities of the first and the second

classes. But it can have only a limited number of singularities of the third

class, each singularity being isolated.

Proceeding in this gradual sequence, we obtain an unlimited number of

classes of singularities: and functions of the various classes can be constructed

by means of the theorems which have been proved. A function of class ?i

has a limited number of singularities of class n, each singularity being

isolated, and any number of singularities of lower classes which, except in so

far as they are absorbed in the singularities of class n , are isolated points.

The effective limit of this sequence of classes is attained when the

number of the class increases beyond any integer, however large. When
once such a limit is attained, we have functions with essential singularities of

unlimited class, each singularity being isolated : when we pass to functions

which have their essential singularities no longer isolated but, as in previous

class-developments, of infinite condensation, it is necessary to add to the

arrangement in classes an arrangement in a wider group, say, in species*.

Calling, then, all the preceding classes of functions functions of the first

species, we may, after Guichard (I.e.), construct, by the theorems already

proved, a function which has at the points a^, a...... singularities of classes

1, 2,..., both series being continued to infinity. Such a function is called

a function of the second species.

By a combination of classes in species, this arrangement can be continued

indefinitely : each species will contain an infinitely increasing number of

classes ; and when an unlimited number of species is ultimately obtained,

another wider group must be introduced.

This gradual construction, relative to essential singularities, can be carried

out without limit ; the singularities are the characteristics of the functions.

* Guichard (I.e.) uses the term genre.



CHAPTER VIII.

Multiform Functions.

89. Having now discussed some of the more important general properties

of uniform functions, we proceed to discuss some of the properties of multiform

functions.

Deviations from uniformity in character may arise through various causes

:

the most common is the existence of those points in the z-'plane, which have

already (§ 12) been defined as branch-points.

As an example, consider the two power-series

w^ = \-\z'-lz'-'- ... , w. = -{\-\z'-y-- ...),

which, for points in the plane such that \z'\ is less than unity, are the two

values of (1 — z'f- ; they may be regarded as two branches of the function lu

defined by the equation

iv' = \— z = z.

Let / describe a small curve (say a circle of radius r) round the point

z' = \, beginning on the axis oi x\ the point 1 is the origin for z. Then z

is r initially, and at the end of the first description of the circle z is re-"''

;

hence initially Wj is -1- ?•* and lu., is — r^, and at the end of the description

Wi is -1- r^e"* and Wo is — r^e"^, that is, w^ is — r^ and w., is -I- ri Thus the

effect of the single circuit is to change ^u^ into ^v., and w., into w^, that is,

the effect of a circuit round the point, at which lu^ and Wo coincide in value,

is to interchange the values of the two branches.

If, however, z describe a circuit which does not include the branch-point,

Wi and w., return each to its initial value.

Instances have already occurred, e.g. integrals of uniform functions, in

which a variation in the path of the variable has made a difference in the
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result ; but this interchange of value is distinct from any of the effects

produced by points belonging to the families of critical points which have

been considered. The critical point is of a new nature ; it is, in fact, a

characteristic of multiform functions at certain associated points.

We now proceed to indicate more generally the character of the relation

of such points to functions affected by them.

The method of constructing a monogenic analytic function, described in

§ 34, by forming all the continuations of a power-series, regarded as a given

initial element of the function, leads to the aggregate of the elements of the

function and determines its region of continuity. When the process of con-

tinuation has been completely carried out, two distinct cases may occur.

In the first case, the function is such that any and every path, leading

from one point a to another point z by the construction of a series of

successive domains of points along the path, gives a single value at z as the

continuation of one initial value at a. When, therefore, there is only a

single value of the function at a, the process of continuation leads to only a

single value of the function at any other point in the plane. The function is

uniform throughout its region of continuity. The detailed properties of such

functions have been considered in the preceding chapters.

In the second case, the function is such that different paths, leading from

a to z, do not give a single value at z as the continuation of one and the

same initial value at a. There are different sets of elements of the function,

associated with different sets of consecutive domains of points on paths from

a to z, which lead to different values of the function at z\ but any change

in a path from a to z does not necessarily cause a change in the value of the

function at z. The function is multiform in its region of continuity. The

detailed properties of such functions will now be considered.

90. In order that the process of continuation may be completely carried

out, continuations must be effected, beginning at the domain of any point a

and proceeding to the domain of any other point h by all possible paths in

the region of continuity, and they must be effected for all points a and h.

Continuations must be effected, beginning in the domain of every point a

and returning to that domain by all possible closed paths in the region of

continuity. When they are effected from the domain of one point a to that

of another point h, all the values at any point z in the domain of a (and not

merely a single value at such points) must be continued : and similarly when

they are effected, beginning in the domain of a and returning to that domain.

The complete region of the plane will then be obtained in which the function

can be represented by a series of positive integral powers : and the boundary

of that region will be indicated.
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111 the first instance, let the boundary of the region be constituted by a

number, either finite or infinite, of

isolated points, say L^, L^, L^, ...

Take any point A in the region, so

that its distance from any of the

points L is not infinitesimal ; and

in the region draw a closed path

ABG...EFA so as to enclose one

point, say L^, but only one point, of

the boundary and to have no point

of the curve at a merely infinitesimal distance from L^. Let such curves be

drawn, beginning and ending at A, so that each of them encloses one and

only one of the points of the boundary : and let Kr be the curve which

encloses the point L,..

Let Wj be one of the power-series defining the function in a domain with

its centre at A : let this series be continued along each of the curves Kg by

successive domains of points along the curve returning to A. The result

of the description of all the curves will be that the series w^ cannot be

reproduced at A for all the curves though it may be reproduced for some

of them ; otherwise, Wi would be a uniform function. Suppose that w^, w., . . .,

each in the form of a power-series, are the aggregate of new distinct values

thus obtained at A; let the same process be effected on lu.,, w-^, ... as has

been effected on lu^, and let it further be effected on any new distinct values

obtained at A through W2, w^, ... , and so on. When the process has

been carried out so far that all values obtained at A, by continuing any

series round any of the curves K back to A, are included in values already

obtained, the aggregate of the values of the function at A is complete : they

are the values at A of the branches of the function.

We shall now assume that the number of values thus obtained is finite,

say n, so that the function has n branches at ^ : if their values be denoted

by Wj, W.2, ..., tVn, these n quantities are all the values of the function at A.

Moreover, n is the same for all points in the plane, as may be seen by con-

tinuing the series at A to any other point and taking account of the corollaries

at the end of the present section.

The boundary-points L may be of two kinds. It may (and not infre-

quently does) happen that a point Z, is such that, whatever branch is taken

at A as the initial value for the description of the circuit Kg, that branch is

reproduced at the end of the circuit. Let the aggregate of such points be

/i, 1.2, .... Then each of the remaining points L is such that a description

of the circuit round it effects a change on at least one of the branches, taken

as an initial value for the description ; let the aggregate of these points be

i?i, B.2, .... They are the branch-points; their association with the definition

ill § 12 will be made later.
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Fig. 15.

Wlien account is taken of the continuations of the function from a point

A to another point B, we have n values at B as the continuations of n values

at A. The selection of the individual branch at B, which is the continuation

of a particular branch at A, depends upon the path of z between A and B\

it is governed by the following fundamental proposition :

—

Tlie final value of a branch, of a function for two paths of variation of the

independent variable from one point to another will be the same, if one 'path

can be deformed into the otlier ivithout passing over a brancli-point.

Let the initial and the final points be a and b, and let one path of

variation be acb. Let another path of variation be aeb,

both paths lying in the region in which the function can

be expressed by series of positive integral powers : the two

paths are assumed to have no point within an infinitesimal

distance of any of the boundary-points L and to be taken

so close together that the circles of convergence of pairs of

points (such as Ci and Ci, Ca and e.,, and so on) along the two

paths have common areas. When we begin at a with a

branch of the function, values at Ci and at e-^ are obtained,

depending upon the values of the branch and its derivatives at a and upon

the positions of Cj and ei\ hence, at any point in the area common to the

circles of convergence of these two points, only a single value arises as

derived through the initial value at a. Proceeding in this way, only a single

value is obtained at any point in an area common to the circles of con-

vergence of points in the two paths. Hence ultimately one and the same

value will be obtained at b as the continuation of the value of the one branch

at a by the two different paths of variation which have been taken so that

no boundary-point L lies between them or infinitesimally near to them.

Now consider any two paths from a to b, say acb and adb, such that

neither of them is near a boundary-point and that the

contour they constitute does not enclose a boundary-point.

Then by a series of successive infinitesimal deformations we

can change the path acb to adb ; and as at b the same value

of w is obtained for variations of z from a to b along the

successive deformations, it follows that the same value of w
is obtained at b for variations of z along acb as for varia-

tions along adb.

Next, let there be two paths acb, adb constituting a closed contour,

enclosing one (but not more than one) of the points I and none of the points

B. When the original curve K which contains the point I is described, the

initial value is restored : and hence the branches of the function obtained at

any point of K by the two paths from any point, taken as initial point, are

the same. By what precedes, the parts of this curve K can be deformed

Fig. 16.
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into the parts of acbda without affecting the branches of the function : hence

the value obtained at h, by continuation along acb, is the same as the value

there obtained by continuation along adb. It therefore follows that a path

between two points a and b can be deformed over any point / without

affecting the value of the function at b; so that, when the preceding

results are combined, the proposition enunciated is proved.

By the continued application of the theorem, we arc led to the following

results :

—

Corollary I. Whatever be the effect of the description of a circuit on the

initial value of a function, a reversal of the circuit restores the original value

of the function.

For the circuit, when described positively and negatively, may be re-

garded as the contour of an area of infinitesimal breadth, which encloses no

branch-point within itself and the description of the contour of which

therefore restores the initial value of the function.

Corollary II. A circ^dt can be deformed into any other circuit ivithout

affecting the final value of the function, jjrovided that no branch-point be crossed

ill the process of deformation.

It is thus justifiable, and it is often convenient, to deform a path con-

taining a single branch-point into a loop round the

point. A loop* consists of a line nearly to the point, ^ J^z)'^

nearly the whole of a very small circle round the point. Fig. 17.

and a line back to the initial point ; see figure 17.

Corollary III. The value of a function is unchanged when the variable

describes a closed circuit containing no branch-point; it is likeiuise unchanged

when the variable describes a closed circuit containing all the brancli-points.

The first part is at once proved by remarking that, without altering the

value of the function, the circuit can be deformed into a point.

For the second part, the simplest plan is to represent the variable on

Neumann's sphere. The circuit is then a curve on the sphere enclosing all

the branch-points : the effect on the value of the function is unaltered by any

deformation of this curve which docs make it cross a branch-point. The

curve can, without crossing a branch-point, be deformed into a point in that

other part of the area of the sphere which contains none of the branch-

points ; and the point, which is the limit of the curve, is not a branch-

point. At such a point, the value of the function is unaltered ; and there-

fore the description of a circuit, which encloses all the branch-points,

restores the initial value of the function.

Corollary IV. If the values of lu at b for variations along two j^ciths

* French writers use the wonl laccl, German writers the word Scltleife.
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acb, adb be not tJie same, then a description of acbda luill not restore the initial

value of iv at a.

In particular, let the path be the loop OeceO (fig. 17), and let it change w
at into w'. Since the values of lu at are different and because there is

no branch-point in Oe (or in the evanescent circuit OeO), the values of lu at

e cannot be the same : that is, the value with which the infinitesimal circle

round a begins to be described is changed by the description of that circle.

Hence the part of the loop that is effective for the change in the value of w is

the small circle round the point ; and it is because the description of a small

circle changes the value of w that the value of tv is changed at after the

description of a loop.

Iif{z) be the value of lu which is changed into/i(^^) by the description of

the loop, so that f{z) and f (z) are the values at 0, then the foregoing

explanation shews that f{e) and f (e) are the values at e, the branch f{e)

being changed by the description of the circle into the branch yi(e).

From this result the inference can be derived that the points B^, B.., ...

are branch-points as defined in § 12. Let a be any one of the points, and

let f{2) be the value of iv which is changed into f (z) by the description of

a very small circle round a. Then as the branch of 2U is monogenic, the

difference between f{z) and f (z) is an infinitesimal quantity of the same

order as the length of the circumference of the circle : so that, as the circle

is infinitesimal and ultimately evanescent, \f{z) —f (z)
\

can be made as small

as we please with decrease of \z — a\ or, in the limit, the values of /(a) and

fi{a) at the branch-point are equal. Hence each of the points B is such

that two or more branches of tlie function have the same value at the point

and there is interchange among these branches when the variable describes a

small circuit round tJie point : which affords a definition of a branch-point,

more complete than that given in § 12.

Corollary V. If a closed circuit contain several branch-ijoints, the effect

ivhich it produces can be obtained by a combination of the effects produced in

succession by a set of loops each going round only one of tJie branch-points.

If the cu'cuit contain several branch-points, say three as at a, b, c, then a

path such as AEFD, in fig. 18, can without

crossing any branch-point, be deformed into the

loops AaB, BbC, CcD; and therefore the complete

circuit AEFDA can be deformed validly into

AaBbCcDA,imdi the same effect will be produced

by the two forms of circuit. When D is made ^~
q"^

practically to coincide with A , the whole of the Fig. 18.

second circuit is composed of the three loops. Hence the corollary.

This corollary is of especial importance in the consideration of integrals

of multiform functions.
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Corollary VI. In a continuous part of the plane luliere there are no

hranch-points, each branch of a multiform function is uniform.

Each branch is monogenic and, except at isolated points, continuous

;

hence, in such regions of the plane, all the propositions which have been

proved for monogenic analytic functions can be applied to each of the

branches of a multiform function.

91. If there be a branch-point within the circuit, then the value of the

function at 6 consequent on variations along ach may, but will not necessarily,

differ from its value at the same point consequent on variations along adh.

Should the values be different, then the description of the whole curve achda

will lead at a not to the initial value of w, but to a different value.

The test as to whether such a change is effected by the description is

immediately derivable from the foregoing proposition; and as in Corollary

IV., § 90, it is proved that the value is or is not changed by the loop,

according as the value of w for a point near the circle of the loop is

or is not changed by the description of that circle. Hence it follows that, if

there he a branch-point ivliich affects the branch of the function, a path of

variation of the independent variable cannot be deformed across the branch-

point without a change in the value of w at the extremity of the path.

And it is evident that a point can be regarded as a branch-point for a

function only if a circuit round the point interchange some {or all) of the

branches of the function which are equal at the p)oint. It is not necessary that

all the branches of the function should be thus affected by the point : it is

sufficient that some should be interchanged*.

Further, the change in the value of w for a single description of a circuit

enclosing a branch-point is unique.

For, if a circuit could change lu into w' or lo", then, beginning with w"

and describing it in the negative sense we should return to w and afterwards

describing it in the positive sense with lo as the initial value we should

obtain lo'. Hence the circuit, described and then reversed, does not restore

the original value lu" but gives a different branch iv' ; and no point on

the circuit is a branch-point. This result is in opposition to Corollary I.,

of § 90 ; and therefore the hypothesis of alternative values at the end of

the circuit is not valid, that is, the change for a single description is

unique.

But repetitions of the circuit may, of course, give different values at the

end of successive descriptions.

* In what precedes, certain points were considered which were regular singularities (see

p. 163, note) and certain which were branch-points. Frequently points will occur which are at

ouce branch-points and infinities
;
proper account must of course be taken of them.
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92. Let be any ordinary point of the function
;
join it to all the

branch-points (generally assumed finite in

number) in succession by lines which do not

meet each other : then each branch is uniform

for each path of variation of the variable which

meets none of these lines. The effects pro-

duced by the various branch-points and their

relations on the various branches can be indi-

cated by describing curves, each of which

begins at a point indefinitely near and

returns to another point indefinitely near it

after passing round one of the branch- points,

and by noting the value of each branch of the function after each of these

curves has been described.

The law of interchange of branches of a function after description of a

circuit round a branch-point is as follows:

—

All the branches of a function, wJiich are affected by a branch-point as such,

can eitJier be arranged so that the order of interchange {for description of a

path round the point) is cyclical, or be divided into sets in each of which the

order of interchange is cyclical.

Let Wi, Wo, W3,... be the branches of a function for values of z near a

branch-point a which are affected by the description of a small closed curve

G round a : they are not necessarily all the branches of the function, but only

those affected by the branch-point.

The branch Wi is changed after a description of C ; let lu., be the branch

into which it is changed. Then m^ cannot be unchanged by C; for a reversed

description of G, which ought to restore Wt^, would otherwise leave iv., un-

changed. Hence w^ is changed after a description of C ; it may be changed

either into Wi or into a new branch, say W3. If into w^, then Wj and w^ form

a cyclical set.

If the change be into W3, then w-^ cannot remain unchanged after a

description of G, for reasons similar to those that before applied to the

change of lu.r. and it cannot be changed into w.,, for then a reversed de-

scription of G would change w^_ into w.^, and it ought to change w^ into Wi.

Hence, after a description of G, lu-^ is changed either into iv^ or into a new

branch, say W4. If into w^, then w^, tu., W3 form a cyclical set.

If the change be into W4, then ^'4 cannot remain unchanged after a

description of G ; and it cannot be changed into w., or w^, for by a reversal

of the circuit that earlier branch would be changed into lu^, whereas it ought

to be changed into the branch, which gave rise to it by the forward descrip-

tion—a branch which is not w^. Hence, after a description of G, w^ is

changed either into Wj or into a new branch. If into Wi, then lu^, lu,, W3, W4

form a cyclical set.
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If lUi be changed into a new branch, we proceed as before with that new
branch and either complete a cyclical set or add one more to the set. By
repetition of the process, we complete a cyclical set sooner or later.

If all the branches be included, then evidently their complete system

taken in the order in which they come in the foregoing investigation is a

sj'stem in which the interchange is cyclical.

If only some of the branches be included, the remark applies to the set

constituted by them. We then begin with one of the branches not included

in that set and evidently not inclusible in it, and proceed as at first, until

we complete another set which may include all the remaining branches or

only some of them. In the latter case, we begin again with a new branch

and repeat the process ; and so on, until ultimately all the branches are

included. The whole system is then arranged in sets, in each of which the

order of interchange is cyclical.

93. The analytical test of a hranch-point is easily obtained by con-

structing the general expression for the branches of a function which are

interchanged there.

Let z = a be a branch-point where n branches Wi, w.,..., Wn are cyclically

interchanged. Since by a first description of a small curve round a, the

branch Wj changes into Wo, the branch tu., into Wg, and so on, it follows that

by r descriptions w^ is changed into 7Vr+i and by n descriptions u\ reverts to

its initial value. Similarly for each of the branches. Hence each brunch

returns to its initial value after n descriptions of a circuit rvund a hranch-

point where n branches of the function are interchangeable.

Now let z-a = Z'^
;

then, when z describes circles round a, Z moves in a circular arc round its

origin. For each circumference described by z, the variable Z describes

-th part of its circumference; and the complete circle is described by Z
round its origin when n complete circles are described by z round a. Now
the substitution changes Wr as a function of z into a function of Z, say into

Wr] and, after n complete descriptions of the ^•-circle round a, w,. returns

to its initial value. Hence, after the description of a ^-circle round its

origin, Wr returns to its initial value, that is, Z = ceases to be a branch-
point for Wr. Similarly for all the branches W.

But no other condition has been associated with a as a point for the
function w

;
and therefore Z=0 may be any point for the function W, that

is, it may be an ordinary point, or a singularity. In every case we have W
a uniform function of Z in the immediate vicinity of the origin ; and therefore

in that vicinity it can be expressed in the form

gI^^ + p{Z),
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with the significations of P and G already adopted. When Z is an ordinary

point, G^ is a constant or zero ; when Z is an accidental singularity, G is an

algebraical function ; and, when Z is an essential singularity, (r is a transcen-

dental function.

The simpler cases are, of course, those in which the form of G is alge-

braical or constant or zero ; and then W can be put into the form

Z^P{Z),

where P is an infinite series of positive powers and m is an integer. As this

is the form of If in the vicinity of ^ = 0, it follows that the form of w in the

vicinity oi z = a is

m 1

(z - af P {(z - af}

and the various n branches of the function are easily seen to be given by
1

substituting in the above for (2 — a)"- the values

2irst 1

qW
(^2 - of,

where s = 0, 1,..., ?i — 1. We therefore infer that the general expression for

the n branches of a function, luhich are interchanged by circuits round a

branch-point z — a, assumed not to be an essential singularity, is

m 1

{z-af P{{z-af'},
1

ivJtere m is an integer, and luhere to (z — a)" its n values are in turn assigned

to obtain the different branches of the function.

There may be, however, more than one cyclical set of branches. If there

be another set of r branches, then it may similarly be proved that their

general expression is

Wl 1

{z-aYQ[{z-af],

where m-^ is an integer, and Q is an integral function ; the various branches
1

are obtained by assigning to {z — ay its r values in turn.

And so on, for each of the sets, the members of which are cyclically

interchangeable at the branch-point.

When the branch-point is at infinity, a different form is obtained. Thus

in the case of a set of n cyclically interchangeable branches we take

z = u-'\

so that n negative descriptions of a closed ^-curve, excluding infinity and no

other branch-point, requires a single positive description of a closed curve

round the w-origin. These n descriptions restore the value of w as a function

of z to its initial value ; and therefore the single description of the it-curve

round the origin restores the vahie of U—the equivalent of w after the
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change of the independent variable—as a function of u. Thus m = ceases

to be a branch-point for the function U ; and therefore the form of U is

e(i) + POO.

where the symbols have the same general signification as before.

If, in particular, e = oo be a branch-point but not an essential singularity,

then is either a constant or an algebraical function ; and then U can be

expressed in the form
w-^"^ P (u),

where m is an integer. When the variable is changed from ii to z, then tJie

general expression for the n branches of a function which are interchangeable

at z= yo , assumed not to be an essential singularity, is

m 1

1

where m is an integer and where to z'^ its n values are assigned to obtain the

different branches of the function.

If, however, the branch-point z = a in the former case or z='x> in the

latter be an essential singularity, the forms of the expressions in the vicinity

of the point are
1 1

Q[{z-a) ^']+P[{z-af],

1 _i

and G{z'') + P{z »X

respectively.

Note. When a multiform function is defined, either explicitly or im-

plicitly, it is practically always necessary to consider the relations of the

branches of the function for z = co as well as their relations for points that

are infinities of the function. The former can be determined by either

of the processes suggested in § 4 for dealing with z= <x>\ the latter can be

determined as in the present article.

Moreover, the total number of branches of the function has been assumed

to be finite. The cases, in which the number of branches is unlimited, need

not be discussed in general : it will be sufficient to consider them when they

arise, as they do arise, e.g., when the function is of the form of an algebraical

irrational with an irrational index such as z^"^—hardly a function in the

ordinary sense— , or when the function is the logarithm of a function of z,

or is the inverse of a periodic function. In the nature of their multiplicity

of branching and of their sequence of interchange, they are for the most part

distinct from the multiform functions with only a finite number of branches.

Ex. The simplest illustrations of multiform functions are furnished by functions

defined by algebraical equations, in particular, by algebraic irrationals.
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The weueral type of the algebraical irrational is the product of a number of functions

of the form w= {A (z-a^) {z-a.^ (s -«„)}"*, m and n being integers.

This particular function has m branches; the points a^, a.^, , «„ are branch-points.

To find the law of interchange, we take z-ar= pe^^; then when a small circle of radius p

is described round a^i so that z returns to its initial position, the value of 6 increases by

— 27ri

2ir and the new value of w is aw, where a is the mih root of unity defined by e'» . Taking

then the various branches as given by w, aw, ahv, , a"'~%, we have the law of inter-

change for description of a small curve round any one-branch point as given by this

succession in cyclical order. The law of succession for a circuit enclosing more than

one of the branch-points is derivable by means of Corollary V, § 90.

To find the relation of = qo to 70, we take zz' = l and consider the new function W in

the vicinity of the /-origin. We have

W={A {l-a,z') (1-a/) (1 -«,/)}™/"'".

If the \ariable z' describe a very small circle round the origin in the negative sense, then

2«^
z' is multiplied by e""^"* and so W acquires a factor e »», that is, W is changed unless

this acquired factor is unity. It can be unity only when njm is an integer ; and therefore,

except when n/m is an integer, 2= 00 is a branch-point of the function. The law of

succession is the same as that for negative description of the s'-circle, viz., w, a^w,

a^n^v, ; the ni values form a single cycle only if n be prime to m, and a set of cycles

if n be not prime to m.

Thus z=co is a branch-point for «'= (4s^ - ^'jS - ^'3)
"^

; it is not a branch-point for

w={{l-z'^){l-kh^)}~'; and z= b is a branch-point for the function defined by

{z-h) w'^= z-a,

but z= b is not a branch-point for the function defined by {z-l)fiifl= z-a.

Again, if p denote a particular value of 2-, when 2 has a given value, and q similarly

denote a particular value of
(„'r"-, )

> then \o='p-\-q is a six-valued function, the values

being
10^= p+ q, w^= p + aq, w^= p + a^q,

w^=-p + q, 7i\=-'p-\-aq, io^=-p^-a%

where a is a primitive cube root of unity. The branch-points are - 1, 0, 1, oo ; and the

orders of change for small circuits round one (and only one) of these points are as

follows

:

For a small circuit round
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Combinations can at once be eftected ; thus, for a positive circuit enclosing both 1 and qo

but* not - 1 or 0, the succession is

Wi, W^, Wg, W.2, ^3, Wq

in cyclical order.

94. It has already been remarked that algebraic irrationals are a special

class of functions defined by algebraical equations. Functions thus generally

defined by equations, which are algebraical so far as concerns the dependent

variable but need not be so in reference to the independent variable, are

often called algebraical. The term, in one sense, cannot be strictly applied

to the roots of an equation of every degree, seeing that the solution

of equations of the fifth and higher degrees can be effected only by

transcendental functions ; but what is implied is that a finite number of

determinations of the dependent variable is given by the equation
"f*.

The equation is algebraical in relation to the dependent variable w, that

is, it will be taken to be of finite degree n in w. The coefficients of the

different powers will be supposed to be rational uniform functions of z : were

they irrational in any given equation, the equation could be transformed

into another, the coefficients of which are rational uniform functions. And
the equation is supposed to be irreducible, that is, if the equation be taken

in the form

f{iv,z) = 0,

the left-hand member f{w, z) cannot be resolved into factors of a form and

character as regards w and z similar to/ itself

The existence of equal roots of the equation for general values of z

requires that

f(w, z) and -^ 1 ^

shall have a common factor, which will be rational owing to the form of

f{w, z). This form of factor is excluded by the irrcducibility of the equation
;

so that f=0, as an equation in iv, has not equal roots for general values

of z. But though the two equations are not both satisfied in virtue of a

simpler equation, they are two equations determining values of w and z;

and theii- form is such that they will give equal values of w for special

values of z.

Since the equation is of degree n, it may be taken to be

^n + yjn-i F^ (^) + ^yn-2 ^^^(^2)+...+ IvF,,-, {z) + i^„ {z) = 0,

where the functions i^i, F.,,... are rational and uniform. If all their singu-

* Such a circuit, if drawn on the Neumann's sphere, may be regarded as excluding - 1 and 0,

or taking account of the other portion of the surface of the sphere, it may be regarded as a

negative circuit including - 1 and 0, the cyclical interchange for which is easily proved to be

ttjj, iD^, w^, it'o, jCg, Wf^ as in the text.

t Such a function is called bicn dejini by Liouville.

F. 11
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larities be accidental, they are raeromorphic algebraical functions of z (unless

2r = 00 is the only singularity, in which case they are holoraorphic) ; and the

equation can then be replaced by one which is equivalent and has all its

coefficients holomorphic, the coefficient of w" being the least common multiple

of all the denominators of the meromorphic functions in the first form. This

form cannot however be deduced, if any of the singularities be essential.

The equation, as an equation in w, has n roots, all functions of z ; let

these be denoted by Wi, Wo,..., w„, which are the n branches of the function w.

When the geometrical interpretation is associated with the analytical relation,

there are n points in the w-plane, say «!,..., ol^x, which correspond with a point

in the ^-plane, say with Oj ; and in general these n points are distinct. As

z varies so as to move in its own plane from a, then each of the w-points

moves in their common plane ; and thus there are n w-paths corresponding

to a given z-path. These n curves may or may not meet one another.

If they do not, there are n distinct «>-paths, leading from «!,..., a„ to

ySi,..., /8„, respectively corresponding to the single 2^-path leading from a

to h.

If two or more of the w-paths do meet one another, and if the describing

?(;-points coincide at their point of intersection, then at such a point of

intersection in the ^<;-plane, the associated branches w are equal ; and

therefore the point in the ^•-plane is a point that gives equal values for w.

It is one of the roots of the equation obtained by the elimination of w
between

the analytical test as to whether the point is a branch-point will be

considered later. The march of the concurrent '2i;-branches from such a

point of intersection of two '2(;-paths depends upon their relations in its

immediate vicinity.

When no such point lies on a ^•-path from a to h, no two of the -w-points

coincide during the description of their paths. By § 90, the 2;-path can be

deformed (provided that, in the deformation, it does not cross a branch-point)

without causing any two of the •2f-points to coincide. Further, if z describe

a closed curve which includes none of the branch-points, then each of the

w-branches describes a closed curve and no two of the tracing points ever

coincide.

'Note. The limitation for a branch-point, that the tracing w-points

coincide at the point of intersection of the zy-curves, is of essential im-

portance.

What is required to establish a point in the s-plane as a branch-point,

is not a mere geometrical intersection of a couple of completed ?y-paths but

the coincidence of the w-points as those paths are traced, together with inter-
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change of the branches for a small circuit round the point. Thus let there be

such a geometrical intersection of two w-curves, without coincidence of the

tracing points. There are two points in the ^-plane corresponding to the

geometrical intersection ; one belongs to the intersection as a point of the

w-path which first passed through it, and the other to the intersection as a

point of the w-path which was the second to pass through it. The two

branches of w for the respective values of z are undoubtedly equal ; but the

equality would not be for the same value of z. And unless the equality

of branches subsists for the same value of z, the point is not a branch-

point.

A simple example will serve to illustrate these remarks. Let w be defined l)y the

equation

so that the branches it\ and w^ are given by

cwj = cz-\-z{z^+ c^y, civ.T,= cz - z (z'^ + c^y

;

it is easy to prove that the equation resulting from the ehmination of w between /=0 and

|^ = Ois

z^{f+ (?) = 0,

and that only the two points z— -^^ic are branch-points.

The values of z which make lo-^ equal to the value of w., for :. = a (supposed not ccpial to

either 0, ci or — ci) are given by

C2 + 2 (s^+ c'^)- = ca-a (a^+ c-)*,

which evidently has not £;= a for a root. Rationalising the equation so far as concerns z

and removing the factor 2 -a, as it has just been seen not to furnish a root, we find that z

is determined by

23

+

z'^a +za'^+ a^+ 2ac'^-2ac (a?+ c^f= 0,

the three roots of which are distinct from a, the assumed point, and from +ci, the branch-

point. Each of these three values of z will make ii\ equal to the value of lo.^ for s=a : we

have geometrical intersection without coincidence of the tracing points.

95. When the characteristics of a function are required, the most im-

portant class are its infinities : these must therefore now be investigated.

It is preferable to obtain the infinities of the function rather than the

singularities alone, in the vicinity of which each branch of the function

is imiform*: for the former will include these singularities as well as

those branch-points which, giving infinite values, lead to regular singularities

when the variables are transformed as in § 93. The theorem which deter-

mines them is :

—

The iivfinities of a function determined by an algebraical equation are the

singularities of the coefficients of the equation.

Let the equation be

w" + w^-^ F, (z) + w"-- F,(z)+ ••+ wFn-, {z) + Fn {z) = 0,

* These singularities will, for the sake of brevity, be called regular.

11—2
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and let id' be any branch of the function ; then, if the equation which

determines the remaining branches be

^«-i + w''-- Gy {z) + W'^-3 G, {z)+...+ luGn-2 (z) + Gn-i (^) = 0,

we have Fn (z) = - w'Gn-i {z),

F,_,{z) = -lv'Gn-dz)+Gn-Az),

F,,^,(z)^-w'GnMz) + Gn-.(z),

F,{z) = -w' + G,(z).

Now suppose that a is an infinity of w' ; then, unless it be a zero of order

at least equal to that of Gn-i (z), a is an infinity of Fn {z). If, however, it be

a zero of Gn-i (z) of sufficient order, then from the second equation it is an

infinity of F„_-^ (z) unless it is a zero of order at least equal to that of

Gn--2 (z) ; and so on. The infinity must be an infinity of some coefficient not

earlier than Fj (z) in the equation, or it must be a zero of all the functions

G which are later than Gi-i{z). If it be a zero of all the functions Gr, so

that we may not, without knowing the order, assert that it is of rank at

least equal to its order as an infinity of w', still from the last equation it

follows that a must be an infinity of F^ (z). Hence any infinity of w is an

infinity of at least one of the coefficients of the equation.

Conversely, from the same equations it follows that a singularity of one

of the coefficients is an infinity either of w' or of at least one of the co-

efficients G. Similarly the last alternative leads to an inference that the

infinity is either an infinity of another branch lu" or of the coefficients of the

(theoretical) equation which survives when the two branches have been

removed. Proceeding in this way, we ultimately find that the infinity either

is an infinity of one of the branches or is an infinity of the coefficient in the

last equation, that is, of the last of the branches. Hence any singularity

of a coefficient is an infinity of at least one of the branches of the function.

It thus appears that all the infinities of the function are included among,

and include, all the singularities of the coefficients ; but the order of the

infinity for a branch does not necessarily make that point a regular

singularity nor, if it be made a regular singularity, is the order necessarily

the same as for the coefficient.

96. The follo^ving method is effective for the determination of the order

of the infinity of the branch.

Let a be an accidental singularity of one or more of the F functions,

say of order nii for the function Fi ; and assume that, in the vicinity of a,

we have

Fi {z) = {z- a)-^i [a + di {z-a)+ e-, {z-af +...].
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Similarly for each part of the line : for the first part, there are r branches

with an associated value of X, ; for the second, s-r branches with another

associated value ; for the third, t - s branches with a third associated value

;

and so on.

The order of the infinity for the branches is measured by the tangent

of the angle which the coi'responding part of the broken line makes with the

axis of x; thus for the line joining An-r to Ans the order of the infinity for

the s - 7* branches is

s — r

where nin-r and ?»„_s are the orders of the accidental singularities of Fn_r (z)

and Fn-s (^)-

If any part of the broken line should have its inclination to the axis of

X greater than ^tt so that the tangent is negative and equal to - /jl, then the

form of the corresponding set of branches w is (z — aY g {z) for all of them,

that is, the point is not an infinity for those branches. But when the

inclination of a part of the line to the axis is < -^tt, so that the tangent is

positive and equal to \ then the form of the corresponding set of branches

w is {z — a)~^f{z) for all of them, that is, the point is an infinit}'^ of order \

for those branches.

In passing from An to vlo there may be parts of the broken line which

have the tangential coordinate negative, implying therefore that a is not an

infinity of the corresponding set or sets of branches lu. But as the revolving

line has to change its direction from A^y' to some direction through A^,

there must evidently be some part or parts of the broken line which have

their tangential coordinate positive, implying therefore that a is an infinity

of the corresponding set or sets of branches.

Moreover, the point a is, by hypothesis, an accidental singularity of at

least one of the coefficients and it has been supposed to be an essential

singularity of none of them; hence the points A^, jIj, ..., A^ are all in the

finite part of the plane. And as no two of their abscissge are equal, no line

joining two of them can be parallel to the axis of y, that is, the inclination

of the broken line is never W and therefore the tangential coordinate is

finite, that is, the order of the infinity for the branches is finite for any

accidental singularity of the coefficients.

If the singularity at a be essential for some of the coefficients, the

corresponding result can be inferred by passing to the limit which is

obtained by making the corresponding value or values of m infinite. In

that case the corresponding points A move to infinity and then parts of the

broken line pass through ^o (which is always on the axis of x) parallel to

the axis of y, that is, the tangential coordinate is infinite and the order of
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the infinity at a for the corresponding branches is also infinite. The point is

then an essential singularity (and it may be also a branch-point).

It has been assumed implicitly that the singularity is at a finite point in

the ^-plane ; if, however, it be at oo , we can, by using the transformation

z/ = 1 and discussing as above the function in vicinity of the origin, obtain

the relation of the singularity to the various branches. We thus have the

further proposition

:

The order of the infinity of a branch of an algebraical function at a
singularity of a coefficient of the equation, which determines the function, is

finite or infinite according as the singidarity is accidental or essential.

If the coefficients Fi of the equation be holomorphic functions, then

2^ = GO is their only singularity and it is consequently the only infinity for

branches of the function. If some of or all the coefficients Fi be mero-

morphic functions, the singularities of the coefficients are the zeros of

the denominators and, possibly, z = qo\ and, if the functions be algebraical,

all such singularities are accidental. In that case, the equation can be

modified to

ho {z) lu-^ + h^ {z) w'^-^ + ^2 {z) W^'- + . . . = 0,

where K{z) is the least common multiple of all the denominators of the

functions F^. The preceding results therefore lead to the more limited

theorem :

When a function w is determined by an algebraical equation the coefficients

of which are holomorphic functions of z, then each of the zeros of the coefficient

of the higJiest jwwer of w is an infinity of some of (and it nuiy be of all) the

branches of the function w, each such infinity being of finite order. The point

z = <X) mxiy also be an infinity of the function w ; tJie oi'der of that infinity is

finite or infinite accoi'ding as z = co is an accidental or an essential singularity

of any of the coefficients.

It will be noticed that no precise determination of the forms of the

branches w at an infinity has been made. The determination has, however,

only been deferred : the infinities of the branches for a singularity of the

coefficients are usually associated with a branch-point of the function and

therefore the relations of the branches at such a point will be of a general

character independent of the fact that the point is an infinity.

If, however, in any case a singularity of a coefficient should prove to be,

not a branch-point of ^u but only a regular singularity, then in the vicinity of

that point the branch of w is a uniform function. A necessary (but not suffi-

cient) condition for uniformity is that (nin-r — W2„_g) -^ (s — r) be an integer.

Note. The preceding method can be applied to determine the leading

terms of the branches in the vicinity of a point a which is an ordinary point

for each of the coefficients F.
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97. There remains therefore the consideration of the branch-points of a

function determined by an algebraical equation.

The characteristic property of a branch-point is the equality of branches

of the function for the associated value of the variable, coupled with the

interchange of some of (or all) the equal branches after description by the

variable of a small contour enclosing the point.

So far as concerns the first part, the general indication of the form of the

values has already (§ 93) been given. The points, for which values of w
determined as a function of z by the equation

are equal, are determined by the solution of this equation treated simul-

taneously with

df(w, z)
_f.,

dw

and when a point z is thus determined the corresponding values of w, which

are equal there, are obtained by substituting that value of z and taking M,

the greatest common measure of / and ~ . The factors of M then lead to

the value or the values of lu at the point ; the index m of a linear factor

gives at the point the multiplicity of the value which it determines, and

shews that m -j- 1 values of w have a common value there, though they are

distinct at infinitesimal distances from the point. If m — 1 for any factor,

the corresponding value of 2U is an isolated value and determines a branch

that is uniform at the point.

Let z = a, w = a. be a value of z and a value of w thus obtained ; and

suppose that m is the number of values of w that are equal to one another.

The point z = a is not a branch-point unless some interchange among the

m values of w is effected by a small circuit round a ; and it is therefore

necessary to investigate the values of the branches* in the vicinity of z = a.

Let w = a + w', z = a + z' ] then we have

f{a + iv', a + z') = 0,

that is, on the supposition that f(w, z) has been freed from fractions,

/(a, a) + S ^Ars/w'' = 0,
r, s

SO that, since a is a value of w corresponding to the value a of z, we have

w' and z' connected by the relation

r s

* The following investigations are founded on the researches of Puiseux on algebraic

functions ; they are contained in two memoirs, Liouville, 1'" Ser., t. xv, (1850), pp. 365—480, ib.,

t. xvi, (1851), pp. 228—240. See also the chapters on algebraic functions, pp. 19—76, in the

second edition of Briot and Bouquet's Theorie des fonctions elliptiques.
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When z is 0, the zero value of w must occur ni times, since a is a root

m times repeated ; hence there are terms in the foregoing equation inde-

pendent of z , and the term of lowest index among them is w'"*. Also when
w' = 0, / = is a possible root ; hence there must be a term or terms

independent of w' in the equation.

First, suppose that the lowest power of z among the terms independent

of w is the first. The equation has the form

Az' + higher powers of /

+ Btu' + higher powers of w'

+ terms involving z' and w' = 0,

where A is the value of —V^

—

- for iv^a, z = a. Let z' = ^"\ lu' = vi^ ; the

last form changes to

{A + Bv"^) ^'» + terms with ^'"+^ as a factor = ;

and therefore A + Bv^'^ + terms involving ^= 0.

Hence in the immediate vicinity of ^ = a, that is, of ^= 0, we have

A + Bv'"^ = 0.

Neither A nor B is zero, so that all the m values of v are finite. Let them

be Vi,..., Vm, so arranged that their arguments increase by 27r/?H through

the succession. The corresponding values of w' are

lu/ = Vii;

= ViZ''^,

for i=\,..., m. Now a ^--circuit round a, that is, a /-circuit round its

origin, increases the argument of z' by 27r ; hence after such a circuit we
J_ 27rf 1

have the new value of lu-' as Viz''"^ e'", that is, it is ^'i+j/'" which is the value

of w'i+i. Hence the set of values iv\, w'..,..., 7u\,t form a complete set of

interchangeable values in their cyclical succession ; all the m values, which

are equal at a, form a single cycle and the point is a branch-point.

Next, suppose that the lowest power of z' among the terms independent

of w' is z' , where ^ > 1. The equation now has the form

= Az' + higher powers of z'

+ Bw' -t- higher powers of w'

'^1 ""j;^ r s ^ r s
-H S S ArsZ W +%XCrsZ'lO ,

r=l s=l

where in the last summation r and s arc not zero and in every term cither

(i), r is equal to or greater than I or (ii), s is equal to or greater than ni

or (iii), both (i) and (ii) are satisfied. As only terms of the loAvest orders
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Fig. 21.

need be retained for the present purpose, which is the derivation of the first

term of lu' in its expansion in powers of /, we may use the foregoing equation

in the form

Az' + S 2 Arsz' w' +Bv/ =0.
?• = ! s= X

To obtain this first term we proceed in a manner similar to that in § 96*.

Points A(^,..., Am are taken in a plane

referred to rectangular axes having as co-

ordinates 0, Z;...; s, r;...; m, respectively.

A line is taken through A.,n and is made to

turn round J.„j from the position ^,,,.0 until

it fii'st meets one of the other points ; then

round the last point which lies in this

direction, say round Aj, until it first meets

another; and so on.

Any line through Ai (the point 5,-, r,) is

of the form

y -ri = -\(x - Si).

The intercept on the axis of /-indices is XSi + 7\, that is, the order of the

term involving A^^, for a substitution w' x z . The perpendicular from the

origin for a line through A^ and Aj is less than for any parallel line through

other points -with the same inclination ; and, as this perpendicular is

(M- + rO(l+XT^

it follows that, for the particular substitution w x / , the terms corresponding

to the points lying on the line with coordinate \ are the terms of lowest

order and consequently they are the terms which give the initial terms for

the associated set of quantities %u'

.

Evidently, from the indices retained in the equation, the quantities X

for the various pieces of the broken line from A^^h to A^^ are positive and

finite.

Consider the first piece, fi-om A,n to A^ say ; then taking the value of X for

that piece as //i, so that we write v^z'^^ as the first term of w', we have as the

set of terms invohdng the lowest indices

Sj being the smallest value of s retained ; and then

so that ^1 =

* Reference in this connection may be made to Chrystal's Alijehra, ch. xxx., with great

advantage, as well as the authorities quoted on p. 168, note.
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Let 2~)lq bo the equivalent value of //.j as the fraction in its lowest terms ; and
2.

write z' = ^'i. Then w' = v-^z "i = v^I^p ; all the terms except the above group

are of order > rap and therefore the equation leads after division by ^'"^y*/ to

Bv^'^'-'j + ^A ,-i\'-'j + Ars. = 0,

an equation which determines m — Sj values for v^ and therefore the initial

terms of m — Sj of the w-branches.

Consider now the second piece, from Aj to Ai say ; then taking the value

of \ for that piece as /Ao, so that we write v.z''^' as the first term of lu, we

have as the set of terms involving the lowest indices for this value of
fj,.,

ArsZ'V' + ^lArszV + Arj\v''\
i j ' >

where Si is the smallest value of s retained. Then

Sjfji.j, + Vj = s/i2 + r = sijjb., + Vj.

Proceeding exactly as before, we find

ArsV..'j-'' + Xl.ArsV.f-'i + ^,., =

as the equation determining Sj — Si values for v^ and therefore the initial

terms of Sj — si of the w-branches.

And so on, until all the pieces of the line are used ; the initial terms of

all the ?^;-branches are thus far determined in groups connected with the

various pieces of the line A,nAjAi...A^. By means of these initial terms,

the m-branches can be arranged for their interchanges, by the description of

a small circuit round the branch-point, according to the following theorem :

—

Each group can he resolved into systems, the members of each of which are

cyclically interchangeable.

It will be sufficient to prove this theorem for a single group, say the

group determined by the first piece of broken line : the argument is

general.

. 7) . . r ?'•

Since - is the equivalent of and of—^ and since si < s, we have
q m — s m — Sj

'

m — s = kq, m — Sj^kjq, kj>k\

and then the equation which determines v^ is

Bv^h^i + ^Arsvfi-'^^ 1 4 ArjSj = 0,

that is, an equation of degree kj in i\i as its variable. Let U be any root of

it ; then the corresponding values of i\ are the values of U'J. Suppose these

q values to be arranged so that the arguments increase by 27r -, which is

possible, because p is prime to q. Then the q values of to' being the values

of Viz'f^' are

p p p

thxZ'^, Vy.z'^i, Vi^z'*}, ...,
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9.

where v^a is that value of IJi which has —^— for its argument. A circuit

round the ^^'-origiu evidently increases the argument of any one of these

w'-values by lirplq, that is, it changes it into the value next in the succession;

and so the set of q values is a system the members of which are cyclically

interchangeable.

This holds for each value of U derived from the above equation ; so that

the whole set of 7/i — Sj branches are resolved into kj systems, each containing

q members with the assigned properties.

It is assumed that the above equation of order kj in v{i has its roots unequal.

If, however, it should have equal roots, it must be discussed ah initio by a

method similar to that for the general equation ; as the order kj (being a

factor of m — Sj) is less than in, the discussion will be shorter and simpler,

and will ultimately depend on equations with unequal roots as in the case

above supposed.

It may happen that some of the quantities yu, are integers, so that the

corresponding integers q are unity : a number of the branches would then be

uniform at the point.

It thus appears that z = a is a branch-point and that, under the present

circumstances, the m branches of the function can be arranged in systems,

the members of each one of which are cyclically interchangeable.

Lastly, it has been tacitly assumed in what precedes that the common
value of w for the branch-point is finite. If it be infinite, this infinite value

can, by § 95, arise only out of singularities of the coefficients of the equation

:

and there is therefore a reversion to the discussion of §§ 95, 96. The dis-

tribution of the various branches into cyclical systems can be carried out

exactly as above.

Another method of proceeding for these infinities would be to take

ww' = \, z= c-^ z \ but this method has no substantial advantage over the

earlier one and, indeed, it is easy to see that there is no substantial

difference between them.

Ex. 1. As an example, consider the function determined by the equation

Szvfi+ {\- z){^w+ l)=0.

The equation determining the values of z which give equal roots for w is

82(2-1)2= 4(3-1)3

so that the values are 2= 1 (repeated) and 2=-l.

When 2=1, then vj= 0, occurring thrice; and, if 2=1 -hi' then

8«<;'3=2',

that is, «/=^2'^

Tilt' tliree values are branches of one system in cyclical order for a circuit round 2=1.
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When z= -I, the equation for w is

that is, (w-l){2w+ lf= 0,

so that w=l or w=-^, occurring twice.

For the former of these we easily find that, for i = - 1 -f z', the value of w is

l + fj'+ , an isolated branch as is to be expected, for the value 1 is not

repeated.

For the latter we take w= -^ + w' and find

w''=^\z'+ ,

so that the two branches arc

'""-i+sve'-'^

"=-^-2^6^'+

and they are cyclically interchangeable for a small circuit round z= -1.

These are the finite values of w at branch-points. For the infinities of iv, which may
arise in connection with the singularities of the coefficients, we take the zeros of the

coefficient of the highest power of w in the integral equation, viz., ^= 0, which is thus the

only infinity of w. To find its order we take w= z~"'f{z) = yz~^''-\- , where y is a

constant and f (z) is finite for 2 = 0; and then we have

8^1 -3.1

--j^^yH -3yi-"-t- + 1.

Thus l-3n=-n,
provided both of them be negative; the equality gives 7i= ^ and satisfies the condition.

And 8y^= -3y. Of these values one is zero, and gives a branch of the function without

an infinity; the other two are ±^\/-i| and they give the initial term of the two

branches of iv, which have an infinity of order -| at the origin and are cyclically

interchangeable for a small circuit round it. The three values of w for infinitesimal

values of z are

/3.-I ,
1 7 /3 .i 4 275 /3 .|

'^= V8^' +6-I8V8^^""-8T^-1944\/8^'
/3._l 1 7 /3 .^ 4 ,275 /3.|

^2-- Vs'" "^6 + l8 V 8'^""~8T' + 1944 V 8''
"

729 ^

729^ •

^''3=-^ + |[^" + 4^"+'

The first two of these form the system for the l)ranch-point at the origin, which is neither

an infinity nor a critical point for the third branch of the function.

Ex. 2. Obtain the branch-points of the functions which are defined by the following

equations, and determine the cyclical systems at the branch-[)oints :

(i)
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98. There is one case of considerable importance which, though limited

in character, is made the basis of Clebsch and Gordan's investigations* in the

theory of Abelian functions—the results being, of course, restricted by the

initial limitations. It is assumed that all the hranch-points are simple, that

is, are such that only one pair of branches of w are interchanged by a circuit

of the variable round the point ; and it is assumed that the equation /= is

algebraical not merely in w but also in z. The equation / = can then be

regarded as the generalised form of the equation of a curve of the nth. order,

the generalisation consisting in replacing the usual coordinates by complex

variables; and it is further assumed, in order to simplify the analysis, that all

the multiple points on the curve are (real or imaginar}') double-points. But,

even with the limitations, the results are of gi'eat value : and it is therefore

desirable to establish the results that belong to the present section of the

subject.

We assume, therefore, that the branch-points are such that only one

pair of branches of w are interchanged by a small closed circuit round any

one of the points. The branch-points are among the values of z determined

by the equations

f(iv,z) = 0, "9^=0.
When f=0 has the most general form consistent with the assigned

limitations, f{^o, z) is of the nth. degree in z ; the values of z are determined

by the eliminant of the two equations which is of degree n{n — 1), and there

are, therefore, ?t (n — 1) values of z which must be examined.

Fii'st, suppose that _
'—- does not vanish for a value of z, thus

obtained, and the corresponding value of w ; then we have the first case

in the preceding investigation. And, on the hypothesis adopted in the

present instance, 7?i=2; so that eacli such point z is a hranch-point.

Next, suppose that -^ \
'—- vanishes for some of the n {n — 1) values of z

;

the value of m is still 2, owing to the hypothesis. The case will now be still

further limited by assuming that \ ' does not vanish for the value of z

and the corresponding value of w ; and thus in the vicinity of ^ = a, w = a we

have an equation

= Az- + ^Bz'w' -I- Cw'- + terms of the third degree -f- ,

where A, B, C are the values of ^^ ,
^(~

, ^—„ for z = a, w = a.

oz- dzdiu ow-

If B- AC, this equation leads to the solution

C'w -f- Bz X uniform function of /.

* Clebsch und Gordau, Theorie der AbeVschen Fiuictiuncn, (Leipzig, Teubner, 186G).
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The point z = a, w = a is not a branch-point ; the vahies of w, ecjual at the

point, are functionally distinct. Moreover, such a point z occurs doubly in

the eliminant ; so that, if there be 8 such points, they account for 28 in

the eliminant of degree 7i{n—l); and therefore, on their score, the number

n(n—l) must be diminished by '28. The case is, reverting to the genera-

lisation of the geometry, that of a double point where the tangents are

not coincident.

If, however, B- = AG, the equation leads to the solution

CW + Bz' = Lz'^ + Mz'' + Nz'^ +

The point z = a, w = a. is a point where the two values of z interchange.

Now such a point z occurs triply in the eliminant ; so that, if there be k

such points, they account for 'Sk of the degi-ee of the equation. Each of

them provides only one branch-point, and the aggregate therefore provides k

branch-points ; hence, in counting the branch-points of this type as derived

through the eliminant, its degree must be diminished by 2k. The case is,

reverting to the generalisation of the geometry, that of a double point (real

or imaginary) where the tangents are coincident.

It is assumed that all the n(n — l) points z are accounted for under

the three classes considered. Hence the number of hranch-points of the

equation is

n = n(:n- l)-28-2/c,

where n is the degree of the equation, B is the number of double points

(in the generalised geometrical sense) at which tangents to the curve do not

coincide, and k is the number of double points at which tangents to the

curve do coincide.

And at each of these branch-points, fl in number, two branches of the

function are equal and, for a small cii'cuit round it, interchange.

99. The following theorem is a combined converse of many of the

theorems which have been proved :

A function w, luhich lias n (and only v) values for each value of z, and

which has a finite number of infinities and of branch-points in any part of the

plane, is a root of an equation in w of deyree n, the coefficients of which are

uniform functions of z in that part of the plane.

We shall first prove that every integral symmetric function of the n

values is a uniform function in the part of the plane under consideration.

n

Let 8k denote S Wi*, where k is a positive integer. At an ordinary point

of the plane, 8k is evidently a one-valued function and that value is finite

;

S]c is continuous ; and therefore the function 8^ is uniform in the immediate

vicinity of an ordinary point of the plane.
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For a point a, which is a branch-point of the function w, we know that

the branches can be arranged in cyclical systems. Let Wi,..., w^ be such a

system. Then these branches interchange in cyclical order for a description

of a small circuit round a; and, if z —a = Z'^, it is known (§ 93) that, in the

vicinity of Z = 0, a branch w is a uniform function of Z, say

w = gQ+P{Z).

Therefore w'^ = Gu (^)
+ Pk {Z)

in the vicinity of ^= ; say

m = 1 >H = 1

Now the other branches of the function which are equal at a are derivable

from any one of them by taking the successive values which that one

acquires as the variable describes successive circuits round a. A circuit

of tu round a changes the argument of z — a by 27r, and therefore gives Z
reproduced but multiplied by a factor which is a primitive /ith root of unity,

say by a factor a ; a second cii'cuit will reproduce Z with a factor a-; and so

on. Hence
w/- = Ak+t Bk,,n or'" Z-»' + 2 Ck,,n a'" Z"\

m=l m=l

lUr" =Ak+S Bk,m Oi-^'" -^-"'' + 2 C\,n «"" ^'",

and therefore

2 w/ = /A^fc + 2 Bkm Z-'» (1 + a-™ + a--'"' + . . . + a-""^+"')
r=l M =

1

+ 2 Cu,n ^"^ (1 + a'" + a-'" + . . . + a""^-"').

m~ 1

Now, since a is a primitive yu,th root of unity,

is zero for all integral values of s which are not integral multiples of jx, and it

is /i for those values of s which are integral values of fx ; hence

- 2 wJ^ = Aj, + Bj,^^Z->^ + Bk,,^Z--^ + Bk,,^Z-"^>^+...

+ C^,,Z^ + C,,,^ Z> + C,,,^Z^>^ + ...

= At,-\- B\^ 1 {z - a)-i + B'k, 2 (z - a)-" + B'k, , {z - «)-- + . .

.

Hence the point z = a may be a singularity of 2 w/' but it is not a branch-
r = \
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point of the function ; and therefore in the immediate vicinity of z = a the

quantity ^ wj^ is a uniform function.
r=l

The point a is an essential singularity of this uniform function, if the

order of the infinity of w at a be infinite : it is an accidental singularity, if

that order be a finite integer.

This result is evidently valid for all the cyclical systems at a, as well as

for the individual branches which may happen to bo one-valued at a. Hence

Sk, being the sum of sums of the form 2 m/ each of which is a uniform
r=l

function of z in the vicinity of a, is itself a uniform function of z in that

vicinity. Also a is an essential singularity of ;S^;fc, if the order of the infinity at

z= a for any one of the branches of w be infinite ; and it is an accidental

singularity of Sk, if the order of the infinity at z= a for all the branches of w
be finite. Lastly, it is an ordinary point of Sjc, if there be no branch of w for

which it is an infinity. Similarly for each of the branch-points.

Again, let c be a regular singularity of any one (or more) of the branches

of w ; then c is a regular singularity of every power of each of those branches,

the singularities being simultaneously accidental or simultaneously essential.

Hence c is a singularity of Sk : and therefore in the vicinity of c, Sk is a

uniform function, having c for an accidental singularity if it be so for each of

the branches w affected by it, and having c for an essential singularity if it be

so for any one of the branches w.

It thus appears that in the part of the plane under consideration the

function S^ is one-valued ; and it is continuous and finite, except at certain

isolated points each of which is a singularity. It is therefore a uniform

function in that part of the plane ; and the singularity of the function at any

point is essential, if the order of the infinity for any one of the branches w at

that point be infinite, but it is accidental, if the order of the infinity for all the

branches w there be finite. And the number of these singularities is finite,

being not greater than the combined number of the infinities of the function

w, whether regular singularities or branch-points.

Since the sums of the A;th powers for all positive values of the integer k

are uniform functions and since any integral symmetric function of the n

values is a rational integral algebraical function of the sums of the powers, it

follows that any integral symmetric function of the n values is a uniform

function of z in the part of the plane under consideration ; and every infinity

of a branch tu leads to a singularity of the symmetric function, which is

essential or accidental according as the orders of infinity of the various

branches are not all finite or are all finite.

F. 12
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Since vj has n (and only n) values ^^i,..., w',i for each value of z, the

equation which determines w is

{lU — lU-^ (W — lU.^ ... {lU — lUn) = 0.

The coefficients of the various powers of w are symmetric functions of the

branches Wj,..., Wn\ and therefore they are uniform functions of z in the

part of the plane under consideration. They possess a finite number of

singularities, which are accidental or essential according to the character of

the infinities of the branches at the same points.

Corollary. If all the infinities of the branches in the finite part of the

luhole plane he of finite order, then the finite singularities of all the coefficients

of the poiuers of w in the equation satisfied by w are all accidental ; and the

coefiicients themselves then take the form of a quotient of an integral uniform

function {which may he either transcendental or algebraical, in the sense of

§ 47) by another function of a similar character.

If 2^ = X be an essential singularity for at least one of the coefficients,

through being an infinity of unlimited order for a branch of lu, then one

or both of the functions in the quotient-form of one at least of the coefficients

must be transcendental.

li z= Xi be an accidental singularity or an ordinary point for all the

coefficients, through being either an infinity of finite order or an ordinary

point for the branches of iv, then all the functions which occur in all the

coefficients are rational, algebraical expressions. When the equation is

multiplied throughout by the least common multiple of the denominators

of the coefficients, it takes the form

W^Ao {Z) + W«-i K{z)+ ...+W hn-^ (Z) + hn (z) = 0,

where the functions h(,{z), h^{z),..., hn{z) are rational, integral, algebraical

functions of z, in the sense of § 47.

A knowledge of the number of infinities of w gives an upper limit of the

degree of the equation in z in the last form. Thus, let «j be a regular

singularity of the function ; and let a^, /S,-, 7j, ... be the orders of the infinities

of the branches at ai ; then

W^W. . . . Wn (z - aif\

where \i denotes cti + /3i + <yi + ... , is finite (but not zero) for z = ai.

Let Ci be a branch-point, which is an infinity; and let fi branches iv form a

0J

system for d, such that w {z — CiY is finite (but not zero) at the point ; then

WiW.2 ... w^(z — Ci)'

is finite (but not zero) at the point, and therefore also

W,...^Un{z-Ci)'^'"
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is finite, where 6i, (f)i,
-v^,-, ... are numbers belonging to the various systems;

or, if €i denote ^i + 0i + -v/^i + . .
. , then

lU^ ... Wn {Z - Cif'

is finite for z = Ci. Similarly for other symmetric functions of w.

Hence, if cti, a^,... be the regular singularities with numbers Xj, X^,...

defined as above, and if Ci, C2, ... be the branch-points, that are also infinities,

with numbers ej, 62, ... defined as above, then the product

{tU — Wi) (W - IVn) Tl {z — tti)
^* n (2 — dY'

is finite at all the points cii and at all the points Cj-. The points a and the

points c are the only points in the finite part of the plane that can make the

product infinite : hence it is finite everywhere in the finite part of the plane,

and it is therefore an integral function of z.

Lastly, let p be the number for z = 00 corresponding to Xj for a^ or to e^

for Ci, so that for the coefficient of any power of w in (w — Wi) ... (w — iUn) the

greatest difference in degree between the numerator and the denominator is

p in favour of the excess of the former.

Then the preceding product is of order

which is therefore the order of the equation in z when it is expressed in a

holomorphic form.

12—2



CHAPTER IX.

Periods of Definite Integrals, and Periodic Functions in general.

100. Instances have already occurred in which the value of a function

of z is not dependent solely upon the value of z but depends also on the

course of variation by which z obtains that value ; for example, integrals of

uniform functions, and multiform functions. And it may be expected that,

a fortiori, the value of an integral connected with a multiform function will

depend upon the course of variation of the variable z. Now as integrals

which arise in this way through multiform functions and, generally, integrals

connected with differential equations are a fruitful source of new functions,

it is desirable that the effects on the value of an integral caused by variations

of a ^-path be assigned so that, within the limits of algebraic possibility, the

expression of the integi-al may be made completely determinate.

There are two methods which, more easily than others, secure this result

;

one of them is substantially due to Cauchy, the other to Riemann.

The consideration of Riemann's method, both for multiform functions and

for integrals of such functions, will be undertaken later, in Chapters XV.,

XVI. Cauchy's method has already been used in preceding sections relating

to uniform functions, and it can be extended to multiform functions. Its

characteristic feature is the isolation of critical points, whether regular

singularities or branch-points, by means of small curves each containing one

and only one critical point.

Over the rest of the plane the variable z ranges freely and, under certain

conditions, any path of variation of z from one point to another can, as will

be proved immediately, be deformed without cau.sing any change in the

value of the integral, provided that the path does not meet any of the small

curves in the course uf the deformation. Further, from a knowledge of the

relation of any point thus isolated to the function, it is possible to calcvilate

the change caused by a deformation of the 2^-path over such a point ; and

thus, for defined deformations, the value of the integi'al can be assigned

precisely.
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The properties proved in Chapter II. are useful in the consideration of

the integrals of uniform functions; it is now necessary to establish the

propositions which give the effects of deformation of path on the integi'als

of multiform function. The most important of these propositions is the

following :

—

If w be a multiform function, the value of I wdz, taken betiueen tiuo
J a

ordinary points, is unaltered for a deformation of the path, provided that the

initial branch of w he the same and that no branch-point or infinity be crossed

in the deformation.

Consider two paths acb, adb, (fig. 16, p. 152), satisfying the conditions

specified in the proposition. Then in the area between them the branch w
has no infinity and no point of discontinuity ; and there is no branch-point

in that area. Hence, by § 90, Corollary VI., the branch w is a uniform

monogenic function for that area; it is continuous and finite everywhere

within it and, by the same Corollary, we may treat w as a uniform, raono-

genic, finite and continuous function. Hence, by § 17, we have

(c)
I
wdz + (d) 1 wdz = 0,

J a J b

the first integral being taken along acb and the second along bda; and

therefore
^6 ra rbrb ra rb

(c) I wdz = — (d)
j
wdz = (d) I wdz,

J a -J b J a

shewing that the values of the integral along the two paths arc the same

under the specified conditions.

It is evident that, if some critical point be crossed in the deformation,

the branch w cannot be declared uniform and finite in the area and the

theorem of § 17 cannot then be applied.

Corollary I. The integi'al round a closed curve containing no cHtical

point is zero.

Corollary II. A curve round a branch-point, containing no othei^

critical point of the function, can be deformed into a loop

wit}tout altering the value of Jwdz ; for the deformation

satisfies the condition of the proposition. Hence, when

the value of the integral for the loop is known, the

value of the integral is known for the curve.

Corollary III. From the proposition it is possible

to infer conditions, under which the integral Jwdz round

the whole of any curve remains unchanged, when tJie whole

curve is deformed, without leaving an infinitesimal arc

common as in Corollary II.
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Let CDC, ABA' be the curves: join two consecutive points AA' to two

consecutive points CG\ Then if the area GABA'G'DG

enclose no critical point of the function w, the value of

^ludz along GDG' is by the proposition the same as its

value along GABA'G'. The latter is made up of the

value along GA, the value along ABA', and the value

along A'G', say

I

wdz +
I

ludz + I ^v'dz, -p. 23
J (J J li J A.

where w' is the changed value of w consequent on the description of a simple

curve reducible to B (§ 90, Cor. II.).

Now since w is finite everywhere, the difference between the values of w
at A and at A' consequent on the description of ABA' is finite : hence as

A'A is infinitesimal the value of [wdz necessary to complete the value for

the whole curve B is infinitesimal and therefore the complete value can be

taken as the foregoing integral wdz. Similarly for the complete value

along the curve D : and therefore the difference of the integrals round B and

round D is

rA rC

I
wdz + I w'dz,

J C J A'

rA
I (w — w') dz.
J c

In general this integral is not zero, so that the values of the integral

round B and round D are not equal to one another : and therefore the curve

D cannot be deformed into the curve B without affecting the value of Jwdz

round the whole curve, even when the deformation does not cause the curve

to pass over a critical point of the function.

But in special cases it may vanish. The most important and, as a

matter of fact, the one of most frequent occurrence is that in which the

description of the curve B restores at A' the initial value of w at J.. It

easily follows, by the use of § 90, Cor. II., that the description of I) (as-

suming that the area between B and D includes no critical point) restores

at G' the initial value of w at G. In such a case, w = w' for corresponding

points on AG and A'G', and the integral, which expresses the difference, is

zero: the value of the integral for the curve B is then the same as that for D.

Hence we have the proposition :

—

If a curve he such that the description of it hy the independent variable

restores the initial value of a midtiform function w, then the value of Jwdz

taken round the curve is unaltered when the curve is deformed into any other

curve, provided that no branch-point or point of discontinuity of w is crossed

in the course of deformation.
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This is the generalisation of the proposition of § 19 which has thus far

been used only for uniform functions.

Note. Two particular cases, which are very simple, may be mentioned

here : special examples will be given immediately.

The first is that in which the curve B, and therefore also D, encloses

no branch-point or infinity; the initial value of w is restored after a

description of either curve, and it is easy to see (by reducing £ to a

point, as may be done) that the value of the integral is zero.

The second is that in which the curve encloses more than one branch-

point, the enclosed branch-points being such that a circuit of all the loops,

into which (by Corollary V., § 90) the curve can be deformed, restores the

initial branch of w. This case is of especial importance when w is two-valued

:

the curves then enclose an even number of branch-points.

101. It is important to know the value of the integral of a multiform

function round a small curve enclosing a branch-point.

Let c be a point at which m branches of an algebraical function are equal

and interchange in a single cycle; and let c, if an infinity, be of only finite

order, say kjm. Then in the vicinity of c, any of the branches w can be

expressed in the form

S= -A:

where k is a finite integer.

The value of jwdz taken round a small curve enclosing c is the sum of

the integrals
s

g,^{z - cyHz,

the value of which, taken once round the curve and beginning at a point Zi, is

7)1+ S

where a is a primitive with root of unity, provided m -|- s is not zero. If then

s -f m be positive, the value is zero in the limit when the curve is infini-

tesimal : if m + she negative, the value is oo in the limit.

But, if m + s be zero, the value is 27rigg.

Hence we have the proposition : If, in the vicinity of a branch-point c,

where in branches w are equal to one another and intei'change cyclicallij , the

expression of one of the branches be

k _ A-1

gk{z - c)
'" -{ gk-,{z - cj ^ +
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then Jwdz, taken once round a small curve enclosing c, is zero, if k<in; is

infinite, if k > m ; and is ^irif/k, if f^ = ^n.

It is easy to see that, if the integral be taken m times round the small

curve enclosing c, then the value of the integral is ^mirig.n when k is greater

than m, so that the integral vanishes unless there be a term involving {z - c)-^

in the expansion of a branch w in the vicinity of the point. The reason that

the integral, which can furnish an infinite value for a single circuit, ceases to

_ _\

do so for m circuits, is that the quantity {z^-c) '^, which becomes indefi-

nitely great in the limit, is multiplied for a single circuit by a^-1, for a

second circuit by a^^ — a^, and so on, and for the mth circuit by a'"^- a^"'~^'\

the sum of all of which coefficients is zero.

Ex. The integral \{{z -a){z-b) ... {z -f)}~^ dz taken round an indefinitely small curve

enclosing a is zero, provided no one of the quantities 6, ... ,/ is equal to a.

102. Some illustrations have already been given in Chapter II., but

they relate solely to definite, not to indefinite, integrals of uniform

functions. The whole theory will not be considered at this stage ; we shall

merely give some additional illustrations, which will shew how the method

can be applied to indefinite integrals of uniform functions and to integrals

of multiform functions, and which will also form a simple and convenient

introduction to the theory of periodic functions of a single variable.

We shall first consider indefinite integrals of uniform functions.

( dz
Ex. 1. Consider the integral I — , and denote* it by/(s).

The function to be integrated is uniform, and it has an accidental singularity of the first

order at the origin, which is its only singularity. The value of ^z''^ dz taken positively

along a small curve round the origin, say round a circle with the origin as centre, is ^wi

;

but the value of the integral is zero when taken along any closed curve which does not

include the origin.

Taking 2= 1 as the lower limit of the integral, and any point z as the upper limit, we

consider the possible paths from 1 to z. Any path from 1 to s can be deformed, without

crossing the origin, into a path which circumscribes the origin positively some number of

times, say m^, and negatively some number of times, say m^, all in any order, and then leads

in a straight line from 1 to z. For this path the value of the integral is equal to

(27r^) m^ + ( - ^ni) m.^+
j
—

,

that is, to 2?W7r^+

where m is an integer, and in the last integral the variation of z is along a straight

line from 1 to z. Let the last integral be denoted by ?i ; then

* See Chrystal, ii, pp. 266—272, for the elemeutary properties of the function and its inverse,

when the variable is complex.
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and therefore, inverting the function and denoting /~i by 0, we have

Hence the general integral is a function of z with an infinite number of values ; and z is a

periodic function of the integral, the pei'iod being 2ni.

Ex. 2. Consider the function I
"

^
; and again denote it by / (z).

The one-valued function to be integrated has two accidental singularities + i, e.'ich of

the first order. The value of the integral taken positively along a small curve round i is

TT, and along a small curve round — / is — n.

We take the origin as the lower limit and any point z as the upper limit. Any path

from to z can be deformed, without crossing either of the singularities and therefore

without changing the value of the integral, into

(i) any numbers of positive (mj, m.^) and of negative (t??/, ??i./) circuits round i and

round - i, and

(ii) a straight line from to z.

Then we have

/ {z) = wiiTT+ ?H,' (
- tt) + m., ( - tt) + m.; {

- ( - tt)} + /
" "

[^ dz

J i)l Vz''

where n is an integer and the integral on the right-hand side is taken along a straight line

from to z.

Inverting the function and denoting/"' by 0, we have

S= (^(M-f-?l7r).

The integral, as before, is a function of z with an infinite immbcr of values ; and - is a

periodic function of the integral, the period being tt.

103. Before passing to the integrals of multiform functions, it is con-

venient to consider the method in which Hermite* discusses the multiplicity

in value of a definite integral of a uniform function.

Taking a simple case, let (j>{z) — \ ^
J i- + ^

and introduce a new variable t such that Z = zt\ then

'1 zdt

+ zt'

When the path of t is assigned, the integral is definite, finite and uniipie in

value for all points of the plane except for those for which l+zt = 0; and,

according to the path of variation of t from to 1, there will be a ^-curve

which is a curve of discontinuity for the subject of integi-ation. Suppose the

path of t to be the straight line from to 1 ; then the curve of discontinuity

* Crelle, t. xci, (1881), pp. 62—77; Cours a la Faculte des Sciences, 4-^""' 6d. (1891), pp.

76—79, 15-1-164, and elsewhere.

*(^>=/or
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is the axis of o- between — 1 and — oc . In this curve let an}' point — ^ be

taken where ^ > 1 ; and consider a point 2^ = — ^ + ie and a point z.2 = — ^ — ie,

respectively on the positive and the negative sides of the axis of oc, both

being ultimately taken as infinitesimally near the point — ^. Then

^<^.)-^w=/:(i^tTt*+r^&) dt

'
2^•e ^^^r 2ie

tan-iLJ= 2^
e

Let e become infinitesimal ; then, when t is infinite, we have

tan- (--^) = Itt,

for e is positive ; and, when t is unity, we have

tan~^ = — hir,
6

for I is > 1. Hence <^ {z^ — cj) (z.^) = ^iri.

The part of the axis of x from — 1 to — co is therefore a line of discon-

tinuity in value of ^ {z), such that there is a sudden change in passing from

one edge of it to the other. If the plane be cut along this line so that

it cannot be crossed by the variable which may not pass out of the plane,

then the integral is everywhere finite and uniform in the modified surface.

If the plane be not cut along the line, it is evident that a single passage

across the line from one edge to the other makes a difference of 27ri in the

value, and consequently any number of passages across will give rise to the

multiplicity in value of the integral.

Such a line is called a section^ by Hermite, after Riemann who, in a

different manner, introduces these lines of singularity into his method of

representing the variable on surfaces •!-.

When we take the general integral of a uniform function of Z and make
the substitution Z = zt, the integral that arises for consideration is of the form

*(^>=/:ffc!-
We shall suppose that the path of variation of t is the axis of real quantities

:

and the subject of integration will be taken to be a general function of t and

z, without special regard to its derivation from a uniform function of Z.

* Coupure; see Crelle, t. xci, p. 62. f See Chapter XV.
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It is easy, after the special example, to see that <i> is a continuous function

of z in any space that does not include a ^r-point which, for values of t included

within the range of integration, would satisfy the equation.

G (t, z) = 0. .

But in the vicinity of a ^•-point, say ^, corresponding to the value t = in

the range of integration, there will be discontinuity in the subject of

integration and also, as will now be proved, in the value of the integral.

Let Z be the point ^ and draw the curve through Z corresponding to

t = real constant ; let Hi be a point on the positive side and N.,

a point on the negative side of this curve positively described,

both points being on the normal at Z ; and let ZNi = ZN., = e' , ^i

supposed small. Then for Ny we have y^ ^
^'i

Xi = ^ — e' sin t/t, y^ = ri-\-e cos ilr,

so that Zi = ^+ie (cos y\r \-i sin -v/r),

where -^ is the inclination of the tangent to the axis of real quantities. But,

if da be an arc of the curve at Z,

da
, ,

•
, X

dP .dr] dt
-YT (cos yir +1 sin \^)= ^- + *V^=^
dt^ ^ ^^ dt dt dt

for variations along the tangent at Z, that is,

da^
,

. . ,, dd^'^^'^^
J- (cos yjr + I sin y{r) = -

.

da
Thus, since -j- may be taken as finite on the supposition that Z is an

ordinary point of the curve, we have

. •
P

where e = e'^, ^ = ^^^(^,0, Q = |(^(^,D.

p
Similarly 2^2 = ^ + *e 7y

.

Hence ^(^0= P ^f/ ^'^^^

[? TT '
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Avith a similar expression for <I> (^•o) ; and therefore

The subject of integi-atiou is infinitesimal, except in the immediate vicinity

of t = 0; and there

G{t,^) = {t-e)P, F(t,^) = F{d,o,

I {G {t, ^)] = Q, I
[F (t, r)| = I

{F{e, 01,

powers of small quantities other than those retained being negligible. Let

the limiting values of t, that need be retained, be denoted hy 6 + v and

— fi: then, after reduction, we have

F(0,
= ^TTl

l0{G{e,o]

in the limit when e is made infinitesimal.

Hence a line of discontinuity of the subject of integration is a section

for the integral ; and the preceding expression is the magnitude, by

numerical multiples of which the values of the integi-al differ*.

£x. 1. Consider the integral

,, f dZ

f zdt

~
J l+:-t^'
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where a is positive and less than 1, are the straight hues .'?;=(2^-+l)7r, where /-assumes all

integral values ; and that the period of the integral at any section at a distance i; from the

axis of real quantities is 27rcosh («»/). (Hermite.)

Ex. 3. Shew that the integral

/:
(,^-^{\-^i)'~^'^{\-zuy''du,

where the real parts of /3 and y - /3 are positive, has the part of the axis of real quantities

between 1 and +oo for a section.

Shew also that the integral

0(s)=/"%j^-1(1-m)V-^-1(1-s«)-
Jo

du.

where the real parts of (i and \-a are positive, has the part of the axis of real quantities

between and 1 for a section : but that, in order to render ^ {z) a uniform function of «,

it is necessary to prevent the variable from crossing, not merely the section, but also the

part of the axis of real quantities between 1 and +qo. (Goursat.)

(The latter line is called a section of the second kind.)

Ex. 4. Discuss generally the effect of changing the path of t on a section of the

integral; and, in particular, obtain the section for I ^^ when, after the substitution

Z—zt, the path of t is made a semi-circle on the line joining and 1 as diameter.

Note. It is manifestly impossible to discuss all the important bearings of theorems and

principles, which arise from time to time in our subject ; we can do no more than mention

the subject of those definite integrals involving complex variables, which first occur as

solutions of the better-known linear diflferential equations of the second order.

Thus for the definite integral connected with the hypergeometric series, memoirs by

Jacobi* and Goursat f should be consulted; for the definite integral connected with

Bessel's functions, memoirs by Hankelt and Weber § should be considted ; and Heine's

Handhuch der Kugelfunctionen for the definite integrals connected with Legendre's

functions.

104. We shall now consider integrals of multiform functions.

Ex. 1. To find the integral of a mnltiforni function niiuid one loop ; and round a

number of loops.

Let the function be
1

w= {{z- tti) {z-a.i)...{z- «„)}»'

,

where m may be a negative or positive integer, and the quantities a are unequal to one

another ; and let the loop be from the origin round the point a^. Then, if / be the value

of the integral with an assigned initial bi'anch w^ we have

1=
I

ivdz-^ \ wdz-\-
I

atvdz,
.' J c J a,

where a is em and the middle integral is taken round the circle at a^ of infinitesimal radius.

* Crelle, t. Ivi, (1859), pp. 149—105 ; the memoir was not published until after his death,

t Sur Vrquatioii differenticllc lint'aire (jiii admrt pour int('(friile la scrie hijpcriiromi'triqiic,

{Thdsc, Gautbicr-Villars, Paris, 1881).

X Math. Aim., t. i, (1809), pp. 407—501.

§ Math. Ann., t. xxxvii, (1890), pp. 404—416.
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But, siucc the limit of {s-aj) w when s= ai is zero, the middle integral vanishes by § 101
;

and therefore

/«, = (!-«) I wdz,

where the integi-al may, if convenient, be considered as taken along the straight line from

to a^.

(3)

Next, consider a circuit for an integral of w which (fig. 25) encloses two branch-points,

say a^ and a.^, but no others ; the circuit in (1) can be deformed into that in (2) or into

that in (3) as well as into other forms. Hence the integral round all the three circuits

must be the same. Beginning with the same branch as in the first case, we have

(1 — a)\ ivdz,

Jo

as the integi-al after the first loop in (2). And the branch with which the second loop

begins is aw, so that the integral described as in the second loop is

(I -a) j awdz
;

y

and therefore, for the cii'cuit as in (2), the integral is

/"a, Car,

1= (1 - a) I wdz-\-a (1 - a) I lodz.

Proceeding similarly with the integral for the circuit in (3), we find that its expression is

/tto /"a I
'
%odz-\-a (1 -a) / wdz,

jo

and these two values must be equal.

But the integrals denoted by the same symbols are not the same in the two cases ; the

Ca\
fmiction | wdz is different in the second value of / from that in the first, for the deforma-

yo
tion of path necessary to change from the one to the other passes over the branch-point a^.

In fact, the equality of the two values of / really determines the value of the integral for

the loop Oa^ in (3).

And, in general, equations thus obtained by varied deformations do not give relations

among loop-integrals but define the values of those loop-integrals for the deformed paths.

We therefore take that deformation of the circuit into loops which gives the simplest

I)ath. Usually the path is changed into a group of loops round the branch-points as they

occur, taken in order in a trigonometrically positive direction.

The value of the integral round a circuit, equivalent to any number of loops, is obvious.

Ex. 2. To find the value of jivdz, taken round a simple curve which includes all the

branch-points of w and all the infinities.
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If 2 = 00 be a branch-point or an infinity, then all the branch-points and all the

infinities of w lie on what is usually regarded as the exterior of the curve, or the curve

may in one sense be said to exclude all these points. The integral round the curve is then

the integral of a function round a curve, such that over the area included by it the

function is uniform, finite and continuous ; hence the integral is zero.

If 2= 00 be neither a branch-point nor an infinity, the curve can be deformed until it is

a circle, centre the origin and of very great radius. If then the limit of zw, when l^l is

infinitely great, be zero, the value of the integral again is zero, by II., § 24.

Another method of considering the integral, is to use Neumann's sphere for the

representation of the variable. Any simple closed curve divides the area of the sphere

into two parts ; when the curve is defined as above, one of those parts is such that the

function is uniform, finite and continuous throughout and therefore its integral romid the

curve, regarded as the boundary of that part, is zero. (See Corollary III., § 90.)

Ex. 3. To find the general value of lil-z^)'^ dz. The function to be integrated is

two-valued: the two values interchange round each of the branch-points +1, which are

the only branch-points of the function.

Let I be the value of the integral for a loop from the origin round -f-1, beginning with

the branch which has the value -|-1 at the origin ; and let /' be the corresponding value

for the loop from the origin round - 1, beginning with the same branch. Then, by Ex. 1,

^=2 l^{\-z'')-^-dz, /' = 2 r ^{l-z^y-^-dz

the last equality being easily obtained by changing variables.

Now consider the integi-al when taken round a circle, centre the origin and of indefinitely

great radius R ; then by § 24, II., if the limit of zwior 2=qo be /•, the value of J«y/; round

this circle is 27r?X". In the present case w= (l-s-)~- so that the limit of ziu is -t-- ; hence

J(l-s2)-5(/2= 27r,

the integral being taken round the circle. But since a description of the circle restores the

initial value, it can be deformed into the two loops from O'
to A and from to A'. The value round the first is I ; and y —

»

-3

the branch with which the second begins to be described has

the value — 1 at the origin, so that the consequent value round ^' 'K- '^U.

the second is — /'; hence
/-/' = 27r*

and therefore /=-/' = 7r,

verifying the ordinary result that

j'^il-zr^dz= hr,

when the integral is taken along a straight line.

To find the general value of u for any path of variation between and z, we proceed as

follows. Let Q he any circuit which restores the initial branch of {l-z-)~K Then by

§ 100, Corollary II., Q may be composed of

(i) a set of double circuits round + 1, say m',

(ii) a set of double circuits roimd - 1 , say ?/i",

and (iii) a set of circuits round +1 and - 1
;

* It is interesting to obtain this equation wlicn O' is taken as the initial jioint, instead of ().
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and these may come in any order and each may be do.scril)ed in either direction. Now for

a double circuit positively described, the value of the integral for the first description is /

and for the second description, which begins with the branch -(1 -z^)"-, it is -/; hence

for the double circuit it is zero when positively described, and therefore it is zero also when

negatively described. Hence each of the m' double circuits yields zero as its nett contribu-

tion to the integral.

Similarly, each of the m" double circuits round - 1 yields zero as its nett contribution

to the integral.

For a circuit round + 1 and - 1 described positively, the value of the integi-al has just

been proved to be /-/', and therefore when described negatively it is /'-/. Hence, if

there be n^ positive descriptions and n^ negative descriptions, the nett coiatribution of all

these circuits to the value of the integral is {n^- n^) {I - 1'), that is, 2n7r where n is an

integer.

Hence the complete value for the circuit Q is 2mr.

Now any path from to z can be resolved into a circuit i2, wliich restores the initial

branch of (l-z^)"^, chosen to have the value

+ 1 at the origin, and either (i) a straight

line Oz
;

or (ii) the path OACz, viz., a loop round

+ 1 and the line Oz
;

or (iii) the path OA'Cz, viz., a loop round

— 1 and the line Oz.

Let u denote the value for the line Oz, so that

'-l>-^
2)-^ dz.

Hence, for case (i), the general value of the integral is

2mr+ u.

For the path OACz, the value is / for the loop OAC, and is (-w) for the line Cz, the

negative sign occiuring because, after the loop, the branch of the function for integra-

tion along the line is -(1-2^)"-
; this value is /-m, that is, it is tt-u. Hence, for case

(ii), the value of the integral is

2mr+ 7r — u.

For the path OA'Cz, the value is similarly found to be -Tr-'?^ ; and therefore, for case (iii),

the value of the integral is

2mr — TT-u.

If f{z) denote the general vahie of the integral, we have either

f{z) = 2mv-\-u,

or f{z)= {2m + \)n-u,

where n and m are any integers, so that/ (5) is a function with two infinite series of values.

Lastly, \i z--=<l>{6)
be the inverse oif{z)= 6, then the relation between u and z given by

u={\\-z'^)-^-dz

can be represented in the form

{u) = z= ^ {2mv-\-v)

and (}){u) = z= ({){2mTr+ iT~u)
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both equations being necessary for the full representation. Evidently z is a simply-periodic

function of «, the period being 27r ; and from the definition it is easily seen to be an odd

function.

Let y= (l -2^)^= X (^0) so ^^^^ y is ^" ^^^^ function of « ;
from the consideration of the

various paths from to z, it is easy to prove that

= -;^ (2?«7r+ 7r-M)J
*

Ex. 4. To find the general value of \{{\ - z^) {\ - W-z^))'^ dz. It will be convenient

(following Jordan *) to regard this integral as a special case of

Z= j{(s - a) (2 - h) {z-c){z-d)}-^dz= \iodz.

The two-valued function to be integrated has a, b, c, d (but not oo ) as the complete

system of branch-points ; and the two values interchange at each of them. We proceed as

in the last example, omitting mere re-statements of reasons there given that are ai)plicablc

also in the present example.

Any circuit Q, which restores an initial branch of xo, can be made up of

(i) sets of double circuits round each of the branch-points,

and (ii) sets of circuits round any two of the branch-points.

The value of \wdz for a loop from the origin to a branch-point k (where k= a, h, c, or d) is

fk
2

I
wdz

;

Jo
and this may be denoted by K, where K=A, B, C, or D.

The value of the integral for a double circuit round a branch-point is zero. Hence the

amount contributed to the value of the integral by all the sets in (i) as this part of

Q is zero.

The value of the integral for a circuit round a and b taken positively is A- B ; for one

round b and cis B-C ; for one round c and c? is C-D ; for one round a and c is A -C,

which is the sum of A- B and B-C ; and similarly for circuits round a and d and round

b and d. There are therefore three distinct values, say A — B, B—C, C—D, the values

for circuits round a and b, b and c, c and d respectively ; the values for circuits round any

other pair can be expressed linearly in terms of these values. Suppose then that the part

of Q represented by (ii), when thus resolved, is the nett equivalent of the description of m'

circuits round a and 6, of n' circuits round b and c, and of V circuits round c and d. Then

the value of the integral contributed by this part of Q is

m' {A -B) + 7i'{B-0 + l'{C- D),

which is therefore the whole value of the integral for Q.

But the values of A, B, C, I) are not independent f. Let a circle with centre the origin

and very great radius be drawn ; theti since the limit of zw for |s] = oo is zero and since

s= Go is not a branch-point, the value of ^wdz round this circle is zero (Ex. 2). The circle

can be deformed into four loops round a, b, e, d respectively in order ; and therefore the

value of the integral m A- B+ C- D^ that is,

A-B+ C-D=-0.
Hence the value of the integral for the circuit Q, is

m {A- B) + 11 {B-C),

where m and n denote m' - V and «' - V respectively.

* Cours d'Analyse, t. ii, p. 343.

t For a purely analytical proof of the following relation, see Greenhill's Elliptic Functions,

Chapter II.

F. 13
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Now any path from the origin to z can be resolved into 12, together with cither

(i) a straight hne from to 0,

or (ii) a loop round a and then a straight line to z.

It might appear that another resolution would be given by a combination of O with, say, a

loop round h and then a straight line to z ; but it is resoluble into the second of the above

combinations. For at C, after the description of the loop B, introduce a double description

of the loop ^1, which adds nothing to the value of the integral and does not in the end

aflect the branch of w at C; then the new path can be regarded as made up of (a) the

circuit constituted by the loop round h and the first loop round a, (/3) the second loop round

a, which begins with the initial branch of lo, followed by a straight path to z. Of these

(a) can be absorbed into J2, and O) is the same as (ii) ; hence the path is not essentially

new. Similarly for the other points.

Let iij denote the value of the integral with a straight path from io z; then the

whole value of the integral for the combination of Q with (i) is of the form

For the conil)ination of Q, with (ii), the value of the integral for the part (ii) of

the path is J, for the loop round a, +(-«), for the straight path which, owing to the

description of the loop round a, begins with - w ; hence the whole value of the integral is

of the form

Hence, if / iz) denote the general value of the integral, it has two systems of values, each

containing a doubly-infinite number of terms; and, if z= (j){i(.) denote the inverse of

tc=f(z\ we have

(l){u) = (}){m{A-B) + n{B-C) + u}

=
cl> {7n{A- B) + n{B - C)+A - 7i},

where m and n are any integers. Evidently z is a doubly-periodic function of u, with

periods A- B and B-C.

Ex. 5. The case of the foregoing integral which most frequently occurs is the elliptic

integral in the form used by Legendre and Jacobi, viz.

:

u= \{{\ - s2) (1 _ Bz^)]-"^dz= \wdz,

where k is real. The branch-points of the function to be integrated arc 1, -Ij t

and — T , and the values of the integral for the corresponding loops from the origin are

2 I wdz,
Jo

2 I wdz= -2 1 wdz,

]_

fk
2 I wdz,
Jo

1 1

and 2 I wdz= -2 |
ivdz.

Jo Jo

Now the values for the loops are connected by the equation

A-B + C-D=0,

* The value for a loop round h and then a straight line to z, just considered, is B -u

~ -(A-B) + A- u,

being the value in the text with m changed to m - 1.
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and so it will be convenient that, as all the points lie on the axis of real variables, we

arrange the order of the loops so that this relation is identically satisfied. Otherwise,

the relation will, after Ex. 1, be a definition of the paths of integration chosen for the

loops.

Among the methods of arrangement, which secure the identical satisfaction of the

FiR. 28.

relation, the two in the figure* are the simplest, the curved lines being taken straight in

the limit ; for, by the first arrangement when X' < 1, we have

1 _i

Hr '/>'/.'-'/,''} '"*-»

and, by the second when k > I, we have
1 1

both of which are identically satisfied. We may therefore take either uf them ; let the

former be adopted.

The periods are A -B, B-C, (and C - D, which is equal to B — A\ and any linear

combination of these is a period : we shall take A - B, and B-D. The latter-, B- D,

is equal to

2 I \odz-^
I

wdz,
Jo J u

which, being denoted by 4/1', gives

4A-=4f'
"^

,

as one period. The former. A- B, is equal to

1

2
I

icdz-'i I ivdz,

Jo Jo
1

I
^odz

;

'=2 r ^

„. /! dz'

io{(l-s'2)(l_;{;'V2)}*

whci'e k''^ + k'^=l and the relation between the variables of the integrals is X--f--j-X,-"--'-'= l.

1

Hence the periods of the integral are 4A'' and 2iK'. ^Moreover, J is 2 I tvdz, whicli is

J
1

2 / ivdz+ 2 j wdz = 2K+ 2iK'.

Hence the general value of
j

{{1 - z^) {1 - k'^z^)}^ dz is

which is

this, being denoted by 2iK', gives

2iK'
dz

{(l-s2)(l_F22)}i

)4'

M-i-4»i/r+2?«/r',

* Jordan, Cours (VAnalijse, t. ii, p. 350.

13—2
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or 2A'+ 2i"A''- ?i + 4w/i + 2?n7i'',

that is, 2/r - u+ AmK-\- 'iniK',

where u is the integral taken from to ^ along an assigned path, often taken to be

a straight line ; so that there are two systems of values for the integral, each containing

a doubly-infinite number of terms.

If z be denoted by (?<)—evidently, from the integral definition, an odd function

of «—, then

(^ (?() = (^ (?<4-4m/r+2?w7i')

= ^ (2A"- i4+4OT/ir-f 2/aA''),

so that z is a doubly-periodic function of k, the periods being 4A' and 2/A''.

Now consider the function ^^ = (1 — i"'^)-. A s-path round -r does not affect ^j by way of

change, provided the curve does not include the point 1 ; hence, if z^ = x (u), we have

X W = x(«+ 2A>2^A'')•

But a i-path round the point 1 does change z^ into -z-^ ; so that

XW=-X(«+ 2A7
Hence x (^*)) which is an even function, has two periods, viz., 4A'' and 2K+ 2iK\ whence

X («) = x C^' + ^^JiA'-f 27iA"-f-2?wA'').

Similarly, taking z.,= {'i- -Fi^)- = \//' (?/), it is easy to see that

^/.(?0 = ^^(«+ 2A'),

so that \|/- (ti), which is an even function, has two periods, viz., 2A' and 4iA''; whence

v^ (?i) = -(^ (^i+ 2?HA'+4)^^7^').

The functions (/> (?/.), x (")) ^ (^0 ^^''^ o^ course sn u, en u, dn u respectively.

£Jx. 0. To find the general value of the integral

/:
{4(z-e^{z-e^{z-e^--dz= io*

The function to be integrated has Cj, e.^, e^, and oo for its branch-points; and for

paths round each of them the two branches interchange.

A circuit O which restores the initial branch of the function to be integrated can

be resolved into :

—

(i) Sets of double circuits round each of the branch-points alone : as before, the

value of the integral for each of these double circuits is zero.

(ii) Sets of circuits, each enclosing two of the branch-})oints : it is convenient to

retain circuits including oo and Oy, co and e.,, cc and e.,, tlxe other three

combinations being reducible to these.

The values of the integral for these three retained are respectively

A>2 f {4{z-e,) {z-e,){z-e,)}-Klz= 2u>„

E,= 2 r{4{z-e,){z-e.;){z-e,)]-^dz=2co,,
J e2

B,= 2 r {iiz-e{){z-e.;){z-e,)]-^dz= 2co„
J eg

* The choice of co for the upper limit is made on a ground which will subsequently be

considered, viz., that, when the integral is zero, z is infinite.
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and therefore the vakic of the integral for the circuit Q is of the form

But Ui, E21 E^ are not linearly independent. The integral of the function round any

curve in the finite part of the plane, which docs not

include e^, e.^ or e^ within its boundary, is zero, by Ex. 2; 00' oo

and this curve can l)e deformed to the shape in the figure,

until it becomes infinitely large, without changing the

value of the integral.

Since the limit of zw for |^| = oo is zero, the value of

the integral from c» ' to 00 is zero, by § 24, II. ; and if the

description begin with a branch ?(', the branch at oo is -w.

The rest of the integral consists of the sum of the values Fig. 29.

round the loops, which is

because a path round a loop changes the branch of w and the last branch after .describing the

loop round e^ is -\-w at oo ', the proper value (§ 90, iii). Hence, as the whole integral

is zero, we have

or say ^2 = ^i+ -^3-

Thus the value of the integral for any circuit Q, which restores the initial branch of w, can

be expressed in any of the equivalent forms mE^ + nE.^, m'Ey + n'E.,, m"E.^ + 7i"E3, where

the to's and n'a are integers.

Now any path from 00 to s can be resolved into a circuit Q, which restores at oo the

initial branch of iv, combined with either

(i) a straight path from oo to z,

or (ii) a loop between 00 and e^, together with a straiglit path from oo to z.

(The apparently distinct alternatives, of a loop between oo and e.^ together with a straight

path from oo to 2; and of a similar path round ('3, are inclusible in the second alternative

above ; the reasons are similar to those in Ex. 5.)

If u denote I {4 {z-e{) (z-e,^) {z-e.^)}~^dz when the integral is taken in a straight

line, then the value of the integral for part (i) of a path is 71; and the value of the

integral for part (ii) of a path is E^ - n, the initial ])ranch in each ca.se for these parts being

the initial branch of w for the whole path. Hence the most general value of the integral

for any path is

2mu)i + 2)1(03 + If,

or 2??? coj + 2« C03 + 2o>i-u,

the two being evidently included in the form

2ma)i + 2na)3+ u.

If, then, we denote by z= p{u) the relation which is inverse to

{4{z-e,){z-e,){z-e3)}-idz,1:
we have ^ {u) = p {27n(Oi + 2n(03±u).

In the same way as in the preceding example, it follows that

F {'"') =F (2'«wi + 27i&)3+ u)= -^ (2?«a)i + 2/ia)3 - u),

where g>' (?() is - (4 {z-ej){z- e.,) (z - e.^)}K
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The foregoing simple examples are sufficient illustrations of the multi-

plicity of value of an integral of a uniform function or of a multiform

function, when branch-points or discontinuities occur in the part of the plane

in which the path of integration lies. They also shew one of the modes in

which singly-periodic and doubly-periodic functions arise, the periodicity

consisting m the addition of arithmetical multiples of constant quantities

to the argument. And it is to be noted that, as only a single value of z

is used in the integration, so only a single value of z occurs in the

inversion ; that is, the functions just obtained are uniform functions of their

variables. To the properties of such periodic functions we shall return in the

succeeding chapters.

105. We proceed to the theory of uniform periodic functions, some

special examples of which have just been considered ; and limitation will

be made here to periodicity of the linear additive type, which is only a very

special form of periodicity.

A function f{z) is said to be periodic when there is a quantity co such

that the equation

. /(^ + to)=/(z)

is an identity for all values of z. ^\\q.uf {z \- noi) =f {z), where n is any

integer positive or negative ; and it is assumed that « is the smallest

quantity for which the equation holds, that is, that no submultiple of &> will

satisfy the equation. The quantity &) is called a period of the function.

A function is said to be simply-periodic when there is only a single

period : to be doubly-periodic when there are two periods ; and so on, the

periodicity being for the present limited to additive modification of the

argument.

It is convenient to have a graphical representation of the periodicity of a

function.

(i) For simply-periodic functions, we

take a series of points 0, A^, A^,...,

A_^, A_2>--- representing 0, w, 2(o, ...
,

— 0), — 2&), . .
.

; and through these points

we draw a series of parallel lines, dividing

the plane into bands. Let P be any

point z in the band between the lines

through and through A^; through P
draw a line parallel to OA^ and measure

0ffPPi = PiP2=... = PP_i=P_iP_2 = ...,

each equal to OA^ ; then all the points
,

Pi, Pj, ..., P_i, P_2, ... are represented

hy z + no) for positive and negative integral values of 7i. Butf(z + nci>)=f(z);

and therefore the value of the function at a point P^ in any of the bands is
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the same as the value at P. Moreover to a point in any of the bands there

corresponds a point in any other of the bands ; and therefore, owing to the

periodic resumption of the vahie at the points corresponding to each point P,

it is sufficient to consider the variation of the function for jJoijits within one

band, say the band between the lines through and through A^. A point P
within the band is sometimes called iin-educible, the corresponding points P
in the other bands reducible.

If it were convenient, the boundary lines of the bands could be taken

through points other than A^, A.,, ... ; for example, through points (m + ^)a)

for positive and negative integral values of m. IVIoreover, they need not be

straight lines. The essential feature of the graphic representation is the

division of the plane into bands.

(ii) For doubly-periodic functions a similar method is adopted. Let &>

and &)' be the two periods of such a

function/ (2^), so that

f{z + to)=f{z)=f{z+oi')-

then f{z-irnai + nV) =f{z),

where n and n are any integers positive

or negative.

For graphic purposes, we take points

0, A^, A.,, ..., J._i, J._2, ... representing

0, «t), 2&), ..., —ft), — 2&), ...; and we take

another series 0,B^,B^, ..., B^j , B_,^, . .

.

representing 0, w, 2ft)', ...,—co', — 2ft)', . .
.

;

through the points A we draw lines

parallel to the line of points B, and

through the points B we draw lines

parallel to the line of points A. The intersection of the lines through A^
and Bn' is evidently the point 7io) + n'w', that is, the angular points of the

parallelograms into which the plane is divided represent the points 7iq) + nw
for the values of n and n'.

Let P be any point z in the parallelogram OAfi^By ; on lines through P,

parallel to the sides of the parallelogram, take points Q^, Q.^, ... , Q_^, Q_„, ...

such that PQi = QiQ.2= ... =co and points R,, R2, ... > R-i, R-2, -.. such that

PR^ — RiR. = . . . = ft)' ; and through these new points draw lines parallel to

the sides of the parallelogram. Then the variables of the points in which
these lines intersect are all represented hy z + mco + m'o)' for positive and nega-

tive integral values of m and ni ; and the point represented by 2: -|- 7/^,ft) -f- vico'

is situated in the parallelogram, the angular points of which are nio) 4 7ii'co',

(m -H 1) ft) + m'o)', ma) + (m' + 1) ft)', and (ni + 1) (o + (m -h 1) ft)', exactly as P
is situated in OAfi^B^. But

/ {z + r/?,ft) -1- m,'ft)') =/ (z),

Fij?. 31.
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and therefore the value of the function at such a point is the same as the

value at P. Since the parallelograms are all equal and similarly situated,

to any point in any of them there corresponds a point in OAJJ^B^ ; and the

value of the function at the two jDoints is the same. Hence it is sufficient to

consider the variation of the function for points within one parallelogram, say,

that Avhich has 0, w, &> + w, w for its angular points. A point P within

this parallelogi'am is sometimes called irreducible, the corresponding points

Avithin the other parallelograms reducible to P ; the whole aggregate of the

points thus reducible to any one are called homologous points. And the

parallelogram to which the reduction is made is called the parallelogram of

periods.

As in the case of simply-periodic functions, it may prove convenient to

choose the position of the fundamental parallelogram so that the origin is

not on its boundary ; thus it might be the parallelogram the middle points of

whose sides are + ^a, ± \w'.

106. In the preceding representation it has been assumed that the line

of points A is different in direction from the line of points B. If co = zt + iv

and ay' = u' + iv', this assumption implies that vju is unequal to vju, and

therefore that the real part of w lica does not vanish. The justification of

this assumption is established by the proposition, due to Jacobi * :

—

The ratio of the periods of a uniform doubly-pe7'iodic function cannot be

real.

Let/ (2) be a function, having co and &>' as its periods. If the ratio co'/ft)

be real, it must be either commensurable or incommensurable.

If it be commensurable, let it be equal to n'/n, where n and n' are

integers, neither of which is unity owing to the definition of the periods (o

and coi.

Let n'/n be developed as a continued fraction, and let m'/m be the last

convergent before n'/n, where m and m' are integers. Then

n' ni 1

n 7n mn '

that is, mn' ~ m'n = 1,

so that m o) ~ mw = - (m n ~ mn ) = -
.

n n

Therefore f{z) =f{z + m'w ~ moo'),

since m and m' are integers ; so that

contravening the definition of « as a period, viz., that no submultiple of « is a

period. Hence the ratio of the periods is not a commensurable real quantity.

* Ges. Werke, t. ii, pp. 25, 26.
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If it be incommensurable, wc express &)'/« as a continued fraction. Let

jpjq and p'jq be two consecutive convergents : their values are separated by

the value of wjo), so that we may write

CO q \q qj

where 1 > // > 0.

Now pq '-' ji'q = 1, so that

ft) q qq"

where e is real and |e| < 1 ; hence

qo) — pa) = —, ft).

q

Therefore /(z) =f{z + qco' — pw),

since p and q are integers ; so that

Now since (o'/co is incommensurable, the continued fraction is unending. We

therefore take an advanced convergent, so that q is very large. Then - co is

€ .

a very small quantity and 2 ->!--, co is a point infinitesimally near to z, that

is, the function / (2:), under the present hypothesis, resumes its value at a

point infinitesimally near to z. Passing along the line joining these two

points infinitesimally near another, we should have / (z) constant along a

line and therefore (§ 37) constant everywhere ; it would thus cease to be a

varying function.

The ratio of the periods is thus not an incommensurable real quantity.

We therefore infer Jacobi's theorem that the ratio of the periods cannot

be real. In general, the ratio is a complex quantity ; it may, however, be a

pure imaginary*.

Corollary. If a uniform function have two periods ft>, and w.,. such that

a relation

7?iift)i + m.M.^ =

exists for integral values of m^ and m.,, the function is only simply-periodic.

And such a relation cannot exist between two periods of a simply-pei'iodic

function, if m^ and 7n., be real and incommensurable ; for then the function

would be constant.

* It was proved, in Ex. 5 and Ex. G of § 101, that certain uniform functions are doubly-periodic.

A direct proof, that the ratio of the distinct periods of the functions there obtained is not a real

quantity, is given by Falk, Add Math., t. vii, (1885), pp. 197—200, and by Pringsbeim, Math.

Ann., t. xxvii, (188G), pp. 151—157.
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Similarly, if a uniform function have three periods Wj, (o.,, 0)3, connected

by two relations

Wi&)i + WgWo + wisWo = 0,

n^fOi + n.,o).2 + r?3&)3 = 0,

where the coefficients m and n are integers, then the function is only simply-

periodic.

107. The two following propositions, also due to Jacobi*, are important

in the theory of uniform periodic functions of a single variable :

—

If a uniform function have three periods w^, o).,, cos sucJt that a relation

m^coi + niMio, + m^cos =

is satisfied for integral values of m^, nu, mn-i, then the function is only a doubly-

periodic function.

What has to be proved, in order to establish this proposition, is that two

periods exist of which Wj, co.^, (O3 are integral multiple combinations.

Evidently we may assume that wij, 1712, m^ have no common factor: let/"

be the common factor (if any) of mo and m^, which is prime to m^. Then

since

and the right-hand side is an integral combination of periods, it follows that

7
6)1 is a period.

Now ^ is a fraction in its lowest terms. Change it into a continued

fraction and let - be the last convergent before the proper value ; then

f (I "h
so that 5'"7~'P=±7-

But &)i is a period and -^
6>i is a period; therefore q^ ooy— pw^ is a period,

or (Oijf is a period, = &)/ say.

Let m^jf = in.2, in-^lf = m^, so that m^w^ + vucno + /^s'w^ = 0. Change

T
mj/ms into a continued fraction, taking - to be the last convergent before the

proper value, so that

mo r _ 1

mg' s ~ snis
'

• Ges. Werke, t. ii, pp. 27—32.



107.] DOUBLY-PERIODIC FUNCTIONS 203

Then ro)., + sw.,, being an integral combination of periods, is a period. But

+ o). = w. {snio — rms)

= — roy.mj — s (WiO)/ + m-'to-^

= — tUySo}/ — iii-i (rty.j + .96).)

;

also + «a = «.i {smJ — rm-i)

= sm^'cos + r {rn^oni + m^'o)^)

= mi7'(o/ + m.,' {ro)., + sw,^
;

and (Ox =y&)/.

Hence two periods to/ and r(i>.^-\- sw^ exist of which Wi, w.,, (O3 arc integral

multiple combinations ; and therefore all the periods are equivalent to «/ and

?'ft)o+ scos, that is, the function is only doubly-periodic.

Corollary. If a function have four periods coi, (o.,, co^, 0)4 connected by

two relations

mi&)i + m.M.^ + m-.w.. + 711^0)^ = 0,

?/lft)l + //^Wo -|- n-^O);. + 7?4(W4 = 0,

where the coefficients m and n are integers, the function is only doubly-

periodic.

108. If a uniform function of one variable have three periods w^, o).,, w.j,

then a relation of the forni

?7ii(Wi 4- »?.j&)o + in-fWs =

must be satisfied for some integral values ofwi, in», m^.

Let oir = CLr + i^r, ^OT r = 1, 2, 3 ; in consequence of § 106, we shall assume

that no one of the ratios of toj, co.^, tUg in pairs is real, for, otherwise, either

the three periods reduce to two immediately, or the function is a constant.

Then, determining two quantities \ and /j, by the equations

a, = Xtti + iia.., ^3 = X^, -F 11^.,

so that X and /x are real ([uantities and neither zero nor infinity, we have

6)3 = XtUi + /u.ft)o

,

for real values of X and fx.

Then, first, if either X or /la be commensurable-, the other is also commen-

surable. Let X = (t/&, where a and 6 are integers ; then

6/ia)o = 60)3 — 6X&)i

= h(£)i — ao)x,

so that bfia)., is a period. Now, if 6/la be not commensurable, change it into a

continued fraction, and let p/q, p'jq be two consecutive convergents, so that,

as in I lUG,

q qq
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where 1 > .r > - 1. Then ~ co., + "', is a period, and so is w. ; hence
q - qq

\q qq J

is a period, that is, - co.j is a period. We may take q indefinite!}^ large, and

then the function has an infinitesimal quantity for a period, that is, it would

be a constant under the hypothesis. Hence bfj, (and therefore /jl) cannot be

incommensurable, if \ be commensurable; and thus X and /j, are simul-

taneously commensurable or simultaneously incommensurable.

Ch C
If X and fx be simultaneously commensurable, let X = ^ ,

/i = ^ , so that

a c

and therefore bdco^ = adwi + bcoi^,

a relation of the kind required.

If A, and /x be simultaneously incommensurable, express X as a continued

fraction ; then by taking any convergent 7'/s, we have

r X

s s-

cc

where 1> x> — \, so that sX — r = -
;

s

by taking the convergent sufficiently advanced the right-hand side can be

made infinitesimal.

Let 1\ be the nearest integer to the value of s/a, so that, if

Sfi - i\ -A
,

we have A numerically less than ^. Then

SO), — rcoi — ?'i&)o = — cuj + Aft).,,

s

and the quantity ^ Wj can be made so small as to be negligible. Hence
X

s

integers r,i\,s can be chosen so as to give a new period coo' (= Awo), such

that |&)/| < -|- |ft)o|.

We now take w^, (0.2, o)^: they will be connected by a relation of the form

G)3 = X a)i -|- fi'(o.,',

and X' and fi' must be incommensurable : for otherwise the substitution for

0)2 of its value just obtained would lead to a relation among coj, &)._., (o,, that

would imply commensurability of X and of /x.

Proceeding just as before, we may similarly obtain a new period w.!' such

that j&)./'| <^ift)./|; and so on in succession. Hence we shall obtain, after n
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such processes, a period coo"" such that leo.,"'^'! < ^|(u._,l, so that by making n

sufficiently large we shall ultimately obtain a period less than any assigned

quantity. Let such period be &) ; then

f{z+ay)=f(z),

and so for points along the w-line we have an infinite number clo.se together

at which the function is unaltered in value. The function, being uniform,

must in that case be constant.

It thus appears that, if X and fi be simultaneously incommensurable, the

function is a constant. Hence the only tenable result is that X, and ft are

simultaneously commensurable, and then there is a period-equation of the

form

rn^coi + 111.^0).^ + in-ibii = 0,

where m^, m.,, m.^ are integers.

The foregoing proof is substantially due to Jaccjbi (I.e.). The result can

be obtained from geometrical considerations by shewing that the infinite

number of points, at which the function resumes its value, along a line

through z parallel to the (o-s-\vcyQ will, unless the condition be satisfied, reduce

to an infinite number of points in the <o^, 0)2 parallelogram which will form

either a continuous line or a continuous area, in cither of which cases the

function would be a constant. But, if the condition be satisfied, then the

points along the line through z reduce to only a finite number of points.

Corollary I. Uniform functions of a single variable cannot have three

independent periods ; in other words, triply-periodic uniform functions of a

single variable do not errist* ; and, a fortiori, uniform functions of a single

variable with a number of independent periods greater titan two do not exist.

But functions involving more than one variable can have more than two

periods, e.g., Abelian transcendents ; and a function of one variable, having

more than two periods, is not uniform.

Corollary II. All the periods of a uniform periodic function of a single

variable reduce either to integral multiples of one period or to linear combina-

tions of integral multiples of two pei'iods luhose ratio is not a real quantity.

109. It is desirable to have the parallelogram, in which a doubly-

periodic function is considered, as small as possible. If in the parallelogram

(supposed, for convenience, to have the origin for an angular point) there be

a point (o" such that

f{z + a>")=f{z)

for all values of z, then the parallelogram can be replaced by another.

* This theorem is also due to Jacobi, (I.e., \^. 202, note).
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It is evieleut that w" is a period of the functiou ; hence (§ 108) we must

have
od" — \o) + jxw'

;

and both X and /x, whicli are com mensurable quantities, are less than unity

since the point is within the parallelogram. Moreover, to + w' — &>", which

is equal to (1 — A.) co + (1 -/a) &)', is another point within the parallelogram;

and
f{z + ai-V(o'-(o")=f{z),

since &>, &>', w" are periods. Thus there cannot be a single such point, unless

X = I = /i.

But the number of such points within the parallelogram must be finite

;

if there were an infinite number, they would form a continuous line or a

continuous area where the uniform function had an unvarying value, and

consequently (§ 37) the function would have a constant value everywhere.

To construct a new parallelogram when all the points are known, we first

choose the series of points parallel to the &)-line through the origin 0, and of

that series we choose the point nearest 0, say A^. We similarly choose the

point, nearest the origin, of the series of points parallel to the to-line and

nearest to it after the series that includes ^i, say B^ : we take OAi, OB^ as

adjacent sides of the parallelogram, and these lines as the vectorial repre-

sentations of the periods. No point lies within this parallelogram where the

function has the same value as at 0; hence the angular points of the original

parallelograms coincide with angular points of the new parallelograms.

When a parallelogram has thus been obtained, containing no internal

point n such that the function can satisfy the equation

f{z + n)=f{z)

for all values of z, it is called a fundamental, or a primitive, parallelogr-am

:

and the parallelogram of reference in subsequent investigations will be

assumed to be of a fundamental character.

But a fundamental parallelogram is not unique.

Let ft) and co' be the periods for a given fundamental parallelogram, so

that every other period eo" is of the form Xco + imw, where X and //, are

integers. Take any four integers a, b, c, d such that ad — hc — ±l, as may

be done in an infinite variety of ways; and adopt two new periods o)^ and tWa,

such that

(Oi = aoo + hw , 0)0 = c<w + dw.

Then the parallelogram with Wi and w., for adjacent sides is fundamental.

For we have
+ ft) = dw^ — bwo, ±0)' — — co)i + aco.,.

and therefore any period co"

= (Xd — fic) ftJi -\- (—Xh + fMu) (o.,, save as to signs of X and fi.
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The coefficients of Wi and (o.^ are integers, that is, the point co" lies outside

the new parallelogram of reference; there is therefore no point in it such that

and hence the parallelogram is fundamental.

Corollary. The aggregate of the angular points in one division of the

plane into fundamental parallelograms coincides with their aggregate in

any other division into fundamental jyarallelograms ; and all fundamental

parallelograms for a given function are of the same ar'ea.

The method suggested above for the construction of a fundamental parallelogram is

geometrical, and it assvimes a knowledge of all the points o>" within a given parallelogram

for which the equation / (2;+ w") =/ (2) is satisfied.

Such a point C03 within the wj, w.^ parallelogram is given by

6)0^—- O), -\ 0)9,

where riii, 171.2, "^3 ^^^ integers. We may assume that no two of these three integers

have a common factor; were it otherwise, say for m^ and m.^, then, as in § 107, a

submultiple of C03 would be a period—a result which may be considered as excluded.

Evidently all the points in the parallelogram are the reduced points homologous with

0)3, 20)3, ,
(mj — 1)0)3; when these are obtained, the geometrical construction is

possible.

The following is a simple and practicable analytical method for the construction.

Change mjm^ and ni^/m^ into continued fractious ; and let p/q and r/s be the

last convergents before the respective proper values, so that

Ml p _ € m^ r _ f'

m^ q qm^' w, s sm<^'

where e and f' arc each of them +1. Let

q — =d+— ,
«—' = </)+— ,

-"
77lr^ ?«3 ??l3 ^ m^

where X and
fj.

are taken to be less than m^, but they do uot vanish because </ and .s are

less than m^. Then

JW3 — pcoj — ^0)2= — (/xco.j + fcoj), 50)3 — J'ooo — (^Wl =— {Xa)i-\-('(i).2)',

the left-hand sides are periods, say fij and Q.^ respectively, and since fji + e in not >?«3 and

X + e' is not >«i3, the points Qj and Q^ determine a parallelogram smaller than the initial

parallelogram.

Thus ea)j-}-/xci)2= «i3Qi, X(i)i + ('(t).2= i»^Q.>i

are equations defining new periods Qj, Q,- Moreover

?«3 TO3 q qm.^ m^ ^ m^ ^ s sm^

so that, nmltiplying the right-hand sides together and likewise the left-hand sides, we
at once see that X^ - ee' is divisible by m^ if it be not zero : let

X/x — ff'^wijA.

Then, as X and /i arc less than la.^, they are greater than A; and they are prime to it,

because a' is +\.
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Hence we have Acoi = /xI22— «'Qi, Aa)o= Xi2i -eQi-

Since X and n are both greater than A, let

X = XiA+ X', /i = /xiA + /x',

where X' and /x' are <A. Then X'n'-ee' is divisible by A if it be not zero, say

X'fji'
- €6' = AA'

;

thou X' and / are >A' and are prime to it. And now

A(a)i-/ijQ2) = M'^j- «'^l) A(a)o-Xil2i) = X'Qi-6Q2 ;

and therefore, if co^- fiiQ.,^^^, 03.,-'hiQi= Qi, which are periods, we have

With Q-^ and Q^ we can construct a parallelogram smaller than that constructed

with Qj and Gg-

We now have A'Qi^eQ^+fi'Q^, A'Q.2= \'Q^+ €'Qi,

that is, equations of the same form as before. We proceed thus in successive stages:

each quantity A thus obtained is distinctly less than the preceding A, and so finally we

shall reach a stage when the succeeding A would be unity, that is, the solution of the pair

of equations then leads to periods that determine a fundamental parallelogram. It

is not difficult to prove that coj, cjo, 0)3 are combinations of integral multiples of these

periods.

If one of the quantities, such as \'^' - ee', be zero, then X' = /x' = l, e = e'= ±1 ; and then

Q^ and Q^ are identical. If e = e'= +1, then AQ3= Q2~^i) '^'^'^'^ the fundamental parallelo-

gram is determined by

Q.J = Q^ + -{Q.2-Qi), Qi'^Qo- (Qo-Qi).

If 6 = e'= —1, then Afig= 00+ ^1) ^o that, as A is not imity in this case, the fundamental

parallelogram is determined by Qg ^^'^ ^3-

Ex. If a function be periodic in w^, coj, and also in wj where

29fi)3=17wi+ llo)2,

periods for a fundamental parallelogram are

Qj' = Scoj^ + 3(1)2 ~ S'i'sj ^2'— 3'^i + 2gl)2 — 00)3,

and the values of co^, wo, «3 in terms of Q/ and Q./ are

a>i= Q.2' + '^^1'} 0)0= 902' — 2Q/, 0)3= 4Q2' + Q/-

Further discussion relating to tbe transformation of i)eriods and of fmidamental

pai-allelograms will be found in Briot and Bouquet's T/ieorie des fonctium elliptiques,

pp. 234, 235, 268—272.

110. It has been proved that uniform periodic functions of a single

variable cannot have more than two periods, independent in the sense that

their ratio is not a real quantity. If then a function exist, which has two
periods with a real incommensurable ratio or has more than two independent
periods, either it is not uniform or it is a function (whether uniform or multi-

form) of more variables than one.

When restriction is made to uniform functions, the only alternative is

that the function should depend on more than one variable.
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In the case when three periods co,, (o.,, oij (each of the form a -I- i/3) were

assigned, it was proved that the necessary condition for the existence of a

uniform function of a single vaiiable is that finite integers m^, vu, m-^ can

be found such that

??iiai 4- m.A., + m^a^ = 0,

?>ii/Si + m.,l3.. + 7ii.j3s = ;

and that, if these conditions be not satisfied, then finite integers nii, m^, m^

can be found such that both Sma and 'Zrti^ become infinitesimally small.

This theorem is purely algebraical, and is only a special case of a more

general theorem as follows

:

Let otii, Qio,..., «!, ,-+i; «L'i> «22,---), ot2, r+i ; • . • ; «/i, «/•.•,•••, «;•, ;+i her sets of

real quantities such that a relation of the form

nittii + n.jx^., + . . . + Wr+i a,r+i =

is not satisfied among any one set. Then finite integers mi,..., nir+i can be

determined such that each of the sums

wija,! + m,a,o + . . . + Wi,-+i ««, r+i

(for s = l, 2,...,r) is an infinitesimally small quantity. And, a fortiori, if

fewer than r sets, each containing r + 1 quantities be given, the r + 1

integers can be determined so as to lead to the result enunciated ; all that

is necessary for the purpose being an arbitrary assignment of sets of real

quantities necessary to make the number of sets equal to r. But the result

is not true if more than r sets be given.

We shall not give a proof of this general theorem* ; it would follow the

lines of the proof in the limited case, as given in § 108. But the theorem

will be used to indicate how the value of an integral with more than

two periods is affected by the periodicity.

Let / be the value of the integral taken along some assigned path from

an initial point 2^ to a final point z; and let the periods be coj, a).,..., co^,

(where r > 2), so that the general value is

/ + mitoj + m.2(o.2 + . . . + nirWr,

where nii, nu,..., mr are integers. Now if a)^ = ois-\-i^s, for s = \, 2,..., r,

when it is divided into its real and its imaginary parts, then finite integers

Wi, ?i2,..., n,. can be determined such that

n^a^ + n.a.> + . . . + ri^-OT;.

and ni/3i + w.yQ. + . . . + n,.^r

are both infinitesimal ; and then 2 7ha>s
s = l

is infinitesimal. I^ut the addition

of 2 ngCOg still gives a value of the integral ; hence the value can be modified
«=i

* A iDi-oof will be found in Clebsch and Gordan's Theorie der AhcVschcn Functioncn. § 38.

F. 14
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by infinitesimal quantities, and the modification can be repeated indefinitely.

The modifications of the value correspond to modifications of the path from

Zo to z; and hence the integral, regarded as depending on a single variable,

can be made, by modifications of the path of the variable, to assume any

value. The integral, in fact, has not a definite value dependent solely

upon the final value of the variable ; to make the value definite, the path

by which the variable passes from the lower to the upper limit must be

specified.

It will subsequently (§ 239) be shewn how this limitation is avoided by

making the integral, regarded as a function, depend upon a proper number

of independent variables—the number being greater than unity.

—r ,
(n integral), taken along an assigned path,

(1-2")*

and if

'^2 ['-^(.r real),

0(1-^")-

then the sreneral value of the inteeral is

{-lyv.+p i{l_(_l)Q}+ I m^^e'^

where q is any integer and r/ip any positive or negative integer such that 2 /«p= 0.

(Math. Trip. Part II, 1889.)

Ex. 2. Prove that v= l uclz, where

is an algebraical function satisfying the equation

8(v+ |)s- 12 (i;+ |)2- 12s3 (v+ §)+2<5+1623= ;

and obtain the conditions necessary and sufficient to ensure that

v=\udz

should be an algebraical function, when xi is an algebraical function satisfying an equation

f{z, u)=0.

(Liouville, Briot and Bouquet.)



CHAPTER X.

Simply-Periodic and Doubly-Periodic Functions.

111. Only a few of the properties of simply-periodic functions will be

given, partly because some of them are connected with Fourier's series the

detailed discussion of which lies beyond our limits, and partly because, as

will shortly be explained, many of them can at once be changed into

properties of uniform non-periodic functions which have already been

considered.

When we use the graphical method of § 105, it is evident that we need

consider the variation of the function within only a single band. Within

that band any function must have at least one infinity, for, if it had not, it

would not have an infinity anywhere in the plane and so would be a constant

;

and it must have at least one zero, for, if it had not, its reciprocal, also a

simply-periodic function, would not have an infinity in the band. The

infinities may, of course, be accidental or essential : their character is repro-

duced at the homologous points in all the bands.

For purposes of analytical representation, it is convenient to use a

relation

so that, if the point Z in its plane have 7^ and B
for polar coordinates,

If we take any point A in the -^-plane and a

corresponding point a in the ^^-plane, then, as Z
describes a complete circle through A with the

origin as centre, z moves along a line aa^, where

ttj is rt -f- ft). A second description of the circle ^^K- 32.

makes z move from a^ to a., where a^ = rtj + <m ; and so on in succession.

14—2
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For various descriptions, positive and negative, the point a describes a line,

the inclination of which to the axis of real quantities is the argument of co.

Instead of making Z describe a circle through A, let us make it describe

a part of the straight line from the origin through A, say from A, where

OA — R, to C, where OG = R'. Then z describes a line through a perpend-

icular to acii, and it moves to c where

'-'' = ^i(^^sR'-'^ogR).

Similarly, if any point A' on the former circumference move radially to a

point C at a distance R' from the ^-origin, the corresponding z point a'

moves through a distance a'c', parallel and equal to ac : and all the points c'

lie on a line parallel to aUi. Repeated description of a -^'-circumference with

the origin as centre makes z describe the whole line cCiC,.

If then a function be simply-periodic in o), we may conveniently take

any point a, and another point rtj = a + co, through a and rtj draw straight

lines perpendicular to aUi, and then consider the function within this band.

The aggregate of points within this band is obtained by taking

(i) all points along a straight line, perpendicular to a boundary of

the band, as aui ;

(ii) the points along all straight lines, which are drawn through the

points of (i) parallel to a boundary of the band.

In (i), the value of z varies from to co in an expression a + z, that is, in

the ^-plane for a given value of R, the angle @ varies from to 27r.

In (ii), the value of log R varies from — oc to -t- x in an expression

ft) . .

z:—. log R + ^r- CO, that is, the radius R must vary from to x .

Hence the band in the ^r-plane and the whole of the ^-plane are made

equivalent to one another by the transformation

27rt

Z = e'^ .

Now let ^0 he any special point in the finite part of the band for a given

simply-periodic function, and let Zq be the corresponding point in the Z-plane.

Then for points z in the immediate vicinity of Zq and for points Z which

are consequently in the immediate vicinity of Z^, we have

Z-
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If then w, a function of z, be changed into W a function of Z, the following

relations subsist :

—

When a point Zq is a zero of w, the corresponding point Z^ is a zero

of IT.

When a point Zq is an accidental singularity of w, the corresponding

point Zo is an accidental singularity of W.

When a point Zq is an essential singularity of w, the corresponding

point Zq is an essential singularity of W.

When a point z^^ is a branch-point of any order for a function w, the

corresponding point Zo is a branch-point of the same order for W.

And the converses of these relations also hold.

Since the character of any finite critical point for w is thus unchanged by the

transformation, it is often convenient to change the variable to Z so as to let

the variable range over the whole plane, in which case the theorems already

proved in the preceding chapters are applicable. But special account must

be taken of the point z = (X)

.

112. We can now apply Laurent's theorem to deduce what is practically

Fourier's series, as follows.

Let f{z) he a simply-periodic function having &> as its period, and suppose

that in a portion of the z-plane bounded by any ttuo parallel lines, the inclina-

tion of whicJi to the axis of real quantities is equal to the argument of w, the

function is uniform and has no singularities; then, at points witJiin that

portion of the plane, the function can be expressed in the form of a converging
2ir2i

series ofpositive and of negative integral powers of e ""
.

In figure 32, let aa^a.,... and cCiC-i... be the two lines which bound the

portion of the plane : the variations of the function will all take place within

that part of the portion of the plane which lies within one of the repre-

sentative bands, say within the band bounded by ...ac.. and ...ajCi...: that is,

we may consider the function witliin the rectangle acCiajH, where it has no

singularities and is uniform.

Now the rectangle acc^a^a in the 2:-plane corresponds to a portion of the

^-plane which, after the preceding explanation, is bounded by two circles

27rt 2irt

with the origin for common centre and of radii
]
e " "

|

and
|
e " '

|

; and the

variations of the function within the rectangle are given by the variations of

a transformed function within the circular ring. The characteristics of the

one function at points in the rectangle are the same as the characteristics of

the other at points in the circular ring: and therefore, from the character

of the assigned function, the transformed function has no singularities and it
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is uniform within the circular ring. Hence, by Laurent's Theorem (§ 28),

the transformed function is expressible in the form

n= -co

a series which converges within the ring : and the value of the coefficient a„

is given by

taken along any circle in the ring concentric with the boundaries.

Retraiisforming to the variable z, the expression for the original function

is

f{z)= S ClnB <-
.

71= - 3C

The series converges for points within the rectangle and therefore, as it

is periodic, it converges within the portion of the plane assigned. And the

value of Ua is

l/nmz

«n = - \f{z)e '" dz,

taken along a path which is the equivalent of any circle in the ring concentric

with the boundaries, that is, along any line a'c perpendicular to the lines

which bound the assigned portion of the plane.

The expression of the function can evidently be changed into the form

where the integral is taken along the piece of a line, perpendicular to the

boundaries and intercepted between them.

If one of the boundaries of the portion of the plane be at infinity, (so that

the periodic function has no singularities within one part of the plane), then

the corresponding portion of the .^-plane is either the part within or the part

without a circle, centre the origin, according as the one or the other of the

boundaries is at x . In the former case, the terms with negative indices

n are absent ; in the latter, the terms with positive indices are absent.

113. On account of the- consequences of the relation subsisting between

the variables z and Z, many of the propositions relating to general uniform

functions, as well as of those relating to multiform functions, can be changed,

merely by the transformation of the variables, into propositions relating to

simply-periodic functions. One such proposition occurs in the preceding

section; the following are a few others, the full development being unnecess-

ary here, in consequence of the foregoing remark. The band of reference

for the simply-periodic functions considered will be supposed to include the
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origin : and, when any point is spoken of, it is that one of the series of

homologous points in the plane, which lies in the band.

We know that, if a uniform function of Z have no essential singularity,

then it is a rational algebraical function, which is integral if ^^ = x be the

only accidental singularity and is meromorphic if there be accidental singu-

larities in the finite part of the plane ; and every such function has as many

zeros as it has accidental singularities.

Hence a uniform simply-periodic function with z = 00 as its sole essential

singularity has as many zeros as it has infinities in each hand of the plane

;

the number of points at tvJiic/t it assumes a given value is equal to the number

of its zer^os ; and, if the period be w, tJie function is a rational algebraical

function of e ""
, luhich is integral if all tlie singularities be at an infinite

distance and is meromorphic if some (or all) of them he in a finite part of

the plane. But any number of the zeros and any number of the infinities

may be absorbed in the essential singularity at 2^ = x

.

The simplest function of Z, thus restricted to have the same number of

zeros as of infinities, is one which has a single zero and a single infinity in

the finite part of the plane ; the possession of a single zero and a single infinity

will therefore characterise the most elementary simply-periodic function.

Now, bearing in mind the relation
2niz

Z = e'- ,

the simplest ^^-point to choose for a zero is the origin, so that Z—\\ and then

the simplest 2;-point to choose for an infinity at a finite distance is \(o, (being

half the period), so that Z= — l. The expression of the function in the

Z-plane with 1 for a zero and — 1 for an accidental singularity is

Z+1'
and therefore assuming as the most elementary simply-periodic function that

which in the plane has a scries of zeros and a series of accidental singularities

all of the first order, the points of the one being midway between those of the

other, its expression is

2lTi2

. e ^-1

e" +1
2niz

which is a constant multiple of tan — . Since e " is a rational fractional

function of tan —
,
part of the foregoing theorem can be re-stated as follows:

—

If the period of the function be co, the function is a rational algebraical

function of tan — .
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Moreover, in the general theory of uniform functions, it was found con-

venient to have a simple element for the construction of products, there

(§ 53) called a primary factor : it was of the type

Z-cl'

where the function G iy.
J

could be a constant; and it had only one infinity

and one zero.

Hence for simply-periodic functions we may regard tan — as a typical

primary factor when the number of irreducible zeros and the (equal) number

of irreducible accidental singularities are finite. If these numbers should

tend to an infinite limit, then an exponential factor might have to be

associated with tan — ; and the function in that case might have essential
ft)

singularities elsewhere than at ^ = oc .

114. We can now prove that ever]) uniform function, which has no

essential singularities in the finite part of the plane and is such that all its

accidental singularities and its zeros are arranged in groups equal and

finite in number at equal distances along directions parallel to a given

direction, is a simply-periodic function.

Let o) be the common period of the groups of zeros and of singularities

:

and let the plane be divided into bands by parallel lines, perpendicular to

any line representing w. Let a, b,... be the zeros, a, ^, ... the singularities

in any one band.

Take a uniform function
(f)

(z), simply-periodic in a and having a single

zero and a single singularity in the band : we might take tan — as a value

of
(f)

(z). Then
(\>{z) -<p {a)

cj>{z)-<f>(a)

is a simply-periodic function having only a single zero, viz., 2 = a and a single

singularity, viz., z — a; for as (fi{z) has only a single zero, there is only a single

point for which (f){z) = ^ (a), and a single point for which </> (z) = ^(a). Hence

{4>iz)-cf>{a)]{cf>{z)-4>{b)]...

{(/,(^)-</)(a)l{(^(^)-«^(^)i...

is a simply-periodic function with all the zeros and with all the infinities of

the given function within the band. But on account of its periodicity it has

all the zeros and all the infinities of the given function over the whole plane

;

hence its quotient by the given function has no zero and no singularity over

the whole plane and therefore it is a constant ; that is, the given function,
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Have as to a constant factor, can be expressed in the foregoing form. It is

thus a simply-periodic function.

This method can evidently be used to construct simply-periodic functions, having

assigned zeros and assigned singularities. Thus if a function have a + ma) as its zeros and

c+m'o) as its singularities, where m and in' have all integral values from — oo to +oc,

the simplest form is obtained by taking a constant multiple of

tan tan —
, ttz . nc
tan tan —

Ex. Construct a function, simply-periodic in w, having zeros given by (m+ ^)(o and

(w + |)&) and singularities by {m+ l)co and (m-f§)co.

The irreducible zeros are ^co and fw ; the irreducible singularities are ^^w and i-jw. Now

A'

( tan — - tan ^ir
j

( tan — - tan Itt 1

( tan -^ — tan JjTt
j

( tan — — tan f^n
J

is evidently a function, initially satisfying the required conditions. But, as tan ^n is

infinite, we divide out by it and absorb it into A' as a factor; the function then takes

the form

1-Ftan ~
A ^.

We shall not consider simply-periodic functions, which have essential

singularities elsewhere than at z= cc ; adequate investigation will be found

in the second part gf Guichard's memoir, (I.e., p. 147). But before leaving the

consideration of the present class of functions, one remark may be made. It

was proved, in our earlier investigations, that uniform functions can be

expressed as infinite series of functions of the variable and also as infinite

products of functions of the variable. This general result is true when the

functions in the series and in the pi'oducts are simply-periodic in the same

period. But the function, so represented, though periodic in that common
period, may also have another period : and, in fact, many doubly-periodic

functions of different kinds (§ 136) are often conveniently expressed as infinite

converging series or infinite converging products of simply-periodic functions.

Any detailed illustration of this remark belongs to the theory of elliptic functions : one

sim[)le example must suffice.

two)'

Let tlie real part of - be negative, and let q denote c "
; then the function

2ninz

e{z)= 2 (-l)"(/''e "
,

being an infinite converging series of powers of the simply-periodic function e "
, is finite

everywhere in the plane. Evidently 6 {:) is periodic in a>, so that

e{z+<o)=e{:).
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Again, ^(::+ a)')= 2° (-l)»r/''c

2niTTZ

2

|(_l)u + i(y« + iPe

2i7rZ 2(r4+l)i7rz,

--e " 2
q H=-o

2iiTZ

q

the change in the summation so as to give 6 (z) being permissible because the extreme

terms for the infinite values of n can be neglected on account of the assumption with

regard to q. There is thus a pseudo-periodicity for d{z) in a period w'.

_ 2ninz

Similarly, if 6^ (-) = "s" q"-' e '^
,

)(=-o

we can prove that dr^{z+ (o) = 6 (s),

e,{z+ co') =~e~~^ 6{z).

Then ^3(2)-^^(s) is doubly-periodic in m and 2a)', though constructed only from

functions simply-periodic in a> : it is a function with an infinite number of irreducible

accidental singularities in a band.

115. We now pass to doubly-periodic functions of a single variable, the

periodicity being additive. The projjerties, characteristic of this important

class of functions, will be given in the form either of new theorems or

appropriate modifications of theorems, already established ; and the develop-

ment adopted will follow, in a general manner, the theory given by Liouville*.

It will be assumed that the functions are uniform, unless multiformity be

explicitly stated, and that all the singularities in the finite part of the plane

are accidental"!".

The geometrical representation of double-periodicity, explained in § 105,

will be used concurrently with the analysis ; and the parallelogram of

periods, to which the variable argument of the function is referred, is a

fundamental parallelogram (§ 109) with periods | 2(0 and 2a)'. An angular

point Zq for the parallelogram of reference can be chosen so that neither a

zero nor a pole of the function lies on the perimeter; for the number

of zeros and the number of poles in any finite area must be finite, as

otherwise they would form a continuous line or a continuous area, or they

would be in the vicinity of an essential singularity. This choice will, in

* In his lectures of 1847, edited by Borchardt and published in Crelle, t. Ixxxviii, (1880), pp.

277—310. They are the basis of the researches of Briot and Bouquet, the most complete

exposition of which will be found in their TMorie des fonctions elliptiques, (2nd ed.), pp.

2a9—280.

t For doubly-periodic functions, which have essential singularities, reference should be made

to Guichard's memoir, (the introductory remarks and the third part), already quoted on p. 147, note.

X The factor 2 is introduced merely for the sake of convenience.
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general, be made ; but, in particular cases, it is convenient to have the ongin

as an angular point of the parallelogram and then it not infrequently occurs

that a zero or a pole lies on a side or at a corner. If such a point lie on a side,

the homologous point on the opposite side is assigned to the parallelogi-am

which has that opposite side as homologous; and if it be at an angular point,

the remaining angular points are assigned to the parallelograms which have

them as homologous corners.

The parallelogram of reference will therefore, in general, have z^^, z^ + 2ft),

z^ + 2&)', Zq + 2o) + 2(o' for its angular points ; but occasionally it is desirable

to take an equivalent parallelogram having Zo + co ± co' as its angular

points.

When the function is denoted by </> (z), the equations indicating the

periodicity are

(f)
(z + 2ai) =

(f)
(z) = cf>{z + 2(o').

116. We now proceed to the fundamental propositions relating to

doubly-periodic functions.

I. Every doubly-penodic function must have zeros and infinities within

the fundamental parallelogram.

For the function, not being a constant, has zeros somewhere in the plane

and it has infinities somewhere in the plane ; and, being doubly-periodic, it

experiences within the parallelogram all the variations that it can have over

the plane.

Corollary. TJie function cannot he a rational integral function of z.

For within a parallelogram of finite dimensions an integral function has

no infinities and therefore cannot represent a doubly-periodic function.

An analytical form for (^ {z) can be obtained which will put its singu-

larities in evidence. Let a be such a pole, of multiplicity n ; then we know
that, as the function is uniform, coefficients A can be determined so that the

function

, / \ _ -^n -^n-i _ _ -^2 Ai
^^ ^ {z-af (z-ay-' '" (z-ay z-a

is finite in the vicinity of a ; but the remaining poles of
(f>

(z) are singularities

of this modified function. Proceeding similarly with the other singularities

b, c,..., which are finite in number and each of which is finite in degree, we
have coefficients A, B, G,... determined so that

is finite in the vicinity of every polo of
(f>

(z) within the parallelogram and

therefore is finite everywhere within the parallelogram. Let its value be
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Xi^)', then for points lying within the parallelogram, the function (f)(2) is

expressed in the form

B, B. B,n
+—-1 +7—i:v7 + --- +z-b (z-b)- '" (z-bf
+

H, H, Hi
'^ z-h^{z-hf^---'^{z-hy'

But though ^ (z) is periodic, x (^) is not periodic. It has the property of

being finite everywhere within the parallelogram ; if it were periodic, it

would be finite everywhere, and therefore could have only a constant value

;

and then (p (z) would be an algebraical meromorphic function, which is not

periodic. The sum of the fractions in cf) (z) may be called the fractional

part of the function : owing to the meromorphic character of the function,

it cannot be evanescent.

The analytical expression can be put in the form

(z - a)-" (z - b)-"\ ..(z- h)-^ F{z),

where F(z) is finite everywhere within the parallelogram. If a, /3, ...,?; be

all the zeros, of degrees v, fu,, ..., X, within the parallelogram, then

F{z) = {z- ay {z-^f ...{z- vY G (z),

where G (z) has no zero within the parallelogram ; and so the function can

be expressed in the form

(z-ay(z-^Y...(z-vY
(z

-

a)^ (z-b)^...(z- hy ^
''

where G {z) has no zero and no infinity within the parallelogram or on its

boundary ; and G (z) is not periodic.

The 07'der of a doubly-periodic function is the sum of the multiplicities

of all the poles which the function has within a fundamental parallelogram;

and, the sum being n, the function is said to be of the nth. order. All

these singularities are, as already remarked, accidental ; it is convenient

to speak of any particular singularity as simple, double, . . , according to its

multiplicity.

If two doubly-periodic functions u and v be such that an equation

Au-^Bv+C=0
is satisfied for constant values of A, B, G, the functions are said to be

equivalent to one another. Equivalent functions evidently have the same

accidental singularities in the same multiplicity.

11. The integral of a doubly-periodic function round the boundary of a

fundamental parallelogram is zero.
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Let ABCD be a fundamental parallelogram, the boundary of it being

taken so as to pass through no pole of the

function. Let A he Zq, B ha Zu+2(o, and*

D be z„ + 2q)'; then any point in AB is

Zf) -\- 2cot,

where t is a real quantity lying between and 1

;

and therefore the integral along AB is

rl

^ (zo + 2cot) 2a)dt.r
JO

Any point in BG is z„ + 2&) + 2Q)'t, where t is a real (juantity lying between

and 1 ; therefore the integral along BC is

I (f>{zo+2a) + 2(o't) 2eo'dt
Jo

= [ </) (s„ + 2co't) 2(o'dt,
Jo

since <fi is periodic in 2co.

Any point in DC is z + 2&j' + 2oot, where t is a real quantity lying

between and 1 ; therefore the integral along CD is

</) {zo + 2a)' + 2(ot) 2(odt

(f)
(zo + 2wt) 2(odt

= -\ (}){z, + 2(ot) 2codt.
J

Similarly, the integral along DA is

/'
Jo

(ji (z„ + 2(o't) 2oy'dt.

Hence the complete value of the integral, taken round the parallelogram, is

=
\ (l)(zo + 2o)t) 2codt + (b{zo + 2wt) 2(o'dt
Jo Jo

- I (/) (^0 + 2w0 ^f^dt -\ (j){z,+ 2co't) 2(o'dt,
Jo Jo

which is manifestly zero, since each of the integrals is the integral of

a continuous function.

Corollary. Let ^(z) be any uniform function of z, not necessarily

doubly-periodic, but without singularities on the boundary. Then the

* The figure implies tliat the argument of w' is greater than the argument of w, a
hypothesis which, though unimportant for the present proposition, must be taken account of

hereafter (e.g., § 129).
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integral /\/r {2) dz taken round the parallelogram of periods is easily seen

to be
n n
^ (z„ + 2(ot) 2wdt + ->/r (^0 + 2ft) + 2g) t) Iw'dt

I Jo

- [ i/r (^0 + 2ft)' + 2ft)0 2ft)cZ^ -\ "^ (^0 + 2ft)'0 2ft)'ci!«

;

Jo Jo

or, if we write i/r
( ^+ 2ft)) - -»/r (^) = ^/r^ (^),

t(?+2ft)')-^(r) = ^/^.a),

then fi|r {z) dz=\ </^^ {z, + 2(o't) 2o)'dt - -fo (^0 + 2ft)0 ^wdt,

where on the left-hand side the integral is taken positively round the

boundary of the parallelogram and on the right-hand side the variable t

in the integrals is real.

The result may also be written in the form

jylr (z) dz=\ yJTi (z) dz - i i/r. (z) dz,

the integrals on the right-hand side being taken along the straight lines AD
and AB respectively.

Evidently the foregoing main proposition is established, when -v/tj (^) and

y^r^ (^) vanish for all values of ^.

III. If a doid>ly-periodic function ^ (z) have infinities Oi, tto, ... within

the parallelogram, and if Aj, A^, ... he the coefficients of (z - «l)~^ (z — a.)-\ . .

.

respectively in tJie fractional part of cf) (z) ivhen it is expanded in the parallelo-

gram, then

A,-\-A.+ ...=0.

As the function ^{z) is uniform, the integral f(f)(z)dz is, by (§ 19, II.), the

sum of the integrals round a number of curves each including one and only

one of the infinities within that parallelogi'am.

Taking the expression for ^{z) on p. 220, the integral A „i J{z — a)~^ dz

round the curve enclosing a is 0, if m be not unity, and is 27riAi, if m be

unity; the integral Krnj{z — kY''^dz round that curve is for all values of m
and for all points k other than a ; and the integral /% {z) dz round the curve

is zero, since % {z) is uniform and finite everywhere in the vicinity of a. Hence

the integral of (/> {z) round a curve enclosing a^ alone of all the infinities is

liriA-i,.

Similarly the integral round a curve enclosing a. alone is 27riA..; and so

on, for each of the curves in succession.

Hence the value of the integral round the parallelogram is

27Ti^A.
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But by the preceding proposition, the value of /</> {2) dz round the parallelo-

gram is zero ; and therefore

^, + ^,+ ...=0.

This result can be expressed in the form that the sum of the residues* of a

douhli/-periodic function relative to a fundamental 2)a'')'allelojram of j^eriods

is zero.

Corollary 1. A donhly-periodic function of the first order does not

exist.

Let such a function have a for its single simple infinity. Then an

expression for the function within the parallelogram is

A
z — a

+ X (^)>

where x (^) is everywhere finite in the parallelogram. By the above propo-

sition, A vanishes ; and so the function has no infinity in the parallelogram.

It therefore has no infinity anywhere in the plane, and so is merely a

constant : that is, qua function of a variable, it does not exist.

Corollary 2. Doubly-periodic functions of the second order are of two

classes.

As the function is of the second order, the sum of the degrees of the

infinities is two. There may thus be either a single infinity of the second

degree or two simple infinities.

In the former case, the analytical expression of the function is

where a is the infinity of the second degree and xi^) ^'^ holomorphic within

the parallelogram. But, by the preceding proposition, A^ = 0; hence the

analytical expression for a doubly-periodic function with a single irreducible

infinity a of the second degree is

within the parallelogram. Such functions of the second order, which have

only a single irreducible infinity, may be called the first class.

In the latter case, the analytical expression of the function is

Z ~Ci Z — C-i
'^ ^ '

where Cj and c, are the two simple infinities and xi^) i^ finite mthin the

parallelogram. Then

* See p. 42.
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SO that, if C'l = - CI = G, the analytical expression for a doubl^'-periodic

function with two simple irreducible infinities a^ and a. is

c(— —) + x(^)

within the parallelogram. Such functions of the second order, which have

two irreducible infinities, may be called the second class.

Corollary 3. If within any parallelogram of periods a function is

only of the second order, the parallelogram is fundamental.

Corollary 4. A similar division of douhly-periodic functions of any

order into classes can he effected according to the variety in the constitution of

the order, the number of classes being the number ofpartitions of the order.

The simplest class of functions of the nth order is that in which the

functions have only a single irreducible infinity of the nth degree. Evi-

dently the analytical expression of the function within the parallelogram is

(z-a)- {z — af
'"

(z — aY

where % (z) is holomorphic within the parallelogram. Some of the coefficients

G may vanish ; but all may not vanish, for the function would then be finite

everjrwhere in the parallelogram.

It will however be seen, from the next succeeding propositions, that the

division into classes is of most importance for functions of the second

order.

IV, Two functions, which are doubly-periodic in the same penods*, and

which have the same zeros and the same infinities each in the same degrees

respectively, are in a constant ratio.

Let ^ and -^ be the functions, having the same periods ; and let a of

degree v, /S of degree fx, ... be all the irreducible zeros of <^ and -v/r; and a of

degree n, b of degree m, ... be all the irreducible infinities of ^ and of y\r.

Then a function G {z), without zeros or infinities within the parallelogram,

exists such that

(z-ay{z-^y ...
.

and another function H{z), without zeros or infinities within the parallelo-

gram, exists such that

{z-ay{z-^Y...
"^^"^^Iz-aYiz-hr...^^'^-

Hence iM.^if)

Now the function on the right-hand side has no zeros in the parallelogram,

for G has no zeros and H has no infinities ; and it has no infinities in the

* Such functions will be called homoperiodic.
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parallelogram, for G has no infinities and H has no zeros : hence it has

neither zeros nor infinities in the parallelogram. Since it is equal to the

function on the left-hand side, which is a doubly-periodic function, it has no

zeros and no infinities in the whole plane ; it is therefore a constant, say

A. Thus*

V. Tiuo functions of the second order, douhly-jjeriodic in the scone periods

and liaving the same infinities, are equivalent to one another.

If one of the functions be of the first class in the second order, it has one

irreducible double infinity, say at a ; so that we have

where x(^) ^^ finite everywhere within the parallelogram. Then the other

function also has z = a for its sole irreducible infinity and that infinity is of

the second degree ; therefore wc have

where ^i (^) is finite everywhere within the parallelogram. Hence

Hc}>{,)-G^lr(z) = Hx{z)- GxA^)-

Now X ^'^id Xi. ^^^ finite everywhere within the parallelogram, and therefore

so is Hx — Gxi- But Hx — Gxi, being equal to the doubly-periodic function

H(f) — Gyjr, is therefore doubly-periodic ; as it has no infinities within the

parallelogram, it consequently can have none over the plane and therefore it

is a constant, say /. Thus

H4>{z)-G.lr{z) = I,

proving that the functions cf) and yfr are equivalent.

If on the other hand one of the functions be of the second class in the

second order, it has two irreducible simple infinities, say at b and c, so that

we have

where 6{z) is finite everywhere within the parallelogram. Then the other

function also has z = b and z = c for its irreducible infinities, each of them
being simple ; therefore we have

^W = ^C4-6-J^o) + ^'«'

where ^i (z) is finite everywhere within the parallelogram. Hence

Dcf> (z) - Cy{r (z) = ne (z) - 06, {z).

* This proposition is the modified form of the proposition of § 52, when the generalising

exponential factor has been determined so as to admit of the periodicity.

F. 15



226 IRREDUCIBLE ZEROS [110.

The right-haud side, being finite everywhere in the parallelogram, and equal

to the left-hand side which is a doubly-periodic function, is finite everywhere

in the plane ; it is therefore a constant, say B, so that

proving that and -\/r are equivalent to one another.

It thus appears that in considering doubly-periodic functions of the second

order, homoperiodic functions of the same class are equivalent to one another

if they have the same infinities ; so that, practically, it is by their infinities

that homoperiodic functions of the second order and the same class are dis-

criminated.

Corollary 1. If two equivalent functions of the second order have one

zero the same, all their zeros are the same.

For in the one class the constant /, and in the other class the constant B,

is seen to vanish on substituting for z the common zero ; and then the two

functions always vanish together.

Corollary 2. If two fmctions, douhlij-periodic in the same periods hut

not necessarily of the second order, have the same infinities occurring in such a

way that the fractional parts of tlie two functions are the same except as to a

constant factor, the functions are equivalent to one another. And if, in

addition, they have one zero common, then all their zeros are common, so

that the functions are then in a constant ratio.

Corollary 3. If two functions of the second order, doubly-periodic in

the same periods, have their zeros the same, and one infinity common, they are

in a constant ratio.

VI. Every douhly-periodic function has as many irreducible zeros as it

has irreducible infinities.

Let ^ {z) be such a function. Then

<^{z + h)-j>{z)

z +h — z

is a doubly-periodic function for any value of Ji, for the numerator is doubly-

periodic and the denominator does not involve z ; so that, in the limit when

h = 0, the function is doubly-periodic, that is, (/>' (z) is doubly-periodic.

Now suppose (f>(z) has irreducible zeros of degree in^ at a^, nu at a^, ...,

and has ii-reducible infinities of degree /ij at a^, /x.^ at a., ••• '< so that the

number of irreducible zeros is ??ii -f m. + •, and the number of irreducible

infinities is /jb^ + (1^ + ••, both of these numbers being finite. It has been

shewn that
(f>

(z) can be expressed in the form

{z-a,)-^^ (z-a,rK. . ^
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where F{z) has neither a zero nor an inhnity within, or on the boundary of,

the parallelogram of reference.

Since F{z) has a value, which is finite, continuous and different from zero

everywhere within the parallelogram or on its boundary, the function „ !^

is not infinite within the same limits. Hence we have

<b' (z) , , m^ m.,

z — tti z — a^

where g (z) has no infinities within, or on the boundary of, the parallelogram

of reference. But, because
(f)'

(z) and
(f)

(z) are doubly-periodic, their quotient

is also doubly-periodic ; <iud therefore, applying Prop. II., we have

mi + ??io -f . . . — //.J
— /tio — . . , =0,

that is, vii + Du 4- . . . = /ij -f- /io + • • •>

or the number of irreducible zeros is equal to the number of irreducible

infinities.

Corollary I. The number of irreducible points for tvJncJt, a doubhj-

periodic function assumes a given value is equal to the nuinber of irreducible

zeros.

For if the value be A, every infinity of (f){z) is an infinity of the doubly-

periodic function <p(z) — A ; hence the number of the irreducible zeros of the

latter is equal to the number of its irreducible infinities, which is the same as

the number for
(f)

(z) and therefore the same as the number of irreducible

zeros of <^ (z). And every irreducible zero of <f){z) — A is an irreducible

point, for which cf) (z) assumes the value A.

Corollary II. A doubly-periodic function with only a single zero does

not exist; a doubly-periodic function of the second order has two zeros; and,

generally, the order of a function can be measured by its number of irreducible

zeros.

Note. It may here be remarked that the doubly-periodic functions

(I 115), that have only accidental singularities in the finite part of the

plane, have z = co for an essential singularity. It is evident that for infinite

values of z, the finite magnitude of the parallelogram of periods is not

recognisable ; and thus for z — x the function can have any value, shewing

that ^ = X) is an essential singularity.

VII. Let »!, ttj,... be the irreducible zeros of a function of degrees

m-i, nu, ... respectively ; a.^, a.,, ... its irreducible infinities of degrees fi^, (jl.^, ...

respectively; and Zi,z.,,... the irreducible points luhere it assumes a value c,

which is neither zero nor infinity, their degrees being il/j, il/., ... respectively.

U—2
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Then, except possibly as to additive multiples of the periods, the quantities

S irirCir, 2 firOir cind X M^Zr are equal to one another, so that

r=l r=l >*=1

2 mrttr = S MrZr = S /ti^ttr («10d. 2&), 2(o').

r=l r=l ?• = !

Let (f)(z) bo the function. Then the quantities which occur are the sums

of the zeros, the assigned values, and the infinities, the degree of each being

taken account of when there is multiple occurrence ; and by the last

proposition these degrees satisfy the relations

2??l,. = 2ilf,. = %f^r-

The function (f){z) — c is doubly-periodic in 2&) and 2&)' ; its zeros are

2^,2.^,... of degrees ilfj, il/j, ... respectively ; and its infinities are a^, a^, ... of

degrees jx^, jx., ..., being the same as those of (^{z). Hence there exists a

function G{z), without either a zero or an infinity lying in the parallelogram

or on its boundary, such that (f)(z) — c can be expressed in the form

{z-aiY^iz-a^^i^^... ^
'

for all points not outside the parallelogram ; and therefore, for points in that

region
^'{Z) ^ ^ Mr ^ IJir

,

G'JZ)

Hence

^{z) — C r=\^-^r Z—CLr G (z)

Z(j)'{z) _ ^ MrZ ^ fXrZ zG' {z)

<f>{z) — C r=l^ — ^r Z—ttr G (z)

^ ^ MrZr ^ ^ fJ^Ar ,

zG' (z)

r-\ r=\'^ ~ -^r r=l ^ — '^r ^ \^)

^\Z — Zr Z — OLr G {z)

because S Mr= S /i,..

Integrate both sides round the boundary of the fundamental parallelogram.

Because G{z) has no zero and no infinity in the included region and does not

vanish along the curve, the integral

zG'iz)

I G(z)
^^

vanishes. But the points Zi and a^ are enclosed in the area ; and therefore

the value of the right-hand side is

2'7ri 2 MrZr — ^iri 2 /^/-ar,

so that 27ri (tMrZ, - 2u,.a,) =
\ ff^' dz,

the integral being extended round the parallelogram.
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zdy' (z)
Denoting the subject of integration / >. _ by/(2^), we have

and therefore, by the Corollary to Prop. II., the value of the foregoing

integral is

J A 4>{Z)-C J A 4>{Z)-G

the integrals being taken along the straight lines AD and AB respectively

(fig. 33, p. 221).

Let w =
(f)

(z) — c ; then, as z describes a path, w will also describe a single

path as it is a uniform function of z. When z moves from A to D, w moves

from (f){A) — c by some path to <p(B) — c, that is, it returns to its initial

position since (fi (D) — cf) (A) ; hence, as z describes AD, w describes a simple

closed path, the area included by which may or may not contain zeros and

infinities of w. Now
dw =

(f)'
(z) dz,

CD cb' (z)
and therefore the integral I j -i dz is equal to

^ JacI>{z)-c 1

C dw

J w

taken in some direction round the corresponding closed path for w. This

integral vanishes, if no w-zero or w-infinity be included within the area

bounded by the path ; it is + 2m'7ri, if in' be the excess of the number of

included zeros over the number of included infinities, the + or — sign being

taken with a positive or a negative description ; hence we have

rj;'[±dz^2m^i,

where vi is some positive or negative integer and may be zero. Similarly

-T^A~^ dz = 2»7ri,
JA<i>{z)-c

where n is some positive or negative integer and may be zero.

Thus 27ri {^MrZ, - S/i,ci,) = 2&) . ^miri - 2co' . 2mri,

and therefore Silf^^',- — Xfir'^r = 2mco — 2n(o'

= (mod. 2(o, 2&)').

Finally, since 'S,MrZr = ^fiA,- whatever be the value of c, for the right-hand
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side is independent of c, we may assign to c any value we please. Let the

value zero be assigned ; then XM^Zr becomes S??i,.a,., so that

Xmrar= Xfir'^r (mod. 2&), 2&)').

The combination of these results leads to the required theorem*, expressed

by the congruences

2 myar = S MyZ,. = S fjbAr (mod. 2&), 2ft)').

r=l r=\ r=\

Note. Any point within the parallelogram can be represented in the

form Za + a2ft) + 62&)', where a and h are real positive quantities less than

unity. Hence
2 MrZr = A^2o) + B, 2ft)' + ZotMr,

where A and B are real positive quantities each less than XMy, that is, less

than the order of the function.

In particular, for functions of the second order, we have

z, + Z2 = A, 2ft) + Bz 2ft)' + 2zo,

where A^ and B^ are positive quantities each less than 2. Similarly, if a and

b be the zeros,

a + h = Aa2(o + Ba'2co' + 2z,,

where A^ and B^ are each less than 2 ; hence, if

Zi-\- z<>— a—h = m2Q) + m'2a}',

then VI may have any one of the three values —1, 0, 1 and so may vi', the

simultaneous values not being necessarily the same.

Let a and /3 be the infinities of a function of the second class ; then

a+yS— ft — & = ?i2ft) 4- n2(o\

where n and n' may each have any one of the three values — 1, 0, 1. By

changing the origin of the fundamental parallelogram, so as to obtain a

different set of irreducible points, we can secure that n and n are zero,

and then
a + /3 = a + Z).

Thus, if n be 1 with an initial parallelogram, so that

a + /3 = a + 6+2ft),

we should take either ^ — 2(o = /3', or a — 2(o = a, according to the position of

a and /3, and then have a new parallelogram such that

a + 13' = a + h, or a + ^ = a + h.

The case of exception is when the function is of the first class and has a

repeated zero.

* The foregoing proof is suggested by Konigsberger, Theorie der clliptischen Fimctionen,

t. i, p. 342 ; other proofs are given by Briot and Boiiquet and by Liouville, to whom the adopted

form of the theorem is due. The theorem is substantially contained in one of Abel's general

theorems in the comparison of transcendents.
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VIII. Let
(f>

(z) he a doubly-periodic function of the second order. If 7
he the one double infinity luhen the function is of the first class, and if a and /3

he the two simple infinities when the function is of the second class, then in the

former case

<f>(z)=ci>{2y-z),

and in the latter case ^{z)= <^{a + j3 — z).

Since the function is of the second order, so that it has two irreducible

infinities, there are two (and only two) irreducible points in a fundamental

parallelogram at which the function can assume any the same value : let

them be z and z'.

Then, for the first class of functions, wc have

Z + z' = 2y

= 27 + 2mo) + 2/10)',

where m and n are integers ; and then, since <^{z) = <^ {z) hy definition of z

and z', wo have

^ (^) = ^ (27 - s + 27/i&) + 2?i&)')

= 0(27-^).

For the second class of functions, we have

z-\-z =a + P
= a 4-/3+ 2/?;&>+ 2/1&)';

so that, as before,

^{z) = j){a+^ — z + Inio) + 2?i(w')

117. Among the functions which have the same periodicity as a given

function <^ {z), the one which is most closely related to it is its derivative

(f>'
(z). We proceed to find the zeros and tJte infinities of the derivative of a

function, in particular, of a function of the second order.

Since </> {z) is uniform, an irreducible infinity of degree n for </> {z) is an

irreducible infinity of degree ?i+ 1 for cf)' (z). Moreover
<f)'

(z), being uniform,

has no infinity which is not an infinity of cf) (z) ; thus the order of 0' (z) is

2 (w + 1) or its order is greater than that of <^ (z) by an integer which

represents the number of distinct irreducible infinities of </> (z), no account

being taken of their degree. If, then, a function be of order m, the order of

its derivative is not less than qh + 1 and is not greater than 2m.

Functions of the second order either possess one double infinity so that

within the parallelogram they take the form

- 2A
and then

<f>'
{z) = ^——^^ + x' (^).
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that is, the infinity of (f>{z) is the single infinity of
(f)'

(z) and it is of the

third degree, so that 0' (z) is of the third order ; or they possess two simple

infinities, so that within the parallelogram they take the form

and then ^- (,) = _ {^-^^ -^^j + X' W.

that is, each of the simple infinities of <^ (z) is an infinity for
(f)'

(z) of the

second degree, so that (}>' (z) is of the fourth order.

It is of importance (as will be seen presently) to know the zeros of

the derivative of a function of the second order.

For a function of the first class, let 7 be the irreducible infinity of the

second degree ; then we have

c}>{z) = <f>{2y-z),

and therefore ^'(^) — ~j>' (^7 — z)-

Now ^' {z) is of the third order, having 7 for its irreducible infinity in the

third degree : hence it has three irreducible zeros.

In the foregoing equation, take z = <y: then

<^' (7) = - (^' (7),

shewing that 7 is cither a zero or an infinity. It is known to be the only

infinity of
(f>'

{z).

Next, take z = <y + o); then

^' (7 + O)) = -
(f)' (7

— (o)

= — ^' (7 — ft) 4- 2a))

= - 0' (7 + ^\

shewing that 7 + w is either a zero or an infinity. It is known not to be an

infinity ; hence it is a zero.

Similarly 7 4- w' and 7 + &) + w' are zeros. Thus three zeros are obtained,

distinct from one another ; and only three zeros are required ; if they be not

within the parallelogram, we take the irreducible points homologous with

them. Hence

:

IX. T}w three zeros of the derivative of a function, doubly-periodic in

2(1} and 2(o' and liavinf) 'y for its double {and only) irreducible infinity, are

7 + CO, 7 + 0)', 7 + (o + ft)

.

For a function of the second class, let a and /3 be the two simple

irreducible infinities; then we have

(j}(z)=(j>(a + ^- z),

and therefore ^' (2^)= — <^' (a + yS — z).
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Now <})' (2) is of the fourth order, having a and /3 as its irreducible

infinities each in the second degree ; hence it must have four irreducible

zeros.

In the foregoing equation, take ^ = ^ (a + yS) ; then

shewing that J(a-f-/S) is either a zero or an infinity. It is known not to be

an infinity ; hence it is a zero.

Next, take z = l(a + I3) + co; then

<^'{K«+yS) + «}=-f [i(a+/3)-'»j

= -cf>'{^(oi + /3)-co+2co]

shewing that ^(a + ^) + (o is either a zero or an infinity. As before, it is

a zero.

Similarly i (a + /3) + &>' and i (a + /3) + w + w' are zeros. Four zeros are

thus obtained, distinct from one another; and only four zeros are required.

Hence

:

X. The four zeros of the derivative of a function, douhly-j)eriodic in 2o)

and 2(o' and having a and ^ for its simple (and only) irreducible infinities, are

The verification in each of these two cases of Prop. VII., that the sum of

the zeros of the doubly-periodic function ^' {z) is congruent with the sum of

its infinities, is immediate.

Lastly, it may be noted that, if z^ and z. he the two irreducihle points for

which a douhly-periodic function of the second order assumes a yiven value,

then the values of its derivative for z^ and for z. are equal and opposite. For

(f>(z) = (f>{a + ^-z) = 4> {z, +z,- z),

since z^ -\- z.= a + ^ ; and therefore

<^' {z) = -</)' {z, + z.- z),

that is,
(f)'

(z^) = -
(f)'

(z.^,

which proves the statement.

118. We now come to a ditferent class of theorems.

XI. Any doubly-periodic function of the second order can be expressed

algebraically in terms of an assigned doubly-periodic function of tJie second

order, if the periods be the same.

The theorem will be sufficiently illustrated and the line of proof

sufficiently indicated, if we express a function (z) of the second class, with

irreducible infinities a, /3 and irreducible zeros a, b such that a + ^ = a + b, in
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terms of a function <I> of the first class with 7 as its irreducible double

infinity.

Consider a function
^t) (^ + /,) - ct> (^)

'

A zero of <I> (^; + h) is neither a zero nor an infinity of this function ; nor

is an infinity of ^ (^ + h) a zero or an infinity of the function. It will have

a and h for its irreducible zeros, if

a + h = h',

b + h+ h' = 27

;

and these will be the only zeros, for ^ is of the second order. It will have a

and /3 for its irreducible infinities, if

a +h = h"

,

and these will be the only infinities, for ^ is of the second order. These

equations are satisfied by

r = i(27-/3 + a),

// =1(27- 6 + a),

h=^{2y-a-^) = i,{2y-a-h).

Hence the assigned function, with these values of h, has the same zeros

and the same infinities as 4)(z); and it is doubly-periodic in the same periods.

The ratio of the two functions is therefore a constant, by Prop. IV., so that

If the expression be required in terms of $ (z) alone and constants, then

(t>(z + h) must be expressed in terms of f& (z) and constants which are values

of <E> (z) for special values of z. This will be effected later.

The preceding proposition is a special case of a more general theorem

which will be considered later ; the following is another special case of that

theorem : viz.

:

XII. A doiLbly-jieriodic function luith any nvmher of simple infinities can

he expressed either as a sum or as a p>^'oduct, of functions of the second order

and the second class which are doubly-periodic in the same periods.

Let «!, a.2,...,an be the irreducible infinities of the function <I>, and

suppose that the fractional part of 4> (z) is

.0.1 -n.9 -All~ + -+ + ~,
z — tti z — tto z~ a,i

with the condition Aj + A.,+ + A,, = 0. Let (j)ij (z) be a function,

doubly-periodic in the same periods, with a,, cij as its only irreducible infinities.
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supposed simple; where t and ; have the values 1, ,n. Then the

fractional parts of the functions </),2 (z), ^03 (z), . . . are

\z — a, z —

\z — do z — aj

respectively ; and therefore the fractional part of

-Q 9l2 {Z) +
^^

<^,3 {Z)+ ...+
^ <pn-l,n {Z)

• A, A, ^„_i A, + A,+ ... + An-t
18

I + . .. -\

Z -a^, Z-OU Z — CLn-x Z — CLn

1 4. 4. ^w-i
,

An
z-a, z- ttn-i z - a,i

since S -4j = 0. This is the same as the fractional part of <I> {z)\ and therefore
i= l

^ -^
~

(^ ^" ^ '^ G ^'' ^^>~ •••
Q 9n-^,n {z)

has no fractional part. It thus has no infinity within the parallelogram ; it

is a doubly-periodic function and therefore has no infinity anywhere in the

plane ; and it is therefore merely a constant, say B. Hence, changing the

constants, we have

<^ (Z) - B, </),, {Z) - B, (t>.^(z)-...- Bn-^ </>»-,, n (^) = B,

giving an expression for ^ (z) as a linear combination of functions of the

second order and the second class. But as the assignment of the infinities is

arbitrary, the expression is not unique.

For the expression in the form of a product, we may denote the n

irreducible zeros, supposed simple, by ai,...,a.a. We determine w — 2 new

irreducible quantities c, such that

Ci = «! + a^ — tti

,

Co = a^, + Ci — rto)

C3 = a, + c.,-cis,

Crt—2 — 0£;i_i + C)i—3 ^'n—2>

Clu = 01,1 + Cn—2 dn—l >

this being possible because S Or = 2 a^ ; and we denote by ^ ( ~ ;
a, ;S ; c^, f) a

r=l r=l

function of z, which is doubly-periodic in the periods of the given function.
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has a and /S for simple irreducible infinities and has e and / for simple

irreducible zeros. Then the function

^ {z ; «!, a.3 ; a^, Ci) {z ; a,, Ci ; a,, Co) ... <^{z\ a^, d-. ; a,,,-!, a,i)

has neither a zero nor an infinity at Ci, at Cj, ..., and at Crt_2 ; it has simple

infinities at a^, a„, ..., a„, and simple zeros at cii, a.,, ..., ttn-i, cLn- Hence it

has the same irreducible infinities and the same irreducible zeros in the same

degi'ee as the given function ^ {z) ; and therefore, by Prop. IV., ^ {z) is

a mere constant multiple of the foregoing product.

The theorem is thus completely proved.

Other developments for functions, the infinities of which are not simple,

are possible ; but they are relatively unimportant in view of a theorem,

Prop. XV., about to be proved, which expresses any periodic function in

terms of a single function of the second order and its derivative.

XIII. If two doubly-periodic functions have the same j^eriods, they are

connected by an algebraical equation.

Let u be one of the functions, having n irreducible infinities, and v be

the other, having m irreducible infinities.

By Prop. VI., Corollary I., there are n irreducible values of z for a value

of u ; and to each irreducible value of z there is a doubly-infinite series of

values of z over the plane. The function v has the same value for all the

points in any one series, so that a single value of v can be associated uniquely

with each of the irreducible values of z, that is, there are n values of v for

each value of u. Hence, (| 99), w is a root of an algebraical equation of the

nth degree, the coefficients of which are functions of ii.

Similarly u is a root of an algebraical equation of the with degree, the

coefficients of which are functions of v.

Hence, combining these results, we have an algebraical equation between

u and V of the nth degree in v and the 7?tth in u, where m and w are the

respective orders of v and u.

Corollary I. If both the functions be even functions of z, then n and m
are even integei^s ; and the algebraical relation betioeen u and v is of degree ^n

in V and of degree ^m in u.

Corollary II. If a fmction u be doubly-periodic in co and «', and a

function v be doubly-periodic in O and VI', ivhere

n = mu> + nw , H' = mw + n'co'

,

m, n, m, n being integers, then there is an algebraic relation between u and v.

119. It has been proved that, if a doubly-periodic function u be of order m,

then its derivative du/dz is doubly-periodic in the same periods and is of an

order n, which is not less than 7?i -|- 1 and not greater than 2ni. Hence, by
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Prop. XIII., there subsists between u and ic' an algebraical equation of order in

in ii' and of order n in u; let it be arranged in powers of u' so that it takes

the form

UoU'"' + Uy^-' + . . . + U,n-2U'' + Um-iU' + U,„ = 0,

where U^, U^, ... , 11^ n,re rational integral algebraical functions of u one at

least of which must be of degree n.

Because the only distinct infinities of u' are infinities of u, it is impossible

that u' should become infinite for finite values of m: hence 11^ = can have no

finite roots for u, that is, it is a constant and so it may be taken as unity.

And because the m values of z, for which u assumes a given value, have

their sum constant save as to integral multiples of the periods, avc have

Bzi +Bz..+ ... + 8z„i =

corresponding to a variation Su ; or

dzi dz2 dz,n _ ^
du du '" du

Now ,- is one of the values of ii corresponding to the value of w, and so for

the others ; hence
m 1

V Jl -

that is, by the foregoing equation.

and therefore U,n-i vanishes. Hence

= 0,

XIV, There is a relation, between a doubly-peHodic function u of order in

and its derivative, of ilieform

luhere U^, ..., U^^o, Um are rational integral algebraical functions of u, at

least one of which must be of degree n, tlie order of the derivative, and n is

not less than ni -\-\ and not greater than 2m.

Further, by taking v = -
, which is a function of order m because it has the

m irreducible zeros of u for its infinities, and substituting, we have

The coefficients of this equation must be integral functions of v ; hence the

degree of Ur in u cannot be greater than 2r.

Corollary. The foregoing equation becomes very simple in the case of

doubly-periodic functions of the second order.

Then m = 2.
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If the function have one infinity of the second degree, its derivative has

that infinity in the third degree, and is of the third order, so that ?t = 3 ; and

the equation is

(^ j
= Xu-' + S/u,u" + SvH + p,

where X, fi, v, p are constants. If 6 be the infinity, so that

where y (^) i« everywhere finite in the parallelogram, then - = ^A ; and the

zeros of j- are + co, + m', 6 + co + cd' ; so that

\A (^^^ = [(^ (Z) -Cf>{0+ CO)] [Cf> {Z) -Cf>(0+ CO')] {cj,{z)-4>{0 + CO + CO')].

This is the general differential equation of Weierstrasss elliptic functions.

If the function have two simple infinities a and /3, its derivative has each

of them as an infinity of the second degree, and is of the fourth order, so that

?i = 4 ; and the equation is

\-f)= CoW* + 4ci;^^ 4- Qcm" + ^CiU + Cj,

where Co, Cj, c., c-i, Cx are constants. Moreover

« = *W=e(,-^-,-^^)+xW,

where % (2;) is finite everywhere in the parallelogram. Then c^^—G^-; and

the zeros of -^ are \{a-{- yS), |(a + yS) + «, ^ (a + yS) + o)', | (a + ^8) + to + co',

so that the equation is

^"'[-£)=^'i^^^-^'A{oi+mm^)-^[Uoi+^)+co]]

X [</, (^) - (/, {l(a+;S)+ a,'}] [</> (^)- (^ {!(« + yS)+ o) + 0)'}].

This is tlie general differential equation of Jacobi's elliptic functions.

The canonical forms of both of these equations will be obtained in Chapter

XI., where some properties of the functions are investigated as special illustra-

tions of the general theorems.

Note. All the derivatives of a doubly-periodic function are doubly-

periodic in the same periods, and have the same infinities as the function but

in different degrees. In the case of a function of the second order, which

must satisfy one or other of the two foregoing equations, it is easy to see that

a derivative of even rank is a rational, integral, algebraical function of u, and

that a derivative of odd rank is the product of a rational, integral, algebraical

function of u by the first derivative of u.
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It may be remarked that the form of these equations confirms the result

at the end of § 117, by giving two values of u' for one value of u, the two

values being equal and opposite.

Ex. If u be a doubly-periodic function having a single irreducible infinity of the third

degree so as to be expressible in the form

2 fi

--;^i + -.> + integral function of z

within the parallelogram of periods, then the differential equation of the lirst order which

determines u is

u'^+ {a+ Zeu)u'^=L\,

where U^ is a quartic function of u and where a is a constant which does not vanish with 6.

(Math. Trip., Part II, 1889.)

XV. Every doubly-periodic function can he expressed rationally in terms

of a function of the second order, doubly-periodic in the same periods, and its

derivative.

Let u be a function of the second order and the second class, having the

same two periods as v, a function of the mth order ; then, by Prop. XIII.,

there is an algebraical relation between u and v which, being of the second

degree in v and the mth degree in u, may be taken in the form

Zv= - 2Mv + P = 0,

where the quantities L, M, P are rational, integral, algebraical functions of u

and at least one of them is of degree m. Taking

Lv-M= w,

we have w^ — M- — LP,

a rational, integral, algebraical function of u of degree not higher than 2wi.

Thus w cannot be infinite for any finite value of u : an infinite value of u

makes w infinite, of finite multiplicity. To each value of u there correspond

two values of lu equal to one another but opposite in sign.

Moreover w, being equal to Lv — M, is a uniform function of z, say F{z),

while it is a two-valued function of u. A value of u gives two distinct

values of z, say z^ and z. ; hence the values of w, which arise from an assigned

value of u, are values of lu arising as uniform functions of the two distinct

values of z. Hence as the two values of w are equal in magnitude and

opposite in sign, we have
F{z,)^-F{z.:) = 0,

that is, since Zi-\- z., = a-^ ^ where a. and j3 are the irreducible infinities of u,

F{z,) + F(a+l3-z,)=0,

so that ^(a + J3), ^{a + /3) -f- w, ^(a + /3) + &>', and }, {a + /3) + co + co' are either

zeros or infinities of w. They are known not to be infinities of u, and w is

infinite only for infinite values of u ; hence the four points are zeros of lo.
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But these are all the irreducible zeros of a' ;
hence tlie zeros of u are

included among the zeros of w.

Now consider the function w/u. The numerator has two values equal

and opposite for an assigned value of u ; so also has the denominator. Hence

wjii is a uniform function of u.

This uniform function of u may become infinite for

(i) infinities of the numerator,

(ii) zeros of the denominator.

But, so far as concerns (ii), we know that the four irreducible zeros of the

denominator are all simple zeros of u' and each of them is a zero of w
;
hence

wju' does not become infinite for any of the points in (ii). And, so far as

concerns (i), we know that all of them are infinities of u. Hence tuju', a

uniform function of u, can become infinite only for an infinite value of u, and

its multiplicity for such a value is finite ; hence it is a rational, integral,

algebraical function of u, say iVT, so that

2V = Nil.

Moreover, because lu" is of degree in u not higher than 2m, and u'^ is of

the fourth degree in u, it follows that N is of degree not higher than m — 2.

We thus have Lv-M = Nu,

M+Nu M N ,

where L, M, N are rational, integral, algebraical functions of u\ the degrees

of L and M are not higher than m, and that of jS is not higher than m — 2.

Note 1. The function u, which has been considered in the preceding

proof, is of the second order and the second class. If a function u of the

second order and the first class, having a double irreducible infinity, be

chosen, the course of proof is similar ; the function w has the three irreducible

zeros of u' among its zeros and the result, as before, is

w = Nu'.

But, now, lu- is of degree in u not higher than 2m and w'- is of the third

degree in u ; hence N is of degree not higher than /?i — 2 and the degree of w-

in u cannot be higher than 2m — 1.

Hence, if L, M, P be all of degree m, the terms of degree 2m in LP - M-

disappear. If all of them be not of degree m, the degree of M must not be

higher than m - 1 ; the degree of either L or P must be m, but the degree

of the other must not be greater than m-l, for otherwise the algebraical

equation between u and v would not be of degree 7ii in u.

We thus have

Lv- - 2Mv + P = 0, Lv- 31 = Nu',
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where the degree of iV in w is not higher than m — 2. If the degree of L be

less than m, the degree of M is not higher than m — 1 and the degree of P is

m. If the degree of L be m, the degree ofM may also be m provided that the

degree of P be m and that the highest terms be such that the coefficient

of w""* in LP - M'^ vanishes.

Note 2. The theorem expresses a function v rationally in terms of u and

u : but u' is an irrational function of u, so that v is not expressed rationally

in terms of u alone.

But, in Propositions XI. and XII., it was indicated that a function such as

V could be rationally expressed in terms of a doubly-periodic function, such as

u. The apparent contradiction is explained by the fact that, in the earlier

propositions, the arguments of the function u in the rational expression and

of the function v are not the same ; whereas, in the later proposition whereby

V is expressed in general irrationally in terms of u, the arguments are the

same. The transition from the first (which is the less useful form) to the

second is made by expressing the functions of those different arguments in

terms of functions of the same argument when (as will appear subsequently, in

§ 121, in proving the so-called addition-theorem) the irrational function of w,

represented by the derivative ii, is introduced.

Corollary I. Let Xl denote the sum of the irreducible infinities or of

the irreducible zeros of the function u of the second order, so that H = 27 for

functions of the first class, and O = a -|- /8 for functions of the second class.

Let u be represented by </> (z) and v by -i/r {z), when the argument must be })ut

in evidence. Then
0(n-^) = <^(^),

-f(n-^)=f(^),

so that -»/r (n - 5:) = y^^ >' = _ 0' (^z).

1j 1j Li

M
Hence ^ (^) -h i/r (O - ^) = 2 ^ = 2i2,

^(^)-./r(fl-^) = 2^f (^) = 2^f (4

First, if i|r (^) = -v/r (n - z), then /Sf = and <f{z)=R: that is, a function yjr (z),

tvhich satisfies the equation

yjf (z) = -ylr (D, — z),

can he expressed as a rational algebraical meromorphic function of (f)
(z) of the

second order, doubly-periodic in the same periods and having the sum of its

irreducible infinities congruent 2uith Vl.

Second, if ^/r (^) = - ^ (O _ z), then ii = and y^ i^z) = >S'</)' {z) ; that is, a
function yfr (z), which satisfies the equation

t(^) = -t(n-^),
F- 16
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can be expressed as a rational algebraical meromorphic function of <^{z),

multiplied by cf)' (2), luhere <j)(z) is doubly-penodic in the same periods, is of the

second order, and has the sum of its irreducible infinities congruent luith CI.

Third, if ^{^(z) have no infinities except those of u, it cannot become

infinite for finite values of u ; hence L =0 has no roots, that is, Z is a constant

which may be taken to be unity. Then yfr (z) a function of order m can be

expressed in the form
M + N(f>' (z),

where, if the function (z) be of the second class, the degi-ee of M is not

higher than m ; but, if it be of the first class, the degree of M is not higher

than m — 1 ; and in each case the degree of iV is not higher than in — 2.

It will be found in practice, with functions of the first class, that these

upper limits for degrees can be considerably reduced by counting the degrees

of the infinities in

M + Nc}>'(z).

Thus, if the degree of M in u be yu. and of N be \, the highest degree of an

infinity is either 2/jl or 2X + o ; so that, if the order of i/r (z) be m, we should

have
m = 2jjb or m = 2\ + S,

according as m is even or odd.

When functions of the second class are used to represent a function yjr {z),

which has two infinities a and y8 each of degree n, then it is easy to see that

il/ is of degree n and JV of degree ?z. — 2 ; and so for other cases.

Corollary II. Any doubly-periodic function can be expressed rationally

in terms of any other function u of any order n, douhly-pei^iodic in the same

pei-iods, and of its denvative ; and this rational expression can ahuays be taken

in the form
Uo + U^u + Um- + . . . + Un-^u'"-\

luhere Uo, ... , Un-i are algebraical, rational, meromorphic functions of u.

Corollary III. If cf) be a doubly-periodic function, then <f)(u -\-v) can be

expressed in theform

A+B^^' {u)+C^^' {v) +Dylr'(u) ^}r\v)

E
where yjr is a doubly-periodic function in the same p>eriods and of the second

order : each of the functions A, D, E is a symmetric function of \\r{u) and yjr (v),

and B is the same function of -ylr (v) and '^(u) as C is of -^ (u) and yjr (v).

The degrees of A and E are not greater than m in yjr (u) and than m in yjr (v),

where m is the order of
;
the degree of D is not greater than m — 2 in yfr (u)

and than m — 2 in i/r (v) ; the degree of B is not greater than m — 2 in yjr (u)

and than m in ^fr (v), and the degi-ee of C is not greater than m — 2 in i/r (v)

and thaii m in i^ (u).



CHAPTEK XI.

Doubly-Periodic Functions of the Second Order.

The present chapter will be devoted, in illustration of the preceding

theorems, to the establishment of some of the fundamental formulae relating

to doubly-periodic functions of the second order which, as has already (in

§ 119, Cor. to Prop. XIV.) been indicated, are substantially elliptic functions:

but for any development of their properties, recourse must be had to treatises

on elliptic functions.

It may be remarked that, in dealing with doubly-periodic functions, we
may restrict ourselves to a discussion of even functions and of odd functions.

For, if (}> (z) be any function, then | \(f)
(z) + (j) (— z)} is an even function, and

^ {(f>
(z) — cf)(— z)] is an odd function, both of them being doubly-periodic in

the periods of
<f>

(z) ; and the new functions would, in general, be of order

double that of (f)(z). We shall practically limit the discussion to even

functions and odd functions of the second order.

120. Consider a function (f>(z), doubly-periodic in 2co and 2eo'; and let

it be an odd function of the second class, with a and yS as its irreducible

infinities, and a and b as its irreducible zeros*.

Then we have
(f>

(z) = (p (a + ^ — z)

which always holds, and (f)(— z) = —
(f)

(z)

which holds because (j> (z) is an odd function. Hence

({>{a + ^+z) = (j)(-z)

so that a + /3 is not a period ; and

(f)(a + ^ + a + /3 + z) = -(f){a + ^ + z)

* To fix the ideas, it will be convenient to compare it with snz, fur which 2w = 4A', 2w' = 2iK',

a-ilC, p=iK' + 2K, a = 0, and h-2K.

16—2
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whence 2 (a + /8) is a period. Since a + /3 is not a period, we take a + /8 = to,

or = o)', or = to -1- a>' ; the first two alternatives merely interchange a> and co', so

that we have either

a + /S = ft),

or a + y8 = ft) + ft)'.

And we know that, in general,

a -rb = a + /3.

First, for the zeros : we have

<^(0) = -<^(-0) = -<^(0),

so that
(f) (0) is either zero or infinite. The choice is at our disposal ; for

——r satisfies all the equations which have been satisfied by
(f>

(z) and an
(f>(z)

infinity of either is a zero of the other. We therefore take

<}>{0) = 0,

so that we have a = 0,

b = (o or ft) + &>'

Next, for the infinities : we have

4>{z)^-4>i-z)

and therefore (p (— a) = — (j) (a) = co .

The only infinities of <^ are a and /3, so that either

— a = ot,

or -a = ^.

The latter cannot hold, because it would give a + /3 = whereas a + /3= (o

or = ft) + w' ; hence
2a =0,

which must be associated with a + /3 = w or with a + /S = ft) + ft)'.

Hence a, being a point inside the fundamental parallelogram, is either 0,

ft), ft)', or ft) + ft)'.

It cannot be in any case, for that is a zero.

If a + /3 = ft), then a cannot be co, because that value would give /3 = 0,

which is a zero, not an infinity. Hence either a = &)', and then /3 = ft)' + ft)

;

or a = ft)' + ft), and then /3 = co'. These are effectively one solution ; so that, if

a + /3 = ft), we have
a, /3 = ft)', ft)' + co]

and a, 6 = 0, ft)

If a + /3 = ft) -}- ft)', then a cannot be ft) f co', because that value would give

^ = 0, which is a zero, not an infinity. Hence either a = co and then /3 = co',

or a = ft)' and then /3 = ft). These again are effectively one solution ; so that,

if a + /3 = ft) + ft)', we have
a, /3 = ft), co'

and a, h — 0, co + co'
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This combination can, by a change of fundamental parallelogram, be made
the same as the former ; for, taking as new periods

2&)' = 2&)', 2.Q=2&) + 2«',

which give a new fundamental parallelogram, we have a + /3 = H, and

a, 13 = oi', n — oi', that is, to', fl — co' + 2(u'

so that a, /3 = ft)', H + w'

and a, 6 = 0, H

being the same as the former with 12 instead of w. Hence it is sufficient to

retain the first solution alone : and therefore

a = ft)', /3 = ft)' + ft),

a — 0, 6 = ft).

Hence, by § IIG, I., we have

, /,x z{z -gy)
^ (0 — ft)) (^ — ft) — ft))

where F{z) is finite everywhere within the parallelogram.

Again, ^{z -\- ft)') has z = ^ and z = (o 2>& its irreducible infinities, and

it has z = (o' and ^ = ft) + ft)' as its irreducible zeros, within the parallelogram

of ^ {z) ; hence

where F^ (z) is finite everywhere within the parallelogram. Thus

<l>{z)cf>{z + a>')^F{z)F,{z),

a function which is finite everywhere within the parallelogram ; since it is

doubly-periodic, it is finite everywhere in the plane and it is therefore a

constant and equal to the value at any point. Taking — ^co' as the point

(which is neither a zero nor an infinity) and remembering that
(f>

is an odd

function, we have

c/,(^)<^(^ + ft)') = -{</,(lft)')}-' = p
k being a constant used to represent the value of — {</> (ift)')}~-.

Also (f)(z + (o) = (f)(z + a + ^- 2ft)')

= <f){z + a + /3)=-(fi (z),

and therefore also (f){(o — z) = ^ (z).

The irreducible zeros of <})' (z) were obtained in § 117, X. In the

present example, those points are (o' + ^w, co' + ?^(o, ^oo, i]ft); so that, as

there, we have

K{<l,\z)Y = {<f>{z)-<f>qa>)}{<}>{z)-4>(lco)]{^(z)-<f>(oy'+^a>)]{^^^^

where if is a constant. But

<^(fft)) = c^(2ft,-ift,) = (/>(-^a,) = -(|>(^a));
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and <b{^(o + (o') = (ji(2(o + 2Q)' -^(o-(o')

= (/>(-!&) -co')

— —
(f)(^2^ + ft)');

so that {<fi' {z)Y = A 1 - 1_. ^^^)
^(|&) + &)')) _

where J. is a new constant, evidently equal to {</>' (O)}^. Now, as we know

the periods, the irreducible zeros and the irreducible infinities of the function

4>{z), it is completely determinate save as to a constant factor. To determine

this factor we need only know the value of <^ {z) for any particular finite

value of z. Let the factor be determined by the condition

,^(10,) = 1;

then, since 0(^&))^(^co + &>') = r

by a preceding equation, we have
1

<^(ift) + co')-^,

and then
{</>' (^)j^ = {f (0)}= [1 - {(^ {z)]^ [1 - h- {(/> {z)n

= i.'^\i-[4>{z)n[\-k'^{4>{z)n

Hence, since (/> {z) is an odd function, we have

<^ {z) = sn (fjbz).

Evidently 2/u-w, 2fjbco' = 4/f, 2iK', where K and K' have the ordinary signifi-

cations. The simplest case arises when /x — l.

121. Before proceeding to the deduction of the properties of even

functions of z which are doubly-periodic, it is desirable to obtain the

addition-theorem for
(f),

that is, the expression of (f)(y + z) in terms of

functions of y alone and z alone.

When ^(y + z) is regarded as a function of z, which is necessarily of the

second order, it is (§ 119, XV.) of the form

M + N(j>'(z)

L '

where M and L are of degree in </> (z) not higher than 2 and iV is independent

of z. Moreover y + z = a and y + z — /3 are the irreducible simple infinities

of <j>(y + z); so that L, as a function of z, may be expressed in the form

{cf>{z)-cf>{a-y)]{<j^{z)-<p{/3-y)],

and therefore

P + Qcf>{z) + R {(/, (z)Y- + Scf>' (z)
cf>(y + z)

{(/>(^)-(/,(a-2/)l{(/)(^)-(/>(/3-2/)r
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where P, Q, R, S are independent of z but they may be functions of i/. Now

HiyY

and <^(^-2/) = ^(«' + «-2/) =
^.^(„_^)

=
j^.^^);

so that the denominator of the expression for ^(>j + 2) is

Since
(f)

(z) is an odd function, cf)' (z) is even ; hence

and therefore <}> (y + z) — (}) (y — z)

kn^(y)Y

2Qcf,{z)

1

Differentiating with regard to z and then making z — 0, we have

so that, substituting for Q we have

Interchanging y and 2^ and noting that cf) (y — z) = — (}> {z — y), we have

^(y + z) + ^(y-z) =
^^^-^ ^ _ ^.,

,^^ ^^^j, ^^ ^^^^,

,

and therefore 6 (v ^ z) 6' (0) - ii^HlM+lM^Kl)ana tneieioie cf>{y , z)(f> {V) -
^ _ ^,.,

^^ ^^^^^ ^^ ^^^j,

which is the addition-theorem required.

Hx. It f{u) be a doubly-periodic function of the second order with infinities ^j, b.^,

and (piu) a doubly-periodic function of the second order with infinities a^, a.^ such that,

in the vicinity of a^ (for ^ = 1, 2), we have

the periods being the same for both functions. Verify the theorem when the functions are

sn u and sn {u+ v). (Math. Trip. Part II., 1891.)

Prove also that, for the function </> (u), the coefficients p^ and pj '^i"c equal. (Biirnside.)

122. The preceding discussion of uneven doubly-periodic functions

having two simple irreducible infinities is a sufficient illustration of the
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method of procedure. That, which now follows, relates to doubly- periodic

functions with one irreducible infinity of the second degree ; and it will be

used to deduce some of the leading properties of Weierstrass's o--function

(of § 57) and of functions which arise from it.

The definition of the tr-function is

'^(^)=4.nfr-n>^'*"1

where fl = 2mty + 2m'(o', the ratio of w' : w not being purely real, and the

infinite product is extended over all terms that are given by assigning to

m and to ni all positive and negative integral values from -|- oo to — oo

,

excepting only simultaneous zero values. It has been proved (and it is

easy to verify quite independently) that, when a (z) is regarded as the

product of the primary factors

the doubly-infinite product converges uniformly and unconditionally for all

values of z in the finite part of the plane ; therefore the function which it

represents can, in the vicinity of any point c in the plane, be expanded in a

converging series of positive powers of z — c, but the series will only express

the function in the domain of c. The series, however, can be continued over

the whole plane.

It is at once evident that a (z) is not a doubly-periodic function, for it has

no infinity in any finite part of the plane.

It is also evident that a (z) is an odd function. For a change of sign in 2

in a primary factor only interchanges that factor with the one which has

equal and opposite values of m and of m', so that the product of the two factors

is unaltered. Hence the product of all the primary factors, being independent

of the nature of the infinite limits, is an even function ; when z is associated

as a factor, the function becomes uneven and it is a (z).

The first derivative, a' (z), is therefore an even function ; and it is not

infinite for any point in the finite part of the plane.

It will appear that, though a (z) is not periodic, it is connected with

functions that have 2&) and 2a)' for periods ; and therefore the plane will be

divided up into parallelograms. When the whole plane is divided up, as in

§ 105, into parallelograms, the adjacent sides of which are vectorial repre-

sentations of 2(1) and 2<u', the function a-{z) has one, and only one, zero in

each parallelogram; each such zero is simple, and their aggregate is given

by z= fl. The parallelogram of reference can be chosen so that a zero

of a (z) does not lie upon its boundary ; and, except where explicit account is
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taken of the alternative, we shall assume that the argument of co' is greater

than the argument of tu, so that the real part* of (o'/i(o is positive.

123. We now proceed to obtain other expressions for a (z), and particu-

larly, in the knowledge that it can be represented by a convergiDg series in

the vicinity of any point, to obtain a useful expression in the form of a series,

converging in the vicinity of the origin.

Since o- (z) is represented by an infinite product that converges uniformly

and unconditionally for all finite values of z, its logarithm is ccjual to the sum
of the logarithms of its factors, so that

log <rW = log . + i i 1^ + i ^, + log (l -
^) j

.

where the series on the right-hand side extends to the same combinations of

m and m' as the infinite product for z, and, when it is regarded as a sum of

z z^ f z\
functions — + |^^ + log(l — q), the series converges uniformly and uncon-

ditionally, except for points ^ = O. This expression is valid for log a {£) over

the whole plane.

Now let these additive functions be expanded, as in § 82. In the imme-

diate vicinity of the origin, we have

z z^ ( z\.

__ir! 1^ \

a series which converges uniformly and unconditionally in that vicinity.

Then the double series in the expression for log a {z) becomes

00 '"
( ^ \ z^

)

and as this new series converges uniformly and unconditionally for points in

the vicinity of ^ = 0, we can, as in § 82, take it in the form

r=3 ^ (—00 —30

which will also, for such values of z, converge uniformly and unconditionally.

In § 56, it was proved that each of the coefficients

00 00

2 s n"-,
— ao - 00

for r = 3, 4,..., is finite, and has a value independent of the nature of the

infinite limits in the summation. When we make the positive infinite limit

for m numerically equal to the negative infinite limit for m, and likewise for

This quantity is often denoted by ;)i
( . )
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VI, then each of these coefficients determined by an odd index r vanishes,

and therefore it vanishes in general. We then have

log a {z) = log z-iz' ssn-^ - 1^« ssri-« - i^ SSn-« - . . .,

a series which converges nniformly and unconditionally in the vicinity of the

origin.

The coefficients, which occur, involve w and &)', two independent constants.

It is convenient to introduce two other magnitudes, g. and (73, defined by the

equations
(7„ = 60S2^-^ (73 = i402sn-«,

so that g. and (/s are evidently independent of one another; then all the

remaining coefficients are functions* of ^o and g^. We thus have

iog.(.) = iog.-2i^^.^-g^^3.-...-^.-ssa--...,

and therefore a {z) = ze"
^''^~ ^'^'~

'"
,

where the series in the index, containing only even powers of z, converges

uniformly and unconditionally in the vicinity of the origin.

It is sufficiently evident that this expression for a {z) is an effective

representation only in the vicinity of the origin ; for points in the vicinity of

any other zero of a {z), say c, a similar expression in powers oi z - c instead

of in powers of z would be obtained.

124. From the first form of the expression for log cr {z), we have

a'iz) 1 S S /I z 1

(t{z) z _oo_^vi^ ^" z — n,

where the quantity in the bracket on the right-hand side is to be regarded as

an element of summation, being derived from the primary factor in the

product-expression for a- (z).

We write ^(z)^'^,

so that ^{z) is, by § 122, an odd function, a result also easily derived from the

foregoing equation ; and so

This expression for ^ (z) is valid over the whole plane.

Evidently ^(z) has simple infinities given by

z = n,

for all values of m and of m between + 00 and — go , including simultaneous

zeros. There is only one infinity in each parallelogram, and it is simple ; for

the function is the logarithmic derivative of a (z), which has no infinity and

* See Quart. Journ., vol. xxii., pp. 4, 5. The magnitudes g., and r/3 are often called the

i7ivariaiits.
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only one zero (a simple zero) in the parallelogram. Hence ^ (z) is not a

doubly-periodic function.

For points, which are in the immediate vicinity of the origin, we have

?(^)4. '°s^-2io^'^ - m^''' - - -21^"-""'

1 1 1

but, as in the case of a (z), this is an effective representation of ^ (z) only

in the vicinity of the origin; and a different expression would be used for

points in the vicinity of any other infinity.

We again introduce a new function ^ (z) defined by the equation

Because ^ is an odd function, p (z) is an even function ; and

z' r; Z jii' (z - ny-] z^ ^ _„ _l \{z - ^y n^'j

'

where the quantity in the bracket is to be regarded as an element of

summation. This expression for ^ {z) is valid over the whole plane.

Evidently (§ (z) has infinities, each of the second degree, given by z = £1,

for all values of ni and of m between + oo and — oo , including simultaneous

zeros ; and there is one, and only one, of these infinities in each parallelogram.

One of these infinities is the origin ; using the expression which represents

log o- (z) in the immediate vicinity of the origin, we have

/ \ d^

^''S'-wo^^''-m^^''--

=
l + ^g,^' + ^g,z^+...+(2n-l)z^~--'lXn-^+...,

for points z in the immediate vicinity of the origin. A corresponding

expression exists for ^ (z) in the vicinity of any other infinity.

125. The importance of the function ^o (z) is due to the following

theorem :

—

Hie function ^o (z) is doiihly-periodic, tlie periods being 2&j and 26)'.

Wo have «. (.) = - + S _2 j^-^-^, -jp\,

where the doubly-infinite summation excludes simultaneous zero values, and

the expression is valid over the whole plane. Hence

^ ^^ + ^"^ ^ (7T2^ +1 I {{z + 2l-ny " n-j

'
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SO that
1 1 V V (

1 1 )

^(2 + 2a,)-^n^) = (j:^:2a5'"? + _l -1(^ + 20,-11)'- (z-ny]'

obtained by combining together the elements of the summation in ^o (z + 2&))

and Q (z). The two terms, not included in the summation, can be included,

if we remove the numerical restriction as to non-admittance of simultaneous

zero values for m and r>i; and then

J. (. + 2c.) -
f, (.) = _2 _2

|(,^2a,-ny
-
(T^n)=i

where now the summation is for all values of m and of ni from + oo to — oo

,

Let q denote the infinite limit of m, and p that of in'. Then terms in the

first fraction, for = 2 (ma) + moo'), are the same as terms in the second for

Q, = 2 {m — 1) 0) + 2ino)' ; cancelling these, we have

m' = p
&>{z+2co)-^j(z)=- 2

where q is infinite. But

and therefore

, l{z + 2(q+l)Q)-2m'(o'Y {z-2q(o - 2m(oj\ '

% = =^^
i=-oo {c — UTry sm-c'

1 TT- 1

{z + 2{q + l)co- 2m'w'Y 4&)'-
. (^ + 2 (g + 1) &,m =-p=—

X

if p be infinitely great compared with q. This condition may be assumed for

the present purpose, because the value of ^ {z) is independent of the nature

of the infinite limits in the summation and is therefore unaffected by such a

limitation.

]_

2i
Now sm [z + 2{(l-\-\)co]

^ S+^^.+i)g2V <o' - - _ g
-2^'

TTZl TTtOl -

The fraction —, has a real part. In the exponent it is multiplied by g + 1,

that is, by an infinite quantity ; so that the real part of the index of

the exponential is infinite, either positive or negative. Thus either the

first term is infinite and the second zero, or vice versa ; in either case,

is infinite, and thereforesm [z + 2{q-\-l)<c\^

2
„;=_p=_^ {^^ + 2(2- + l)&)-2//iV}-

Similarly for the other sum. Hence

^o(z + 2co)-^j(z)=0.

In the same way it may be shewn that

ip (z + 2&)') -^o{z) = 0;

therefore ^ (z) is doubly-periodic in 2(o and 2(o'.

= 0.
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Now in any parallelogram whose adjacent sides are 2<y and 2co', there is

only one infinity and it is of multiplicity two; hence, by § 116, Prop. III.,

Cor. 3, 2&) and 2(u' determine a primitive parallelogram for ^ (z).

We shall assume the parallelogram of reference chosen so as to include

the origin.

126. The function ^ (z) is thus of the second order and the first class.

Since its irreducible infinity is of the second degree, the only irreducible

infinity of ^' (z) is of the third degree, being the origin ; and the function

^' (z) is odd.

The zeros of g>' (z) are thus a>, co', and (w + w') ; or, if Ave introduce a new

quantity to" defined by the equation

co" — (o + co',

the zeros of g>' (z) are w, to', o)".

We take

and then, by § 119, Prop. XIV., Cor., we have

^'2 = A(f- e,) {ip - e,) ({0 - e,),

where A is some constant. To determine the equation more exactly, we

substitute the expression of ^J in the vicinity of the origin. Then

2 1 1
so that ^' = - -3+ iq9^ + ^9i^^ + ••

W^hen substitution is made, it is necessary to retain in the expansion all

terms up to 2" inclusive. We then have, for ^'-', the expression

4 2 g., 4

and for A (ip — 61) (g> — e.,) (^ — 63), the expression

A
1 S^g^ ^
z'''^2()z''

'^28^''*" •'

- (e, + e., + e,)(-^-¥Y^g.> + ...j + {e,e., + ex., + 63^1) (^^o + • .

.

j - e^ex.

When we equate coefficients in these two expressions, we find

J. =4,

61 + e., + 63 = 0, e^e. + ^263 + 6361 = - \g. , e^ex^ = ^g3 ;

therefore the differential equation satisfied by ^ is
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Evidently {o" = Qf - hg^

,

and so on ; and it is easy to verify that the 2nth derivative of <^ is a rational

integral algebraical function of ^ of degree n + 1 and that the (2/i + l)th

derivative of g> is the product of ^' by a rational integral algebraical function

of degree n.

The differential equation can be otherwise obtained, by dependence on

Cor. 2, Prop. V. of § 116. We have, by differentiation of §>',

„ 6 1 3 „

for points in the vicinity of the origin ;
and also

Hence g)" and ^- have the same irreducible infinities in the same degree and

their fractional parts are essentially the same : they are homoperiodic and

therefore they are equivalent to one another. It is easy to see that <^" — Bg)^

is equal to a function which, being finite in the vicinity of the origin, is finite

in the parallelogram of reference and therefore, as it is doubly -periodic, is

finite over the whole plane. It therefore has a constant value, which can be

obtained by taking the value at any point; the value of the function for

z = is — ^g.2 and therefore

f-Qf = -\g,,

so that ^" = ^i^'-hg-i,

the integration of which, with determination of the constant of integration,

leads to the former equation.

This form, involving the second derivative, is a convenient one by which

to determine a few more terms of the expansion in the vicinity of the origin

:

and it is easy to shew that

^'=.-^ + ^^^^^ + 4^^^' + 12M^^^"^+ 6^0^^^^+
••'

from which some theorems relating to the sums SSO-^n ^^^j^ jjg deduced*.

E:i'. If c„ be the coefficient of z-"-^ in the expansion of ^ (s) in the vicinity of the

oriarin, then
° '

3 r=,,-2

2 c,.Cn-r- (Weierstrass.)
" (2n+ l){n-3) ,=-2

We have ^'- = 4^^ — g.f — gs ;

the function ^' is odd and in the vicinity of the origin we have

* See a paper by the author, Quart. Joiirn., vol. xxii, (1887), pp. 1— 4.3, where other references

are given and other appHcations of the general theorems are made.
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hence, representing hy — {^(f
— g.^—g^^ that branch of the function which is

negative for large real values, we have

11/. { d'P
and therefore z = | -r

.

J^W-g^^-g.r
The upper limit is determined by the fact that when z = 0, (p = y:> ; so that

dp

iO(4>f-g,p-g,f

This is, as it should be, an integral with a doubly-infinite series of values.

We have, by Ex. 6 of § 104,

r d<p

dp

e, {4>p^ - g,<p - gsf
'

J e- (4<f
- g,ip - g,f

'

with the relation to" = w + co'.

127. We have seen that ^ (z) is doubly-periodic, so that

p(z+2(o) = p(z),

and therefore ——^ ^^ = -^—
;

dz dz

hence integrating ^(•^ + 2&)) = ^(z) + A.

Now ^ is an odd function ; hence, taking z = — (o which is not an infinity of ^,

we have

say, where rj denotes ^ (&)) ; and therefore

^(z+2(o)-^{z)=2v,
which is a constant.

Similarly ^ (z + 2co') -^iz) = 2?;'

,

where 77'= ^{(o') and is constant.

Hence combining the results, we have

^{z+ 2111(0 + 2m'(o') -^{z) = 2mr} + 2in'r)',

where vi and m are any integers.

It is evident that 77 and ?;' cannot be absorbed into f ; so that ^ is not a

periodic function, a result confirmatory of the statement in § 124'.
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There is, however, a iiseudo-periodicity of the function ^: its characteristic

is the reproduction of the function with an added constant for an added

period. This form is only one of several simple forms of pseudo-periodicity

which will be considered in the next chapter.

128. But, though t^{z) is not periodic, functions which are periodic can

be constructed by its means.

Thus, if <i>{z)^A t; {z - a) + B ^{z -h) + C ^{z - c) + ...,

then </>(^ + 2&))-</)(2) = 24 [i;{z - a+^oi)- ^{z - a)]

and 4>{z + ^1(0') - <ji{z) = 2i {A + B + G + ...),

so that, subject to the condition

^+5+0+. ..=0,

</) {z) is a doubly-periodic function.

Again, we know that, within the fundamental parallelogram, ^ has a

single irreducible infinity and that the infinity is simple ; hence the irre-

ducible infinities of the function <^{z) are z = a,h,c, ..., and each is a simple

infinity. The condition A + B + C + ... = is merely the condition of Prop.

III., § 116, that the ' integral residue ' of the function is zero.

Conversely, a doubly-periodic function with m assigned infinities can be

expressed in terms of ^ and its derivatives. Let a^ be an irreducible infinity

of <t> of degree n, and suppose that the fractional part of ^ for expansion in

the immediate vicinity of aj is

A, B, K,

Z — tti (Z — Cljf '" {z — tti)**

'

Then

^(z) A,^ (z-a,)- B,^' (z - a,) + ^, r (^ - «a)

{n-l)\dz
is not infinite for z — a^.

Proceeding similarly for each of the irreducible infinities, we have a

function

^ (^) - 2
C

A,^ (z - ttr) - B,^' (z - ar) + ~^"{z-ar)-...

which is not infinite for any of the points z = a^, a.,, .... But because <I> {z)

is doubly-periodic, we have
A, + A. + ... -H^„ = 0,

and therefore the function
tn

S Ar^{z — (Ir)

r=l
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is doubly-periodic. Moreover, all the derivatives of any order of each of the

functions ^ are doubly-periodic ; hence the foregoing function is doubly-

periodic.

The function has been shewn to be not infinite at the points a^, a.,, ...,

and therefore it has no infinities in the fundamental parallelogram ; con-

sequently, being doubly-periodic, it has no infinities in the plane and it is

a constant, say C. Hence we have

m
with the condition S ^,. = 0, which is satisfied because ^(z) is doubly-

periodic.

This is the required expression* f )r <i> (z) in terms of the function ^ and

its derivatives ; it is evidently of especial importance when the indefinite

integral of a doubly-periodic function is required.

129. Constants rj and ?;', connected with &> and co', have been introduced

by the pseudo-periodicity of ^{z); the relation, contained in the following

proposition, is necessary and useful :

—

The constants r), r{ , (o, «' ewe connected by the relation

the + or — sign being taken according as the real jiart of co'/coi is positive or

negative.

A fundamental parallelogram having an angular point at z^ is either of

the form (i) in fig. 34, in which case 9{ (

—

A is

positive; or of the form (ii), in which case ^)i []
is negative. Evidently a description of the paral-

lelogram ABCD in (i) will give for an integral the

same result (but with an opposite sign) as a de-

scription of the parallelogram in (ii) for the same

integral in the direction ABCD in that figure.

We choose the fundamental parallelogram, so

that it may contain the origin in the included

area. The origin is the only infinity of ^ which

can be within the area: along the boundary ^ is

always finite.

Now since

^(z + 2<.)-l;{z) = 2v,

^(z + 2o,')-^(z) = 2'n',

* See Hermite, Ann. de Toulottxc, t. ii, (1888), C, pp. 1— 12.

F. 17

?o+ 2o>

Fig. 34
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the integral 0^(2) round ABCD in (i), fig. 34, is (§ 116, Prop. II., Cor.)

[ 27]dz -
f

2r}'dz,

-'a J a

the integrals being along the lines AD and AB respectively, that is, the

integral is

4 [rjco' — y'o)).

Bat as the origin is the only infinity within the parallelogram, the path of

integi-ation ABCDA can be deformed so as to be merely a small curve round

the origin. In the vicinity of the origin, we have

and therefore, as the integrals of all terms except the first vanish when taken

round this curve, we have

= 27n.

Hence 4 {'qw — Tj'oi) = liri,

and therefore rjo)' — rj'co = hiri.

This is the result as derived fi-om (i), fig. 34, that is, when 9i (-^-j is positive.

When (ii), fig. 34, is taken account of, the result is the same except

that, when the circuit passes from Zq to Zq + -«^> then to 2-0 + 2&) + 2&)',

then to 2^o + 2(w' and then to Zq, it passes in the negative direction round the

parallelogram. The value of the integral along the path ABCDA is the

same as before, viz., 4 (tjco' — tj'co) ; when the path is deformed into a small

[dz
curve round the origin, the value of the integral is I— taken negatively, and

therefore it is — 27rt : hence
Tjco' — Tj'w = — hiri.

Combining the results, we have

7](o' — 7] (O = ± jTr?,

according as 9t (—^.j is positive or negative.

Corollary. If there be a change to any other fundamental parallelo-

gram, determined by 20 and 211', where

D,=po)+qQ}', n' = pco + qo)',

p, q, p', q being integers such that pq' — p'q = ± 1, and if H, H' denote ^(H),

f (H'), then

H = pr) + qr}', H' = j)'r] + q'r]'
;

therefore H^' - H'fl = ± ^iri,

according as the real part of t^ is positive or negative.
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130. It has been seen that ^ (2) is pseudo-periodic ; there is also a pseudo-

periodicity for a (z), but of a different kind. Wc have

that IS, ; - '= — y' + 27],
a{z + 2&)) o- {z)

"

and therefore o- (^ -f- 2&)) = u.4e-''V (2'),

where ^ is a constant. To determine A, we make z = — co, which is not a

zero or an infinity of a (z) ; then, since a {z) is an odd function, we have

-^6-21"= 1,

so that o-(^+ 2&,) = -e^<^+'">o-(^).

Hence a {z + 4<co) = - e^ ^^-^^""^ a (z + 2o))

= e^ <'-^+^'*"
o- (z)

;

and similarly o- (^r -H 2mo,) = (- 1
)'" e-^

("i^+m-.-) ^ (^)

Proceeding in the same way from

^(z + 2co') = ^(z) + 2r}',

we find (t{z+ 2m'w') = (- 1)"*' e-V ('»'^+"i'='»'»
o- (^).

Then a {z + 2m(o + 2m'03') = (- 1)'" e"''
('«z+'«'^<^+2»"«'<-') a{z + 2m w)

= /
2^
\m+J»'g2Z ()»>)+ ?«/r)')+2r)m2(0+4r)mm'w'+2ij'm'-Vjj. /,\

—. / 2\m+Jft'g2 (mj)+?rtV) (z+»«o>+»«'ai')+2m?n'(7)u>'—7)'u>) _ /^X

But rjw' — 1)01) — + \iri,

so that g2mm'(i)(o'—Tj'to) _ gdbtnmVt _ / jynw'

and therefore

o- (^ + 2ma) -I- 2.mw') = (- 1 )»"»'+'«+»"' eSi'/^i+wV)
(z+»«<o+w'a.') ^ ^^)^

which is the law of change of a (z) for increase of z by integral multiples of

the periods.

Evidently (t(z) is not a periodic function, a result confirmatory of the

statement in § 122. But there is a pseudo-periodicity the characteristic of

which is the reproduction, for an added period, of the function with an

exponential factor the index being linear in the variable. This is another

of the forms of pseudo-periodicity which will be considered in the next

chapter.

131. But though a{z) is not periodic, we can by its means construct

functions which arc periodic in the pseudo-periods of a (z).

By the result in the last section, we have

cr(z —a + 2mw 4- 2m'w) a (z — a)_ g 2 (;)!>) + »('r)'| (/3-a) .

(T{z-i3 + 2m(o+2ni'(o') a{z-^) '

17—2
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and therefore, if <^ (^) denote

a- {z — Gj) o {z — go) (t{z — OL,^)

o^{z-l3,)a(z-0^) <r{z-^n)
'

then <f>{z-\- 2m&) + 2»i'&)') = e2"tn+'»'V) (2^.-2a.)
^ (^^^

so that
(f)

(z) is doubly-periodic in 2&) and 2(o' provided

Now the zeros of ((>(z), regarded as a product of o--functions, are aj, a.,,..., ct,^

and the points homologous with them ; and the infinities are ySi, A. •••> /^n and

the points homologous with them. It may happen that the points a and /8

are not all in the parallelogram of reference ; if the irreducible points

homologous with them be a^, ..., a„ and 61, ... , bn, then

Sttr = 26r (mod. '2w, 2&)'),

and the new points are the irreducible zeros and the irreducible infinities of

j>{z). This result, we know from Prop. III., § 116, must be satisfied.

It is naturally assumed that no one of the points a is the same as, or is

homologous with, any one of the points /S : the order of the doubly-periodic

function would otherwise be diminished by 1.

If any a be repeated, then that point is a repeated zero of <^ {z) ; similarly

if any B be repeated, then that point is a repeated infinity of {z). In every

case, the sum of the irreducible zeros must be congruent with the sum of the

irreducible infinities in order that the above expression for ^ {z) may be

doubly-periodic.

Conversely, if a doubly-periodic function {z) be required with m assigned

irreducible zeros a and rti assigned irreducible infinities h, which are subject

to the congruence

Sa = 16 (mod. 2w, 2&)'),

we first find points ol and /3 homologous with a and with h respectively such

that

Then the function —

>

i.

'

-, ^\
(r{z-/3i) o-(z- Bm)

has the same zeros and the same infinities as <^ {z), and is homoperiodic with

it ; and therefore, by § 116, IV.,

q-(g-oti) a{z-cLm)

"p^'^-^aiz-jBo <T(z-^;^y

where ^ is a quantity independent of z.

Ex. 1. Consider g>' (2). It has the origin for an infinity of the third degree and all the

remaining infinities are reducible to the origin ; and its three irreducible zeros are to, w', a>".

Moreover, since co"=a)'+ a), we have tu + co'+ w" congruent with but not equal to zero.

We therefore choose other points so that the sum of the zeros may be actually the same
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as the sum of the infinities, which is zero ; the simplest choice is to take a>, w', - w".

Hence

^(^) =^ ^H?)
'

where 4 is a constant. To determine A, consider the expansions in the immediate

vicinity of the origin ; then

2 ^ g- (
- m) o- ( - w ) o- (a")

,

so that &' {z)= -2 , s , ,s
—/ „s\, s

Another method of arranging zeros, so that their sum is equal to that of the infinities,

is to take — w, — m, w" ; and then we should find

O' f.\ -9 q- i^+ o) g- {z+ o>) or (g- <""
)

^ ^"^ o-(a))o-(a>')o-(a)")o-3(2) '

This result can, however, be deduced from the preceding form merely by changing the

sign of z.

Ex. 2. Consider the function

. (r{u+ v) (r(u-v)
^

^^) '

where v is any quantity and A is independent of «. It is, qu<\ function of ?<, doubly-

periodic ; and it has u= as an infinity of the second degree, all the infinities being

homologous with the origin. Hence the function is homnperiodic with ^ (u) and it has

the same infinities as ^ (u) : thus the two are equivalent, so that

where B and C are independent of it. The left-hand side vanishes if u=v; hence

C=B^ {v), and therefore

where A' is a new quantity independent of ic. To determine A' we consider the

expansions in the vicinity of it= ; we have

A'a{v)a{-v
)

^l

SO that - A'a-^ {v) = 1

,

and therefore 2/ n 9/ \ =&W-&W>
a^ {u) <T^ (v) ^ ' o \ "

a formula of very great importance.

Ex. 3. Taking logarithmic derivatives with regard to u of the two sides of the last

equation, we have

au^v)^au-^^-2an)=-^^^y,

and, similarly, taking them with regard to f, we have

whence ^ (« + '^)-f
(^*)-^(^)-^-^-(^r-'^^'^

'
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giving the special value of the left-hand side as (§ 128) a donbly-periodic function. It is

also the addition-theorem, so far as there is an addition-theorem, for the ^-fimction.

Ex. 4. We can, by differentiation, at once deduce the addition-theorem for ^ (?< -f v).

Evidently

.(«..)=.(»)-i,4fM|)},

which is only one of many forms : one of the most useful is

which can be deduced from the preceding form.

The result can be used to modify the expression for a general doubly-periodic function

* (2) obtained in § 128. We have

Each derivative of ^ can be expressed either as an integral algebraical function of ^ (z - a,.)

or as the product of ^' (s - a,.) by such a function ; and by the use of the addition-theorem

these can be expressed in the form

L

where Z, if, N are rational integral algebraical functions of ^(s). Hence the function <b{z)

can be expressed in the same form, the simplest case being when all its infinities are

simple, and then

*(0) = (7+i J, C (-"-«>-)

l>(2)-g>K)

with the condition 2 ^4^= 0.

Ex. 5. The function ^ (2) — Cj is an even function, doubly-periodic in 2a) and 2(b' and

having 2= for an infinity of the second degree ; it has only a single infinity of the second

degree in a fundamental parallelogi-am.

Again, 2= 0) is a zero of the function; and, since ^' ((i)) = but ^" (cd) is not zero, it is a

double zero of <^{z)-e.^. All the zeros are therefore reducible to 2= 40; and the function

has only a single zero of the second degree in a fundamental parallelogram.

Taking then the parallelogram of reference so as to include the points s= and 2= 0),

we have

where Q (2) has no zero and no infinity for points within the parallelogram.

Again, for g? (2-1-w) -Cj, the irreducible zero of the second degree within the parallelo-
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gram is given by z+ u) = co, that is, it is z= 0; and the irreducible infinity of the second

degree within the parallelogram is given hj z+ a = 0, that is, it is ^= 0). Hence we have

[z-(o)

where Q^ (z) has no zero and no infinity for points within the parallelogram.

Hence {^ {z) - e,} {^ {z+ ^)-e,\^q {z) Q, (.),

that is, it is a function which has no zero and no infinity for points within the

parallelogram of reference. Being doubly-periodic, it therefore has no zero and no infinity

anywhere in the plane ; it consequently is a constant, which is the value for any point.

Taking the special value i = o)', we have ^(ci)') = e3, and ip{(a +w)—e.2; and therefore

W (2) - ^ll W i^+ <^) - ^ll = (^3 - ei) (^2 - «l)-

Similarly {g> (s) - e^) {^ {z+ <o") - ej = {e^ - e^) (e^ - e^),

and {g> (z) - 63} {g) (0+ o)') - 63} = (^2 - 63) (ei - e,).

It is possible to derive at once from these equations the values of the ^i?-function for

the quarter-periods.

Note. In the preceding chapter some theorems were given which indicated that

functions, which are doubly-periodic in the same periods, can be e.x:pressed in terms of one

another : in particular cases, care has occasionally to be exercised to be certain that the

periods of the functions ai'e the same, especially when transformations of the variables are

effected. For instance, since ^ (2) has the origin for an infinity and sn u has it for a zero,

it is natural to express the one in terms of the other. Now ^ (2) is an even function, and

sn u is an odd function ; hence the relation to be obtained will be expected to be one

between <^{z) and sn^ u. But one of the periods of sn^ u is only one-half of the correspond-

ing period of sn?i ; and so the period-parallelogram is changed. The actual relation* is

^a(2)-e3= (e^-e3)sn-2H,

where «= ((?!- 63)" z and ^-^= (e^ - e^l{6-^ - e^).

Again, with the ordinary notation of Jacobian elliptic functions, the periods of sn z are

4/i and 1iK\ those of dn^ are 2/i and 4i7t', and those of ens are 4A' and 2A'-f-2i,7t'. The

squares of these three functions are homoperiodic in 2AT and 'UK' ; they are each of the

second order, and they have the same infinities. Hence sn^ 2, cn^ 2, dn^ z are equivalent to

one another (§ 116, V.).

But such cases belong to the detailed development of the theory of particular classes of

functions, rather than to what are merely illustrations of the general propositions.

132. As a last illustration giving properties of the functions just

considered, the derivatives of an elliptic function with regard to the periods

will be obtained.

Let ^ {z) be any function, doubly-periodic in 2ft) and 2«<)' so that

^{z-V 2mo) + 2m'Q}') = </> (z),

the coefficients in
(f>

implicitly involve to and co'. Let </)i, (p.,, and
(f>'

respec-

tively denote d(p/d(o, d<f>/d(i)', d^i/dz ; then

^1 (z + 2mco + 2)11 (o') + 2ni(f)' (z + '2mw -\- 2)h'w') = <^i {z),

<p. (z + 2m&) + 2m'w) + 2wi'<^' {z -f 2mw -1- 2m'cd') = <^o (z),

(f)'
(z + 2moo + 2m'(o') =

<f>'
{z).

* Halphen, Fonctions EllijHiques, t. i, pp. 23—25.
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Multiplying by co, (o, z respectively and adding, we have

&)0i {z + "Imw + 2m'o)') + o)'(p., (z + 2iuco + 2m' oo')

+ {z + 2mco + 2m'0)') 4>' {z + 2mw + 2m'm)

= &)</)i (z) + a)'4)2 (z) + Zip' (z).

Hence, if f{z) — co^i (z) + w'^. {z) + z^' {z),

thenf{z) is a function doubly-periodic in the periods of (f).

Again, multiplying by rj, rj', ^(z), adding, and remembering that

^{z + 2m(o + 2m'Q)') = ^{z) + 2mr} + 2m'tj',

we have

77^1 {z + 2m(o + 2m'a') + Tj'ip. (z + 2mw + 2m'a')

+ ^(^ 4- 2m(o + 2m'(o') (/>' {z + 2m(o + 2m'w)

= rj<p,{z) + 7^'<p,{z) + ^{z)<l>'{z).

Hence, if g {z) = t^c^^ {z) + t^'c/,, {z) + ^ (z) </>' (z),

then g (z) is a function doubly-periodic in the periods of cf).

In what precedes, the function
(f>

(z) is any function, doubly-periodic in

2(o, 2w' ; one simple and useful case occurs when ^ {z) is taken to be the

function i^ {£). Now

^^^^ = .^^+^^^"^ + 18^^"' + 1^^^'^' + -'

11 1 1
and ?(^) = - - ah 9-^^' " Tlr> 9^^' " ^TKa 9^^' - -\

z 60^" 140^^ 8400^-^

hence, in the vicinity of the origin, we have

9iS> , 9iP 9i;p 2 . ^ , „ ,ft>^ + &) „-, + ^7r- = ;+ even integral powers or z-
9a) d(i) oz Z'

°

= -2^i),

since both functions arc doubly-periodic and the terms independent of z

vanish for both functions. It is easy to see that this equation merely

expresses the fact that §?, which is equal to

^ "^ ^^ \{z-^y " "m '

is homogeneous of degree — 2 in z, on, w .

Similarly

^ ^ -1- 77'A -f- ^(^) -J- = - 4 + 1^ i/^ + even integral powers of z.

0(0 ooi oz 2r 10

But, in the vicinity of the origin,

9'^ 6 ,1 ,
• , 1 c^ = ~- + -— ^^ + even integral powers 01 z,
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V
d(o

+ v ^ / + b (^) o + i ^ — ^9-^+ evGU integral powers of z.
dz dz

The function on the left-hand side is doubly-periodic : it has no infinity

at the origin and therefore none in the fundamental parallelogram ; it there-

fore has no infinities in the plane. It is thus constant and equal to its value

anywhere, say at the origin. This value is ^gz, and therefore

d(o

This equation, when combined with

dz '-^dz'"^^'

= -2f + ^g,.

dco

dco'

'"^+"1?. + ^'?=-%
dz

gives the value of ~- and^ -' d(o

The equations are identically satisfied. Equating the coefficients of z- in

the expansions, which are valid in the vicinity of the origin, we have

0(0 00) J

and equating the coefficients of zf^ in the same expansions, we have

Oft) d&)
ft) ^ -f ft)' ^ ,

= - 6^3

Oft) dft)

Hence for any function u, which involves ft) and w and therefore implicitly

involves g^ and ^3, we have

du
^

,du ( . du ^ du'

V

dco

du

1(0

dco dco

Since ^ is such a function, we have

. / 9^ 1/10 9^ o , 9w\

dg..

^^9z
dg.' ''"-'dg,

being the equations which determine the derivatives of ^ with regard to the

invariants g., and g^.
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The latter equation, integrated twice, leads to

9V ^ _ 9<T 2 „ 8(x 1 „ „

a differential equation satisfied by (r(z)*.

133. The foregoing investigations give some of the properties of doubly-

periodic functions of the second order, whether they be uneven and have two

simple irreducible infinities, or even and have one double irreducible infinity.

If a function U of the second order have a repeated infinity at ^ = 7, then

it is determined by an equation of the form

U'' = 4a'[{U-\){U-/x){U-v)]i,

or, taking U — i (\ + fj,+ v) = Q, the equation is

Q"-'=4a-H(Q-e,)(Q-e,)(Q-e3)?,

where ^j + e.. + ^3 = 0. Taking account of the infinities, we have

Q=^ (az - ay)
;

and therefore U — ^('k + fi + v) = ^ (az — ay)

= - (J {az) - Q {ay) + i ^^--^i— ,^l .^ ^ \p(a2)-io{ay))

by Ex. 4), p. 262. The right-hand side cannot be an odd function ; hence

an odd function of the second order cannot have a repeated infinity. Similarly,

by taking reciprocals of the functions, it follows that an odd function of the

second order cannot have a repeated zero.

It thus appears that the investigations in §§ 120, 121 are sufficient for the

included range of properties of odd functions. We now proceed to obtain

the general equations of even functions. Every such function can (by § 118,

XIII., Cor. I.) be expressed in the form {a^ {z) + b] — (cp {z) + d], and its

equations could thence be deduced from those of g? {z) ; but, partly for

uniformity, w^e shall adopt the same method as in § 120 for odd functions.

And, as already stated (p. 251), the separate class of functions of the second

order that are neither even nor odd, will not be discussed.

134. Let, then, <^{z) denote an even doubly-periodic function of the

second order (it may be either of the first class or of the second class) and let

2<w, 2&)' be its periods ; and denote 2&) + 2&)' by 2&)". Then

<i>{z)^4>{-z),

since the function is even ; and since

^{(o-\- z) = ^{—(o—z)

=
(f)

(2&) —CO — z)

= (f){0i — z),

* For this and other deductions from these equations, see Frobenius und Stickelberger, Crelle,

t. xcii, (1882), pp. 311—327; Halphen, Traitt des fonctions elliptiques, t. i, (1886), chap, is.;

and a memoir by the author, quoted on p. 254, note.
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it follows that </>(&) + 2)—and, similarly, </> (&>' + z) and (p (co" + z) are even

functions.

Now ^ (o) + z), an even function, has two irreducible infinities, and is

periodic in 2&), 2&)' ; also ^ {z), an even function, has two irreducible infinities

and is periodic in 2(y, 2ft)'. There is therefore a relation between ^ {z) and

(^ (ft) + ir), which, by § 118, Prop. XIII., Cor. I., is of the first degree in <p {z) and

of the first degree in <^ (ft) + 2) ; thus it must be included in

B(l){z) <p {(o + z) - C<p{z) - C'(f>{(o -\- z) + A = {).

But ^ {z) is periodic in 2ft) ; hence, on writing z + w for z in the equation, it

becomes

B<l> (co+z)<f) (z) -Ccf>{o)+z)- C'cf> (^) + ^1 = ;

thus C=G'.

If B be zero, then C may not be zero, for the relation cannot become

evanescent : it is of the form

(li(z) + cf>{oy+z)^A' (1).

If B be not zero, then the relation is

, C(b(z)-A

Treating
(f)

(co' + z) in the same way, we find that the relation between it

and cf) (z) is

F(l) (z)
(f>

(co' + z)-D(j) (z) - D(f> (ft)' + z) + E = 0,

so that, if F be zero, the relation is of the form

<f>(z) + 4>(oi' + z)=E' (1)',

and, if F be not zero, the relation is of the form

, , , , Dd>(z)-E

Four cases thus arise, viz., the coexistence of (1) with (1)', of (1) with (2)',

of (2) with (1)', and of (2) with (2)'. These will be taken in order.

I. : the coexistence of (1) with (1)'. From (1) we have

cf>(co' + 2) + (l>{co" + z) = A\

so that (}) (z) + cf) {(o + z) +
<l>
{w + z) +

(f)
(co" +z) = 2A'.

Similarly, from (1)',

«^(^) + </)(ft)' + 2) + </,(ft)+^)+</>(ft)" + ^)=2^';

so that A' = E', and then

^ (co + z) = cf) (co' + z),

whence co- co' is a period, contrary to the initial hypothesis that 2co and 2co'

determine a fundamental parallelogram. Hence equations (1) and (1)' cannot

coexist.
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II. : the coexistence of (1) with (2)'. From (1) we have

(f)(0)" + 2) = A'-<f)(a)' + z)

^ {A'F-D)4){z)-{A'D-E)

F<f){z)-D

on substitution from (2)'. From (2)' we have

6 {co" + z) = ^-^ (
—=r^ ^ ^ F(}) {a + z) - D

_ (A'D -E)-D(j> (z)

~ A'F-D-F(f){z) '

on substitution from (1). The two vakies of ^(m' + z) must be the same,

whence
A'F-D^D,

which relation establishes the periodicity of
(f)

(z) in 2&)", when it is considered

as given by either of the two expressions which have been obtained. We
thus have

A'F=2D;
and then, by (1), we have

</)(^)-p+</)(a,+2r)-p=0;

and, by (2)', we have

If a new even function be introduced, doubly-periodic in the same periods

having the same infinities and defined by the equation

the equations satisfied by ^i (z) are

(j>,(o) +z) + (j),(z) =
I

<^i (q)' + z)
(f)i

(z) = constant!
'

To the detailed properties of such functions we shall return later ; meanwhile

it may be noticed that these equations are, in form, the same as those satisfied

by an odd function of the second order.

III. : the coexistence of (2) with (1)'. This case is similar to II., with the

result that, if an even function be introduced, doubly-periodic in the same

periods having the same infinities and defined by the equation

G
<f),{z)=({)(2)--^,

the equations satisfied by
(f).

(z) are

(f),{o)' + z)+cf),i2) = \

(/).j (&) + z)
(f).,

(z) = constant]
*

It is, in fact, merely the previous case with the periods interchanged.
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IV. : the coexistence of (2) with (2)'. From (2) we have

^, ,, , Cd>((o' + z)-A
^ ^ B(p {(1) + z) — U

_ (CD-AF) (f> (z)
- {CE - AD)

~ {BD - CF) (j>(z) - (BE - CD) '

on substitution from (2)', Similarly from (2)', after substitution from (2), we

have

u./ "^ ,
(CD -BE)<f>{z) + (CE-AD )

9K<^ -^ '''>- (OF -BD)(f>(z) + (CD-AF)-
The two values must be the same ; hence

CD-AF=-(GD-BE),
which indeed is the condition that each of the expressions for (p (o)" + z)

should give a function periodic in 2&)". Thus

AF + BE=2CD.
One case may be at once considered and removed, viz. if C and D vanish

together. Then since, by the hypothesis of the existence of (2) and of (2)',

neither B nor F vanishes, we have

A_E
B~ F'

so that ^(« + ,) = _^-A_ =^^ = _^(„' + ,),

and then the relations are
(f)

(co + z)+ ^ (w' + z)=0,

or, what is the same thing, <f)(z) + (}) (co" -]- z) = 0'\

and
(f)

(z) (j) (co + z) = constant [

'

This case is substantially the same as that of TI. and III., arising merely

from a modification (§ 109) of the fundamental parallelogram, into one whose

sides are determined by 2ft) and 2ft)".

Hence we may have (2) coexistent with (2)' provided

AF + BE=2CD;
G and D do not both vanish, and neither B nor F vanishes.

IV. (1). Let neither C nor D vanish ; and for brevity write

<f)(Q} + z)=(f>,, (f>
(q)" + z) -^

<f).„
(j)((o'+ Z)=<f).j, (f)(z) = (f>.

Then the equations in IV. are

B(f>ct>,-C((f> + (f>,)+A=0,

F(f><p,-D(<l> + (f>,)
+ E = 0.

Now a doubly-periodic function, with given zeros and given infinities, is

determinate save as to an arbitrary constant factor. We therefore introduce

an arbitrary factor X,, so that

1 , ,• D
and then taking

"r\
~ ^" ^x

~^'"



270

we have
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E
(f - C3)('«/^3- Cs) = ci -

Y^^

.

The arbitrary quantity X is at our disposal : we introduce a new quantity Co,

defined by the equation

and therefore at our disposal. But since

AF + BE=2CD,

we have

and therefore FX:,
= Cs (Ci + C.) - CiCo

Hence the foregoing equations are

(i/r - Ci) (t/ti - Ci) = (Ci - Co) (Ci - C3),

(yjr - C3) (^1^3 - C3) = (C3 - Ci) (C3 - Co).

The equation for ^., that is ^ (&)" + -?), is

where L= CD - BE = AF - CD, M=AD-CE, N=CF-BD,
so that ^iA^ + 5J/=2CZ.

As before, one particular case may be considered and removed. If N be

zero, so that

G D
B = F'=''

A E ^CD _
.,

B'^F^^BF-^''''

(f)
+ (f),= (f),

+
(f),
= 2a,

X = (f>-a,

%(^)+%K + ^) = 0-
"I

say, and

then we find

or taking a function

the equation becomes

The other equations then become

F
X(^)%(o)' + ^) = a—

-p

and therefore they are similar to those in Cases II. and III.

If N be not zero, then it is easy to shew that

N=BFX{c,-c,),

L = BFX'{c,-C3)c„

M=BFX^ (c, - C3) (c,Ci + c,C3 - C1C3)

;
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and then the equation connecting
(f)
and ^, changes to

(i/r - C2) (i/^o - C2) = (Co - Ci) (Co - Cs)

which, with (n/r - Ci) (i/ti — Ci) = (Ci — Co) (Cj - C3)

(»/^ - C3) 0^, - C3) = (C3 - Ci) (C3 - c,)

are relations between yjr, i/tj, -x/^,,, 1/^3, where the quantity Co is at our disposal.

IV. (2). These equations have been obtained on the supposition that

neither C nor D is zero. If either vanish, let it be G : then D d(jes not

vanish ; and the equations can be expressed in the form

DW D\_D"-EF

' E\f^ E\ E(D'-EF)
,^-D]V'--'d)

= FW~-
We therefore obtain the following theorem :

If (f)
be an even function doubly-periodic in 2(o and 2&)' and of the second

order, and if all functions equivalent to ^ in the form Rcf) + S (where R and

S are constants) be regarded as the same as
(f),

then either the function satisfies

the system of equations

cf>(z) + (f){co +z) = \

(f>{z) (f>(co'+z) = H [ W*'

<p{z) </,((»" + ^) = -ir)

where H is a constant ; or it satisfies the system of equations

[j) {z) - Ci} {(^ (o) -\-z)- Ci} = (Ci - Co) (Ci - C3) \

[(^{z)-c^] {(f>((o' + ^) - C3} = (C3 - Ci) (C3 - Co) \
(II)'

{<^ (Z) - C] {0 (co" + Z)- C,} - (C, - C) (Ce - C3) j

where of the three constants Cj, c^, Cj one can be arbitrarily assigned.

We shall now very briefly consider these in turn.

135. So far as concerns the former class of equations satisfied by an even

doubly-periodic function, viz.,

cf>(z) + <f>(o) +z) =
I

(}>(z) <f>(o>'+z) = H \'

we proceed initially as in (§ 120) the case of an odd function. We have the

further equations

ct>(z) = <j>(-zl

<f)
(o) + z) = (p (w — z),

(f)
(o)' + z) =

(f)
(o)' — z).

* The systems obtained by the interchange of w, w', w" among one another in the equations

are not substantially distinct from the form adopted for the system I. ; the apparent difference

can be removed by an appropriate corresponding interchange of the periods.
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Taking z = — \w, the first gives

so that \(o is either a zero or an infinity.

If \(o be a zero, then

(|(y) = (^ (ft) + ^<w) = — 4* (2^) ^' t^^® fi^'^^ equation

= 0,

so that ^&) and ^co are zeros. And then, by the second equation,

are infinities.

If ^(o be an infinity, then in the same way !« is also an infinity ; and

then Q)' + ^o), co' + |&) are zeros. Since these amount merely to interchanging

zeros and infinities, which is the same functionally as taking the reciprocal of

the function, we may choose either arrangement. We shall take that which

gives ^ft), fft) as the zeros ; and &>' + ^(o, w + |&) as the infinities.

The function (/> is evidently of the second class, in that it has two distinct

simple irreducible infinities.

Because w' + ^o), &>' + %(£> are the irreducible infinities of {£), the four

zeros of ^' {z) are, by § 117, the irreducible points homologous with on",

co" + Q), (o" + &)', (o" 4- «", that is, the irreducible zeros of ^' {£) are 0, to, «', w".

Moreover

(/,(0) + </)(a)) = 0,

</)(a)') + <^(a)") = 0,

by the first of the equations of the system ; hence the relation between ^ {z)

and (/)' {z) is

</)'^ {z) = A[<^{z)-<^ (0)1 {(/, {z) - cf> (co)] [cf> (z) - </> (co')} [(/> (z) - cf> (co")]

= A{cp-^{0)-cf>^(z)]{c}>^co')-cf>^zy,

Since the origin is neither a zero nor an infinity of (z), let

(/,(^) = 0(O)(^,(i)

so that ^1 (0) is unity and <^/ (0) is zero ; then

cl>,'^z) = X^{l-cf>Hz)]{f.-cbnz)]

the differential equation determining cp^ (z).

The character of the function depends upon the value of /x and the

constant of integi-ation. The function maybe compared with en u, by taking

2co, 2co' = 4>K, 2K + 'UK' : and with -^ , by taking 2co, 2co' = 2K, UK',

which (§ 131, note) are the periods of these (even) Jacobian elliptic functions.

We may deal even more briefly with the even function characterised by

the second class of equations in § 134. One of the quantities Cj, c., c-i being

at our disposal, we choose it so that

Ci + C2 + C3 = ;

and then the analogy with the equations of Weierstrass's (p-function is

complete (see § 133).



CHAPTER XII.

Pseudo-Periodic Functions.

136. Most of the functions in the last two Chapters are of the type

called doubly-periodic, that is, they are reproduced when their arguments are

increased by integral multiples of two distinct periods. But, in §§ 127, 130,

functions of only a pseudo-periodic type have arisen : thus the ^-function

satisfies the equation

^(z + m2o) + in'2a)') = ^(z) + m2r] + iii2r}',

and the o--function the equation

a{z+ m2o) + m'2(ii') = (- 1
)""«'+'«+'«'' g2 (-/^.,+7«',') {z+rmo+m'o.-}

o- (^^y

These are instances of the most important classes : and the distinction

between the two can be made even less by considering the function

e^^^^ =^{z), when we have

^{z + m2o) + m'2oi') = e^'"" e-'"'"' ^ (z).

In the case of the ^-function an increase of the argument by a period leads

to the reproduction of the function multiplied by an exponential factor that

is constant, and in the case of the (r-function a similar change of the

argument leads to the reproduction of the function multiplied by an

exponential factor having its index of the form az + b.

Hence, when an argument is subject to periodic increase, there are three

simple classes of functions of that argument.

First, if a function /(2:) satisfy the equations

f{z + 2co)=fiz), f{z + 2co')=f{z),

it is strictly periodic : it is sometimes called a douhbj-peHodic function of the

first kind. The general properties of such functions have already been

considered.

Secondly, if a function F{z) satisfy the equations

F{z + 2(o)^^LF {z), F (z + 2(o') = ^'F (z),

F. 18
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where /i and fi! are constants, it is pseudo-periodic : it is called a douhly-

periodic function of the second kind. The first derivative of the logarithm

of such a function is a doubly-periodic function of the first kind.

Thirdh% if a function <^ (z) satisfy the equations

(f>(2+ 2a)) = e«^+* </) (z), <j>(z + 2co') = 6"''+^'
(f)

(z),

where a, h, a', h' are constants, it is pseudo-periodic : it is called a douhly-

periodic function of the thii'd kind. The second derivative of the logarithm

of such a function is a doubly-periodic function of the first kind.

The equations of definition for functions of the third kind can be

modified. We have

cf)(£+2(o + 2a)') = e«u^+-^<-')+6+«'^+6'
<^ (^)

_ gtt' {Z+2U,) +b'+az+b
j/j /^\

whence a'o) — aw' = — niiri,

where m is an integer. Let a new function E {z) be introduced, defined by

the equation

E {z) = e^+>^^ </) {z)
;

then X and fjb can be chosen so that E {z) satisfies the equations

E(z + 2(o) = E (z), E (z + 2co') = e^^+^ E (z).

From the last equations, we have

E {z + 2(o + 2a)') - e-4(z+2<o,+/j^ (^)

= 6-'^'+^E (z),

so that 2A(o is an integral multiple of 27ri.

Also we have E(z + 2a)) = e^(2^2u,)=+^(z+2co)
<^ (^ + 2a))

_. Qi\zuj+i\u}-+2iJ.o}+az+b J^ /^\

SO that 4\a) -\- a — 0,

and 4Xa)- -|- 2yu.a) 4-6 = (mod. 27rt).

Similarly, E {z -{- 2a)') = e^(^+2coV+^(z+2co')
(^ (^ + 2a)')

_. Qi\Z(o'+iku>'-+-2iJ.(o'+a'z+h' J^ /^N

so that 4Xa>' + a — A,

and 4X0)'" + 2fX(o' + b' = B (mod. 27ri).

From the two equations, which involve X and not fx, we have

A(o = a CO — aoi'

= — Trnri,

agreeing with the result with 2A(o is an integral multiple of 2'jri.

And from the two equations, which involve fx, we have, on the elimination

of /x and on substitution for X and A,

h'w — hw' — aoi' (o)' — o)) = Bw (mod. ^tti).
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If A be zero, then E(z) is a doubly-periodic function of the first kind

when e^ is unity, and it is a doubly-periodic function of the second kind

when e^ is not unity. Hence A, and therefore m, may be assumed to be

different from zero for functions of the third kind. Take a new function

^(z) such that

then <I> (z) satisfies the equations
mni

$ (^ + 2a)) = 4> (z), <t>(z + 2ft)') = e~
"^"^ O (z),

which will be taken as the canonical equations defining a doubly-periodic

function of the tJiird kind.

Ex. Obtain the valuen of X, fi, A, B for the Weierstrassian function (r{z).

We proceed to obtain some properties of these two classes of functions

which, for brevity, will be called secondary-peHodic functions and tertiar-i/-

periodic functions respectively.

Doubly-Periodic Functions of tlie Second Kind.

For the secondary-periodic functions the chief sources of information are

Hermite, Comptes Rendus, t. liii, (1861), pp. 214—228, ib., t. Iv, (1862), pp. 11—18,

85—91 ; Sur quelques applications des fonctions elliptiques, §§ i—ili, separate

reprint (1885) from Comptes Rendus ;
" Note sur la theorie des fonctions ellip-

tiques" in Lacroix, vol. ii, (6th edition, 1885), pp. 484—491 ; Cours d^Analyse,

(4"'= dd.), pp. 227—234.

Mittag-Leffler, Comptes Rendus, t. xc, (1880), pp. 177—180.

Frobenius, Crelle, t. xciii, (1882), pp. 53—68.

Brioschi, Comptes Rendus, t. xcii, (1881), pp. 325—328.

Halphen, Traite des foyictions elliptiques, t. i, pp. 225—238, 411—426, 438—442, 463.

137. In the case of the periodic functions of the first kind it was proved

that they can be expressed by means of functions of the second order in the

same period—these being- the simplest of such functions. It will now be

proved that a similar result holds for secondary-periodic functions, defined by

the equations

F{z + 2ft)) = ^lF{z), F(z + 2ft)') = fi'F{z).

Take a function G (z) =——:—yAr ^^ :

a {z)<T (a)

.1 1 y-» / « \ a- (z -\- a + 2(1)) .,,„,
then we have G (z + 2m) = --j\—-. ^-. 6*2+2x0,

^ ^ a(a)a-(z-^ 2&))

= e'^''+"-^G{z),

and G(z-\- 2ft)') = e^^+^A-' G (z).

The quantities a and X being unrestricted, we choose them so that

and then G(z), a known function, satisfies the same equation as F (z).

1 8—2
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Let u denote a quantity independent of 2, and consider the function

f(z) = F(z)G(u-z).

We have f(z + 2ay) = F{z + 2(o)G{u-z-2co)

= aF(z)-G(u-z)

=/(^)

;

and similarly f{z-\-2(o')=f{z),

so that/(2') is a doubly-periodic function of the first kind Avith 2&) and 2o)'

for its periods.

The sum of the residues of f{z) is therefore zero. To express this sum,

we must obtain the fractional part of the function for expansion in the

vicinity of each of the (accidental) singularities of /'(^). that lie within the

parallelogram of periods. The singularities of/(^) are those of G (u — z) and

those oi F(z).

Choosing the parallelogram of reference so that it may contain n, we have

z= u as the only singularity of G (u — z) and it is of the first order, so that,

since

G{^) — 7; + positive integral powers of ^

in the vicinity of ^= 0, we have, in the vicinity of it,

f{z) = [F (u) + positive integral powers of u — z] < 1- positive powers

V

= ^^ h positive integral powers of z — u
;

hence the residue o{f(z) for u is —F(n).

Let 2^ = c be a pole of F (z) in the parallelogram of order )i + 1 ; and, in

the vicinity of c, let

F{z) = j^^ + a ^ (^-^) + . . . + C„+,^ (j—^ + positive integral powers.

Then in that vicinity

G{u-z) = G(u-c)-(z-c}^^G{u-c) + ^^^^^~G{H-c)-...,

and therefore the coefficient of in the expansion off(z) for points in the

vicinity of c is

C,G(u-c) + C\~G(u-c) + C,~G(u-c)+... + Gn+^^^^,G(u-c),

which is therefore the residue of /'(^) for c.

This being the form of the residue of f{z) for each of the poles of F (z),

then, since the sum of the residues is zero, we have

-F{u) + 1 G,G(u -c) + C.~ G (u - c) + ... + Cn+, -f^ G (u - c)
au ail"

= 0,
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or, changing the variable

F{z) = t
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Gfi{z-c) + G.^^G{z-c)+...^-G,,^,~^G{z-c)
dz^^"

^'
^''^'dz-^'

where the summation extends over all the poles oi F{z) within that parallelo-

gram of periods in which z lies. This result is due to Hermite.

138. It has been assumed that a and \, parameters in G, are determinate,

an assumption that requires fju and //.' to be general constants: their values

are given by
7]a + ft)X = Mog /ti, 'n'a + (o'\ = ^ log fjb',

and, therefore, since rjco' — r]w = ± ^iir, we have

+ lira — w log yu, — &> log /x'l

+ %ir\ = — T] log yu. + ?? log /Lt j

'

Now \ may vanish without rendering G {z) a null function. If a vanish (or,

what is the same thing, be an integral combination of the periods), then G {z)

is an exponential function multiplied by an infinite constant when \ does not

vanish, and it ceases to be a function when \ does vanish. These cases must

be taken separately.

First, let a and A, vanish* ; then both /u, and yi! are unity, the function F
is doubly-periodic of the first kind ; but the expression for ^is not determinate,

owing to the form of G. To render it determinate, consider X, as zero and a

as infinitesimal, to be made zero ultimately. Then

G{z) =
o- {z) + aa' {z) +

a<j{z)
(1 + positive integral powers of a)

= - + ^ (^r) + positive powers of a.

Since a is infinitesimal, /a and yj are very nearly unity. When the

function F is given, the coefficients Cj, G.,,... may be affected by a, so that

for any one we have

Gh = bk + o-Jk + higher powers of a,

where 7;^ is finite ; and bk is the actual value for the function which is strictly

of the first kind, so that

the summation being extended over the poles of the function. Then retaining

only a~^ and a", we have

G,G(u-c) + G,^G(u-c) + + 6V,|"^G0.-c)
du dii"

= S^^ + S7,+S

= c„ + :£

d d'^
h,^{ii - c) + 6,^ ^(u - c) + . . . + 6„+i ^-Ti ^(" - c^

hX{u - c) + ... + hn+^ ^^ ^(u - c)

* This case is discussed by Hermite (I.e., p. 275).
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where Cq, equal to 271, is a constant and the term in - vanishes. This expres-

sion, AN-ith the condition Ib^ = 0, is the vahie of F (u) or, changing the variables,

we have

F{,) = C, + ^^b,^(z-c) + h,^J{z-c) + ... + K^,^-^^^{z-c)

with the condition S61 = 0, a I'esult agreeing with the one formerly (§ 128)

obtained.

When F is not given, but only its infinities are assigned arbitrarily, then

1C = because F is to be a doubly-periodic function of the first kind ; the

term - SC vanishes, and we have the same expression for F (z) as before.

Secondly, let a vanish* but not \, so that /u, and /j.' have the forms

We take a function g (2) = ^^i^{z)
;

then g{z-2(i)) = fi-^e^^{z-2w)

= yL.-^e^-{r(^)-2Vi

= fx-'{g{z)-2ine>^],

and g (z — '2(o') = /x'"~^ {g (z) — 27)' e^].

Introducing a new function H (z) defined by the equation

H(z) = F{z)g(u-z),

we have H (z + 2(o) = H{z)- 2^)6^ '«-^>F (z),

and H{z+ 2co') = H (z) - 2v'e^^''-'^ F(z).

Consider a parallelogram of periods which contains the point u ; then, if be

the sum of the residues of H (z) for poles in this parallelogram, we have

2'7rie=fR(z)dz,

the integral being taken positively round the parallelogram. But, by § 116,

Prop. II. Cor., this integral is

4e^" \o}i]'
f
e-A(P+W)7PQj + 2(ot)dt-a)'7] 1 e-^'i'+-''''' F{p + 2(o't)dt\

,(Jo .0 J

where j) is the corner of the parallelogi'am and each integral is taken for real

values of t from to 1. Each of the integrals is a constant, so far as concerns

u ; and therefore we may take

the quantity inside the above bracket being denoted by —^iirA.

The residue ofH (z) for z = u, arising from the simple pole of g (u — z), is

-^(w)asin§ 137.

If 2^ = c be an accidental singularity of F {z) of order n + 1, so that, in the

vicinity of 2 = c,

f(.)= c.^4^

+

(^4. C~o)
+ - + <^-.£ G4-o)

+ ^ (^ - ^)'

* This is discussed by Mittag-Leffler, (I.e., p. 275).
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then the residue of H {z) for z = c\s,

d d""

C\g {u-c) + C,-^^g(ii-c)+ ... + C\,+, ^^.gi^ - c) ;

and similarly for all the other accidental singularities of F {z). Hence

-F{^i)+^\G, + G„^^^ + ... + Gn^,f^}^g{u-c)^-Ae^-,

F{z) = A&^ + S
JC,

+ a ^^ + . . . + C„^,^| g{z- c),

where the summation extends over all the accidental sinrjidarities of F(z) in a

parallelogram of periods which contains z, and g {z) is the function e^^^(z).

This result is due to Mittag-Leffler.

Since //. = e'-'"^ and

g (z — c + 2(o) = fxg {z — c) + 2r]/jbe^'^~''\

we have

fj,F(z) = F{z + 2(o)

= fiAe'^+X^C\ + C,-^^+... + C,,^,^^^fig{z-c)

+ 2rjijLe^X (Ci + ax 4- ... + Cn+iX'')e-^' ;

and therefore 2 (Cj + CA + . . , + C,,+, X") e'^" = 0,

the summation extending over all the accidental singularities of F(z). The

same equation can be derived through fM'F{z) = F(z + 2ft)').

Again SOj is the sum of the residues in a parallelogram of periods, and

therefore

27ritC\=JF{z)dz,

the integral being taken positively round it. Up be one corner, the intcgi'al

IS

2ft) (1 -fx')l F(p + 2a)t)dt-2oj'(l -fx) [ F(p+2(o't)dt,
Jo Jo

each integral being for real variables of t.

Hermite's special form can be derived from Mittag-Leffler's by making \
vanish.

Note. Both Hermite and Mittag-Leffler, in their investigations, have

used the notation of the Jacobian theory of elliptic functions, instead of

dealing with general periodic functions. The forms of their results are as

follows, using as far as possible the notation of the preceding articles.

I. When the function is defined by the equations

F{z + 2K) = ixF {z), F{z^- 2iK') = fi'F (z),

then F{z) = x\c,+ C,^^+... + C,,^,^}^^G{z-c),

where G (^) -
-' ^^^-^ ^^ + "^V^wnere i^ {z) -
^^^^jj^^^

e^ ,
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(the symbol U denoting the Jacobian //-function), and the constants w and \

are determined by the equations

II. If both \ and « be zero, so that F{z) is a doubly-periodic function

of the first kind, then

with the condition 26i = 0.

III. If o) be zero, but not \, then

where
^^^^^'Hl^ '

the constants being subject to the condition

and the summations extending to all the accidental singularities of F(z) in a

parallelogram of periods containing the variable z.

139. Reverting now to the function F(z) we have G (z), defined as

a (z) a (a)
'

when a and \ are properly determined, satisfying the equations

G (z + 2co) ^ ,xG (z), G{z + 2(o') = fi'G{z).

Hence fl (z) = F(z)/G (z) is a doubly-periodic function of the first kind ; and

therefore the number of its irreducible zeros is equal to the number of its

irreducible infinities, and their sums (proper account being taken of multipli-

city) are congruent to one another with moduli 2co and 26)'.

Let Ci, Co,..., c„i be the set of infinities of F (z) in the parallelogram of

periods containing the point z ; and let 71, . . . , 7^ be the set of zeros of F(z) in

the same parallelogram, an infinity of order n or a zero of order n occurring

n times in the respective sets. The only zero of G (z) in the parallelogram is

congruent with — a, and its only infinity is congruent with 0, each being

simple. Hence the m+ 1 irreducible infinities of fl (z) are congruent with

Cl, Ci, Cn, . . . , Citi,

and its /i, 4- 1 irreducible zeros are congruent with

0, 7i, 70, ..., 7^;

and therefore 7n + l = fi + l,

— a + ^c = S7.
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From the first it follows* that the mimber of infinities of a doxihly-periodic

function of the second kind in a parallelogram ofperiods is equal to the number

of its zeros, and that the excess of the sum of the former over the sum of the

latter is congruent with

/(I)' , 6) , ,

± L^- log /^ - _; '%' ^

^-

The result just obtained renders it possible to derive another expression

for F {z), substantially due to Hermite. Consider a function

(T{z-c,)a{z-Co)...a-{z-Cm)

where p is a constant. Evidently Fi (z) has the same zeros and the same

infinities, each in the same degree, as F (z). Moreover

F, {Z + 2ft)) = F, (Z) e^l (2c- 2y) + 2pa.^

F, {Z + 2ft)') = F, (Z) e2V(2c-2y)+ -2pa.'_

If, then, we choose points c and y, such that

Sc — X7 = a,

and we take p = \ where a and \ are the constants of G (z), then

F, (z + 2ft)) = fiF, (z), F, (z + 2ft)') = fji'F, (z).

The function F^ (z)/F (z) is a doubly-periodic function of the first kind and by

the construction of F^ (z) it has no zeros and no infinities in the finite part of

the plane: it is therefore a constant. Hence

F{z) = A -J^:z^^(fz:h)--('-y^^ ^3,
(r{z — Cj)(r{z — Co)...a-{z — Cm)

where %c — S7 = a, and a and \ are determined as for the function G (z).

140. One of the most important applications of secondary doubly-periodic

functions is that which leads to the solution of Lame's equation in the cases

when it can be integrated by means of uniform functions. This equation is

subsidiary to the solution of the general equation, characteristic of the

potential of an attracting mass at a point in free space ; and it can be

expressed either in the form

^rv = (^^"^ sn^ z + B) w,

or in the form , „ = {A^ (z) + B] w,

* Frobenius, Crelle, xciii, pp. 55—68, a memoir which contains developments of the properties

of the function G (z). The result appears to have been noticed first by Brioschi, (Coiuj)te$ Uendns,

t. xcii, p. 325), in discussing a more limited form.
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according to the class of elliptic functions used. In order that the integral

may be uniform, the constant A must be ?i(?i+l), where n is a positive

inteo-er; this value of A, moreover, is the value that occurs most naturally in

the derivation of the equation. The constant B can be taken arbitrarily.

The foregoing equation is one of a class, the properties of which have

been established* by Picard, Floquet, and others. Without entering into

their discussion, the following will suffice to connect them with the secondary

periodic function.

Let two independent special solutions be g (z) and h (z), uniform functions

of z ; every solution is of the form ag (z) + ^h (z), where a and /3 are constants.

The equation is unaltered when z + 2q) is substituted for z ; hence g (z -{ 2cd)

and h (z + 2&)) are solutions, so that we must have

g(z + 2a)) = Ag (z) + Bh {z), h {z + 2oi) = Cg (z) + Dh (z),

where, as the functions are determinate. A, B,C,D are determinate constants,

such that AD — BG is different from zero.

Similarly, we obtain equations of the form

g{z + 2a,') = A'g (z) + B'h (z), h (z + '2o>') = Cg (z) + D'h {z).

Using both equations to obtain g{z + 2(o + 2a)') in the same form, we have

BC = B'C, AB' + BU = A'B + B'D
;

and similarly, for h (^ + 2a) + 2a)'), we have

CA' + DC = CA + D'G, BC = B'C
;

.u f
C' C' A-D A'-U

thereiore
b'^1^'~ '

—
B— ~ —

B'
— ~ ^'

Let a solution F (z) = ag (z) + hh {z)

be chosen, so as to give

F{z + 2(o) = fiF{z\ F{z-j-2a)') = fj,'F{z),

if possible. The conditions for the first are

aA+bC aB + bD=
7 = /*>

a

so that ajb (= ^) must satisfy the equation

A-D = ^B-~;

and the conditions for the second are

aA' + bC aB' + bD'=
T.

= /^ '

a

* Picard, Comptes Rendus, t. xc, (1880), pp. 128—131, 293—295; Crellc, t. xc, (1880), pp.

281—302.

Floquet, Comptes Rendus, t. xcviii, (1884), pp. 82—85 ; Ann. de VEc. Norm. Sup., 3™= Ser.,

t. i, (1884), pp. 181—238.
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SO thcat ^ must satisfy the equation

A'-D'=^B'-%.

These two equations are the same, being

Lot ^1 and ^2 be the roots of this equation which, in general, are unequal ; and

let fii, fii and /a^, yiio' he the corresponding values of /x, ix'. Then two functions,

say F^{z) and F^{z), are determined: they are independent of one another, so

therefore are g {z) and h {z) ; and therefore every solution can be expressed in

terms of them. Hence a linear differential equation of the second order, having

coefficients tJiat are doubly-periodic functions of the first kind, can generally he

integrated by means of doubly-'periodic functions of the second kind.

It therefore follows that Lamp's equation, which will be taken in the form

1 drw , -,. , , r,

can be integrated by means of secondary doubly-periodic functions's.

141. Let z = c be an accidental singularity of w of order m; then, for

points z in the immediate vicinity of c, we have

and therefore

1 dhu m -f m^ 2mp . . „- -ri; = ,
- - v2 + positive powers 01 z — c.w dz^ \Z — C) Z — G ^ ^

Since this is equal to w (?i + 1) ^ (-2) + i^

it follows that c must be congruent to zero and that ni, a positive integer,

must be n. Moreover, p = 0. Hence the accidental singularities of w are

congruent to zero, and each is of order n.

The secondary periodic function, which has no accidental singularities

except those of order n congruent to z — 0, has n irreducible zeros. Let them

be — tti, —a.,,..., —an', then the form of the function is

^ ^ <7{z-{-a,)a-{z + tt,) . . .o- (^ + an)
^p,

<T^{Z)

1 dw "
Hence - ^ = p -n^(z) -^ :£. t(^ + «,-),w dz '^ ^ ^ r=l

or, taking p = - S^(a^), we have

1 d'-w 1 fdw\'
and therefore ^ ^^ -^ (^-

j = n^. (z) -
^^^

^J (z + a..).
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But, by Ex. 3, § 131, wc have

^r = l\iO («,) - ^^ (^) j
^^

r = l «= 1 ] i'>
(ftr) " §> (z) '

i'>
(«*) " i^ (^)

by Ex. 4, § 181. Thus

Now

\j{ar)-i^(z) ' iH^h)-^^^)

_ 4^^^^ (z) - r/4J (^) - gr3 + ^o' (g,.) gj' (g,) - {^j' (a,) + ^J-' (g,)} ^j' (z)

where ^ ^ ^M + g.'V.) ^ _^.
^i> (g^) - ip (as)

Let the constants a be such that

g)' (gQ + g?^ (as) _^
^' («i) + g>^ (as)

_^

^ (aO - g> (tta) g> (tti) - gJ (tts)

g> (a.) - ^i) (aO ^i) (a,) - ^j (a,)

11 equations of which only n — 1 are independent, because the sum of the n

left-hand sides vanishes. Then in the double summation the coefficient of

^ -1 ^ ,
• (^' (cLr) — 9' (z) . 1

each 01 the tractions * -;-. —V-\ is zero ; and so
^(^)-^(g,)

I £ WS^^^ ^-:^«^)^H = 2.(.-l)s.(.) + 4(.-l) S ^.(ca2

1 d-w
and therefore " "j^s

= ^* (^' + 1) ^ (-2^) + (2« - 1) S ^i> (g,.)-

Hence it follows that

„ . , aiz + a-^)cr{z + ao)...(T{z + ar^ "^;_

satisfies Lames equation, pi^ovided the n constants a be determined hy the

preceding equations and hy tJie relation

''iU'r)

r-l
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Evidently the equation is unaltered when — 2 is substituted for 2 ; and

therefore

^ '
a'^{2)

is another solution. Every solution is of the form

MF{2) + N'F(-2),

where M and N are arbitrary constants.

Corollary. The simplest cases are when n = 1 and ii = 2.

When n = l, the equation is

1 d~W r. / \ n

w a2^ *

there is only a single constant a determined by the single equation

B = p(a),

and the general solution is

..a (2 + a) >, . ,_cr(2r — a) ...

o- {2) a {2)

When n — 2, the equation is

1 d-w „ . . ,,

»rf7^ =
"«'«+''•

The general solution is

^ ^ ^ a_{2^a)<T{2 + h)
^_,^(«)_,^(„) ^ ^,

a{2-a)<T{2- h)
^^^^^^ „^^^,^

a- {2) 0-- (^r)

where a and 6 are determined by the conditions

Rejecting the solution a+ b= 0, we have a and b determined by the eijuations

^ (a) + ^{b) = ^B, ^ (a) ^0 (b) = iB-^ - Ig,.

For a full discussion of Lame's equation and for references to the original sources of

information, see Halphen, Traite des fonctions elliptiques, t. ii, tihap. xii., in ]);irticular,

pp. 495 et scq.

E:v. When Lame's ecpiation has the form

—r5 =n{n-\-\) tc^ sn^ z — n,

obtain the solution for ?i = l, in terms of the Jacobian Theta-Functions,

Q{z) ^ e{z)

where co is determined by the equation dn^co = /t - /"^
; and discuss in particular the solution

when h has the values 1 -\-lc'-, 1, k'^.

Obtain the solution for «= 2 in the form

W= A y
dz |_ e{z)

„d
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where A and w are given by tlie equations

,
{U^ sn^ g - 1 - k^) (2F sn^ a - 1) (2 sn^ a - 1)~

3Fsn*a-2(l+/(.-2)su2(f + l
'

2
sn'* a (2F sn^ a - 1 — k'^)

3F sn* a- 2 (1 +B) sn2 a+ 1
'

and a is derived from h by the relation

/i = 4(l+F)-6Fsi^2„,

Deduce the three sohitions that occur when X is zero, and the two sohitions that occur

when X is infinite. (Hermite.)

Doubly-Periodic Functions of the Third Kind.

142. The equations characteristic of a doubly-periodic function <I> {z) of

the third kind are

^{z + 2&)) = <|) {z), ^ (^ + 2a)') ^e~ '^ ^ ^ {z),

where m is an integer different from zero.

Obviously the number of zeros in a parallelogram is a constant, as well as

the number of infinities. Let a parallelogram, chosen so that its sides

contain no zero and no infinity of ^ {z), have p, p + 2&), p -f 2&)' for three

of its angular points; and let a^, a.,, ..., ai be the zeros and Ci, ..., c„,, be the

infinities, multiplicity of order being represented by repetitions. Then using

d^ (2') to denote , [log<I>(2)|, we have, as the equations characteristic of

^{z + 2co) = ^(z), ^{z+2(o')^^(z)-''^^;
CO

and for points in the parallelogram

11 « 1
^{z)= 2 — 2 -^+H(z),

r=l Z — a.r s=i Z — Cs

where II (z) has no infinity within the parallelogram. Hence

2'7ri(l-n) = J^{z)dz,

the integral being taken round the parallelogram : by using the Corollary to

Prop. II. in § 116, we have

27r* {l — n) = —j — i j dz = 2ni7ri,

so that l = n + m:

or the algebraical excess of the number of irreducible zeros over the number of

irreducible infinities is equal to m.

A • • z ^ u
Again, smce = 1-1 —

,

Z — fJb Z — jJb

d c
we have S 2 \-l — n = z^ (z) — zH (z),

z — a z — c

and therefore 27ri (2a — 2c) = jz'^ {z) dz,
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the integral being taken round the parallelogram. As before, this gives

rp+2u}' rp+-2(a
C mTTI )

27ri (Sa - Sc) = 2a)>l> (z) dz - 2(o'^ (z) - — {z + 2a>') dz.
J J)

J 2) {
&>

J

The former integral is

2« ir-^^ dz

= 2ft) f
J) j

= — 2itnrip,

for the side of the parallelogram contains* no zero and no infinity of ^(z).

The latter integral, with its own sign, is

= +^' [(» + 2m + 2»')' - (« + 2a.')'l

= 2??i7rz (p + ft) + 2ft)').

Hence 2a — Sc = 7/i (ft) + 2ft)'),

giving ^Ae excess of the sum of the zeros over the sum of the infinities in any

parallelogram chosen so as to contain the vainahle z and to have no one of its

sides passing through a zero or an infinity of the function.

These will be taken as the irreducible zeros and the irreducible infinities

:

all others are congruent with them.

All these results are obtained through the theorem II. of § 116, which

assumes that the argument of to' is greater than the argument of ft) or, what

is the equivalent assumption (§ 129), that

rjU) — 7]'03 = ^iri.

143. Taking the function, naturally suggested for the present class by

the corresponding function for the former class, we introduce a function

^ (^) = Q^z^+^z <r(z-a,)cr(z-a,)...a(z-ai)

a-(z-Ci)(T{z-c.,)...(r(z-Cn)
'

where the a's and the c's are connected by the relations

Sa — iSc =m (ft) + 2ft)'), l — n = 7n.

Then <^ (z) satisfies the equations characteristic of doubly-periodic functions

of the third kind, if

I
= 4Xft) + 2m7;,

I k . 27ri = 4\ft)- + 2mr](o + 2/Lift) + niiri — 2^17] {w + 2&)')

;

{m-jTi . , - ,= 4A-ft) -f Imr]
,

ft)

k . 27ri = 4\ft)'- + 2m7]'Q)' + 2/jL(o' + nnri — 2mri' {co + 2ft)'),

* Both in this integral and in the next, which contain parts of the form I — , there is, as in

J w
Prop. VII., § 116, properly an additive term of the form 2Kiri, where k is an integer ; but, as there,

both terms can be removed by modification of the position of the parallelogram, and this modifi-

cation is supposed, in the proof, to have been made.
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k and k' being disposable integers. These are uniquely satisfied by taking

_ 1 7)17]

1 miri , . c\ ,x

fJL= ^ +771 {7} + 27]),

with k = 0, k' = 7n.

Assuming the last two, the values of \ and /j, are thus obtained so as to make

<f)
(z) a doubly-periodic function of the third kind.

Now let Oi, ..., a^ be chosen as the irreducible zeros of <I> (z) and Ci, ..., c„

as the irreducible infinities of <& (z), which is possible owing to the conditions

to which they were subjected. Then <I> (z)/(f) (z) is a doubly-periodic function

of the first kind : it has no zeros and no infinities in the parallelogram of

periods and therefore none in the whole plane ; it is therefore a constant, so

that

^ -I'^mz^+ll - + (v+-2ri)\ mz a iz — CI-,) (T (z — «..)• . . (T (z — ai)
^{z) = Ae -"^ ^^" ^ —. ^f—

7

-i Y {,^^ cr{z — Ci)(r{z-c.)...a-{2—Cn)

a representation of <^ (z) in terms of known quantities.

Ex. Had the representation been effected by means of the Jacobian Theta-Functions

which would replace a (z) by JI{z), then the term in 2- in the exponential would be absent.

144. No limitation on the integral value of 111, except that it must not

vanish, has been made : and the form just obtained holds for all values.

E(iuivalent expressions in the form of sums of functions can be constructed:

but there is then a difference between the cases of ni positive and m
negative.

If m be positive, being the excess of the number of irreducible zeros over

the number of irreducible infinities, the function is said to be of positive class

m ; it is evident that there are suitable functions without any nreducible

infinities—they are integral functions.

When m is negative (= — n), the function is said to be of negative class 71
;

but there are no corresponding integral functions.

145. First, let in he positive.

\. If the function have no accidental singularities, it can be expressed in

the form
Ae^-^i^ a(z- a,) a{z- o,). ..a{z- a,,,),

with appropriate values of \ and fx.

ii. If the function have n irreducible accidental singularities, then it has

m 4- 11 irreducible zeros. We proceed to shew that the function can be

expressed by means of similar functions of positive class m, with a single

accidental singularity.



145.] OF POSITIVE CLASS 289

Using \ and /x to denote

-\ —' and I + m (7; + 277),

which arc the constants in the exponential factor common to all functions of

the same class, consider a function, of positive class in with a single accidental

singularity, in the form

^"^ ^' ' <T{u-b,)cT {U - b,). ..a(u- b,n+i) <t(z- u)
'

where bi, b.2, ..., 6m are arbitrary constants, of sum s, and

m (ft) + 2ce)') = 6„i+i + Z>i + 6j + . . . 6,„ - ?f

^^ ^w+i -\- S — U.

The function i/r„j satisfies the equations
jmirzi

l/r„j (0 + 2«, «) = -»|r,„j {z, U), yp-rn. {z + 2&)', li) = 6 " l/r^ (^, u)
;

regarded as a function of z, it has u for its sole accidental singularity,

evidently simple.

The function -—7
r can be expressed in the form

t/t,,, {z, U)

gA(«^-2^,+^(«-z)
o-(u -z) a{u-h)...a- {u - b,n) <t[s- m {(o + 2a)^)}

<j{z — bi) (r{z — b„,) a- {u- z — s + m(Q) + 2a)')]
'

Regarded as a function of u, it has z,bi, ..., b,n f )r zeros and z + s — m{Q) + 2a)')

for its sole accidental singularity, evidently simple : also

z + b^+ ... + b,n —[z + s — m{w-\- 2&)')} = m (« + 2&)').

Hence owing to the values of X and u,, it follows that -,—>
, , when re-

garded as a function of u, satisfies all the conditions that establish a doubly-

periodic function of the third kind of positive class m, so that

1 _ 1

-^.n (z, u + 2q))~ yjr,^ {z, u)
'

-1 _ niTrzi
1

= e
-v/r,,,, {z, U + 2&)') ->/r„, {z, 11)

'

and therefore
nvnzi

^,n {z, u + 2(o) = -»/r,„ {z, n), -v/r,,, (z, u + 2co') = e~^ y{r„^ {z, ii).

Evidently i/r^ (z, n) regarded as a function of w is of negative class m : its

infinities and its sole zero can at once be seen from the form

ylr,„ (z, h) = eM^»-"')+F(2-«)
oM;^ -h). ..a-jz- 6„,) a {u - z - s + m (co + 2ft)')}

"
' (r(u — z)a-{ii — bi)...cr{ii — by,)(r{s — 'm((o+2(o')}'

Each of the infinities is simple. In the vicinity of u = z, the expansion of

the function is

—J + positive integral powers of u — z:

F- 19
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and, in the vicinity of u = h,., it is

^'' ^
- + positive intesral powers of n — hr,

u — Or

where Gr{z) denotes

^'
' ' '

(T {hr-b,)...a {hr-hr^;} a{hr-h,.+i)...a{h,.-hra) <r[s-m{(o+ ^co')Y

and is therefore an integral function of z of positive class in.

Let ^ (ii) be a doubly-periodic function of the third kind, of positive class

m ; and let its irreducible accidental singularities, that is, those which occur

in a parallelogi-am containing the point u, be a^ of order 1 + fii, a. of order

1 + fjh, and so on. In the immediate vicinity of a point a,., let

^ ^
V ail du- dw^w u — «;.

Then proceeding as in the case of the secondary doubly-periodic functions

(§ 137), we construct a function

F{u) = ^{u)^rn{z, «)•

We at once have F {u + 2(o) = F {u) = F {u -f 2«'),

so that F{u) is a doubly-periodic function of the first kind; hence the sum

of its residues for all the poles in a parallelogram of periods is zero.

For the infinities of F {ii), which arise through the factor ^m{z, «X we

have as the residue for ?/ = z

and as the residue for ii. — h,., w^here ?• = 1, 2, ..., m,

^{h,)Gr{z).

In the vicinity of a,., we have

f,„ {z, ii) = y^,n (z, a,) + (u- a,) f,„' (z, a,) + ^" ~'^''''
yjrj' {z, a,) + ...,

where dashes imply differontiation of -v/r,,, (z, u) with regard to u, after which

u is made equal to a,. ; so that in <I> (u) -\/r„i (z, ^i) the residue for u = a,., where

r = l, 2,..., is

Er (z) = Ar fm (z, a.) + B, ^lr,„' (z, a,) + C, f,," (z, «,) + ...+Mr ^|rJ^'^ (z, a,).

Hence we have

m
-^(z)+ S ^(b,)Gr{z)+ 2 F,{z) = 0,

r=l s=l

m
and therefore ^(z)= 2 Es{z)+ 2 ^^ (K) Gr{z),

s=l r=l

giving the expression of ^ {z) by means of douhly-periodic functions of the

third kind, which are of positive class m and have either no accidental singu-

larity or only one and that a simple singularity.
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The m quantities h^, ..., 6,„ are arbitrary; the simplest case Avhich occurs

is when the m zeros of <E> (z) are different and are chosen as the values

of 61, ..., h„i- The value of ^(z) is then

^{z)= X E,(z),
.9=1

where the summation extends to all the irreducible accidental singularities

;

while, if there be the further simplification that all the accidental singularities

are simple, then
<^{z) = Ai i/r,„ (z, a,) + A, f,„ {z, oTo) + . . .,

the summation extending to all the irreducible simple singularities.

The quantity -^i^ (z, ar), which is ec^ual to

g;„2._„^2,4.^(^_a^,
0-{z-b,)...(T(z- h,,,) a{z + lb- m (O) + 26>0 - (Xr\

cr (a^ — 61) . . . o- (a,. — h,n) <T {26 — m (&> + 2&)')| a {z — ctr)
'

and is subsidiary to the construction of the function E (z), is called the

simple element of positive class m.

In the general case, the portion

t<P(b,)Gr(z)

gives an integi'al function of z, and the portion 2 Eg (z) gives a fractional

function of z.

146. Secondly, let m be negative and equal to — n. The equations

satisfied by <& (z) are
nnzi

^ (^ + 26,) = (I> (2), ^ (z + 2(o') = e'^ ^ (z),

and the number of irreducible singularities is greater by n than the number

of irreducible zeros.

One expression for <I> (z) is at once obtained by forming its reciprocal,

which satisfies the equations

1 1 1 -^^' 1
e

^{z + 2co) ^(z)' ^(z + 2(o') ^{z)'

and is therefore of the class iust considered : the value of , , ^ is of the

form
%E,{z) + %ArGr{z).

For purposes of expansion, however, this is not a convenient form as it gives

only the reciprocal of (p (z).

To represent the function, Appell constructed the element

nsiri

Xn (^. y) = s- ^ ^ cot -^
f.

^

10—2
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which, since the real part of co'lcoi is positive, converges for all values of z and

y, except those for which
2 = y (mod. 2(1), 2&)').

For each of these values one term of the series, and therefore the series

itself, becomes infinite of the first order.

Evidently Xn i^' y-\-2(o) = Xn {^> y\
nrryi

Xn{2,y + ^o)') = e " xn(^>y);

therefore in the present case

n(y) = ^(y)Xn{2,y),

regarded as a function of y, is a doubly-periodic function of the first kind.

Hence the sum of the residues of its irreducible accidental singularities

is zero.

When the parallelogi'am is chosen, which includes z, these singularities

are

(i) y = z, arising through Xn {^, V)

(ii) the singularities of <l> (y), which are at least n in number, and are

n + I when $ has I irreducible zeros.

The expansion of Xn (^> i/).
in powers of y — z, in the vicinity of the point

z, is

+ positive integral powers oi y — z;
y-z

therefore the residue of H {y) is

- ^ (z).

Let a,, be any irreducible singularity, and in the vicinity of a,, let <& {y) denote

\ dy dy- dyPJ y - ctr

+ positive integral powers of y — OLr,

where the series of negative powers is finite because the singularity is

accidental ; then the residue of O {y) is

ArXn {2, a,) + Br Xn {z, O.) + Cr Xn' {z, tt,) + . . . + P, X»'^" {z, tt,),

where Xn^^ {z, «}) is the value of

d'^Xn (z, y)

dy^

when y = OLr after differentiation. Similarly for the residues of other singu-

larities : and so, as their sum is zero, we have

^{z) = l.{Ar Xn {Z, a,) + Br Xn {z, «,)+..•+ P, %n'^' {z, Of,)},

the summation extending over all the .singularities.
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The simplest case occurs when all the N (>n) singularities a are accidental

and of the first order ; the function fl> (2) can then be expressed in the form

A Xn {z, a,) + A. xn {z, a.) + . . . + ^.v Xn (z, a^)-

The quantity
p^;,^ (2, a), which is equal to

TT *=^ '^'{(*-i)<-'+a}
^ TT (2 - a - 2say')

is called the simple elementf07^ the expression of a doubly-periodic function of
the third kind of negative class n.

Ex. Deduce the result

TT SUM ,= -»= \ 2K j

•

147. The function ^.n {z, y) can be used also as follows. Since
;)^„i, {2, y),

(|ua function of y, satisfies the equations

Xm {z, y + 2o}) = Xm (z, y),
mnyi

Xm {z, y + 2ft,') = e " x„, {2, y),

which are the same ecpiations as are satisfied by a function of y of positive

class m, therefore Xm i'^>
z), which is equal to

TT «^" *"*"''{3+ (*-l)<o'} ^ TT (a - ^ - 25ft,')

g- S e cot
,

2cOs=-^ ift)

being a function of 2, satisfies the characteristic equations of § 142 ; and, in

the vicinity of ^r = a,

Xm («) z) = h positive integral powers of ^ — a.

If then we take the function (1> (z) of § 145, in the case when it has simple

singularities at ai, ct.,, ... and is of positive class ni, then

^ (2) + A, Xm (a, , 2) + A., x,n (a,, 2)+...

is a function of positive class m without any singularities: it is therefore

equal to an integral function of positive class m, say to G {2), where

G {2) = Ae^'+i^'o- {2 - a,) ...ct{2- ((,„),

so that ^(2) = G(2)-A, Xm {a„2)-A. Xm («2, z)- ....

Ex. As a single example, consider a function of negative class 2, and let it have no

zero within the parallelogram of i-eference. Then for the function, in the canonical

product-form of § 143, the two irreducible infinities arc subject to the relation

Ci+ C2=2((a + 2c»'),

, , . . . "z'^-p+'i.+v). 1
and the function IS ^iz) = Ke'^ v" f r

—

-. r.
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The simple elements to express * (z) as a sum ai-e

2'«« ,, ,< ,
, ,

^•i(^"'^i) =££' " cot-(s-c-i-2.a,),

X2(^"'''2)
=^2/ - cot

2^ (.+ c,-2«- 4.-2.0,)

= ~e'^ 2e" cot — (2+ Ci-2/-a))
2a) -00 2q)

after au easy reduction,

in-!

(t'l- 0) )

The residue of *(;) for c^, which is a simple singularity, is

and for c.^, also a simple singularity, it is

a- (Cj - Ci)

A, —{ri-Ci) — (r,-2a))

SO that -J=-e" =-c"

Hence the expression for * (s) as a sum, which is

-•llX2(--, q)+-^^2X2(-~,C.,),

— Cl

becomes A
j l^., (--, Cj) - c "

X2 (^, - ^"i)}

;

that is, it is a constant nuiltiple of

ni -ni

Agam, <I>(s) = A6" ^" '

= -K ,ai \ o) •'

-^^—
o- (2(;i)

0-(2-Ci)o-(3+ Ci)'

on changing the constant factor. Hence it is possible to determine L so that

Tsi ni

^(z) = e " "'

X2 (2, Cj) - e^
''

;j'2 (-, - Ci).

Taking the residues of the two sides for z= Cj^, we have

and therefore finally we have

T) ni ni

•I (5"._c2)
_"^

.2c)
-"^" "^^

^
" " -7 -^N^^-^ = « " X-> (-, c) - e " Y., (i, - c)

cr(s-c)(r(s+ c) "^^ ^ ' -^
A2V > ;

TT » 2*(s-l),rr-
J

(2*-])'^'''> - -(2S-1)—

'

= 2^?.^ "V
'- ^ot-(.-c,-2..')-^ " cot^^^(. + c,-2W)|,

the right-hand side of which admits of further modification if desired.
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Many examples of such developments in trigonometrical scries are given by Hermite*,

Biehlert, Halphen|, Aj)pell§, and Krause||.

148. We shall not further develop the theory of these uniform doubly-

periodic functions of the third kind. It will be found in the memoirs of

Appell§ to whom it is largely due; and in the treatises of Halphen**, and

of Rausenberger'f-f-.

It need hardly be remarked that the classes of uniform functions of a

single variable which have been discussed form only a small proportion of

functions reproducing themselves save as to a factor when the variable

is subjected to homographic substitutions, of which a very special example

is furnished by linear additive periodicity. Thus there are the various

classes of pseudo-automorphic functions, (§ 305) called Thetafuchsian by Poin-

care, their characteristic equation being

for all the substitutions of the group determining the function : and other

classes are investigated in the treatises which have just been quoted.

The following examples relate to particular classes of pseudo-periodic

functions.

Ej). 1. Shew that, if F{z)hc a uniform function satisfying the equations

where b is a primitive ?Mth root of unity, then F{z) can be expressed in the form

where f{z) denotes the function

,,H,,(,_|),.,(..^»), ..-4-?^");
and prove that \F{z)ch can be expressed in the form of a doubly-periodic function

together with a sum of logarithms of doubly-periodic functions with constant coefficients.

(Goursat.)

* Coviptes Eendus, t. Iv, (1862), pp. 11—18.

t Sur les dcveloppcments en series des fonctions douhlcment pcriodiques de troisieme espece,

(Th^se, Paris, Gauthier-Villars, 1879).

J Traite des fonctions elliptiques, t. i, chap. xiii.

§ Amuiles de I'Ec. Norm. Sup., 3"'= S6r., t. i, pp. 135—164, t. ii, pp. 9—36, t. iii, pp. 9—42.

II
Math. Ann., t. xxx, (1887), pp. 425—436, 516—534.

** Traite des fonctions elliptiques, t. i, chap. xiv.

+t Lehrbiich der Theorie der periodischen Functioneii, (Leipzig, Teubner, 1884), where further

references arc given.
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Ex. 2. Shew that, if a pseudo-periodic function be defined by the equations

f{z+ 2a>')=f{z) + X',

and if, iu the parallelogram of periods containing the point z, it have infinities c, ... such

that iu their immediate vicinity

then/ (2) can be expressed in the form

the summation extending over all the infinities of/ (z) in the above parallelogram of periods,

and the constants Cj, ... being subject to the condition

+ i7r2 Cj= Xft)' — X'o).

Deduce an expression for a doubly-periodic function (p {z) of the third kind, by

assuming

/(.) =|i|. (Halphen.)

Ex. 3. If tS{z) be a given doubly-periodic function of the first kind, then a

]iseudo-periodic function F{z), which satisfies the equations

F{z + 2<o)= F{z),

niriz

Fiz+ 2a>')= e^>S{z)F(z),

where n is an integer, can be expressed in the form

where A is a constant and n (z) denotes

g + G+.(i;,+(7,.|+Z),.|,+ )f(.-U

the summation extending over all points b,. and the constants B,. being sulyect to the

relation

2B,= -^.

Explain how the constants h, G and B can be determined. (Picard.)

Ex. 4. Shew that the function F{z) defined by the equation

F{z)="^i s2"+'(l-s2")2,

for values of \z\, which are <1, satisfies the equation

F{z^) = F{z);

and that the function E-,(x)= 2 -,-., ,^^-
,

where ^ (x) = x'^ - 1, and (f)n{x), for positive and negative values of n, denotes ^ [^ ((^ cf) (x)}],

(f)
being repeated n times, and a is the positive root of a^ — a-l=0; satisfies the equation

F,{x^-l) = F,(x)
for real values of the variable.

Discuss the convergence of the series which defines the function F^ (x). (Appell.)



CHAPTER XIII.

Functions possessing an Algebraical Addition-Theorem.

149. We may consider at this stage an interesting set* of important

theorems, due to Weierstrass, which are a justification, if any be necessary,

for the attention ordinarily (and naturally) paid to functions belonging to

the three simplest classes of algebraic, simply-periodic and doubly-periodic

functions.

A function <^ (t<) is said to possess an algebraical addition theorem, when

among the three values of the function for arguments u, v, and u + v, where a

and V are general and not merely special arguments, an algebraical equation

exists
-f-

having its coefficients independent of u and v.

150. It is easy to see, from one or two examples, that the function does

not need to be a uniform function of the argument. The possibility of

multiformity is established in the following proposition

:

A function defined by an algebraical equation, the coefficients of luhich are

uniform algebraical functions of the argument, or are uniform simplg-periodic

functions of the argument, or are uniform doubly-periodic functions of the

argument, possesses an algebraical addition-theorem.

* They are placed in the forefront of Schwarz's account of Weierstrass's theory of elliptic

functions, as contained in the Funncln und Lchrsiltze zum Gchrauche dcr clUptischen Functioncn

;

but tlicy are there stated (§§ 1^3) without proof. The only proof that has appeared is in a

memoir by Phragmen, Acta Math., t. vii, (1885), pp. 33—42; and there are some statements

(pp. 390—393) in Biermann's Theorie der anahjtischcn Functioncn relative to the theorems. The
proof adopted in the text does not coincide with that given by Phragmen.

t There are functions which possess a kind of algebraical addition -theorem ; thus, for

instance, the Jacobian Theta-functions are such that Qj^(u + v)Q lu-v) can be rationally ex-

pressed in terms of the Theta-functions having u and v for their arguments. Such functions

are, however, naturally excluded from tlie class of functions indicated in the definition.

Such functions, however, possess what may be called a ntultipltcation-tlicorem for multipli-

cation of the argument by an integer, that is, the set of functions 9 (inu) can be expressed

algebraically in terms of the set of functions (((). This is an extremely special case of a set

of transcendental functions having a multiplication-theorem, which are investigated by Poincare,

LiouviUe, 4°"= Ser., t. iv, (1890), pp. 313—3G5.
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First, let the coefficients be algebraical functions of the argument u. If

the function defined by the equation be U, we have

U"% (w) + U»'-'gi {u)+...+ rjn, (n) = 0,

where go{u), gx{u), ...,gm(u) are rational integral algebraical functions of u

of degree, say, not higher than n. The equation can be transformed into

u-f, ( U) + u-^f, {U)+...+MU) = 0,

where /o(f/), fi{U), •-, fn{U) are rational integral algebraical functions of

U of degree not higher than m.

If V denote the function when the argument is v, and W denote it when

the argument is u + v, then

v-f, ( F) + v-^f, ( F) + . . . +/, ( F) = 0,

and {u + vYf, ( W) + {u + vy-'f, ( F) +...+/,( F) = 0.

The algebraical elimination of the two quantities u and v between these

three equations leads to an algebraical equation between the quantities

f {U), /(F) and f {W), that is, to an algebraical equation between U, V, W,

say of the form
G{U,V, W) = 0,

where G denotes an algebraical function, with coefficients independent of

u and V. It is easy to prove that G is symmetrical in U and F, and that

its degree in each of the three quantities U, V, W is mw^ The equation

G = implies that the function U possesses an algebraical addition-theorem.

Secondly, let the coefficients* be uniform simply-periodic functions of

the argument w. Let « denote the period: then, by § 113, each of these

functions is a rational algebraical function of tan — . Let ti' denote
CO

tan — ; then the equation is of the form
ft)

U'>% {u') + U'^-'g, {u') + . . . + g,n {li) = 0,

where the coefficients g are rational algebraical (and can be taken as

integral) functions of u'. If p be the highest degree of u' in any of them,

then the equation can be transformed into

where fo(U), fi{U), ..., fp{U) are rational integral algebraical functions of

U of degree not higher than m.

* The limitation to uniformity for the . coefficients has been introduced merely to make the

illustration simpler; if in any case they were multiform, the equation would be replaced by

another which is equivalent to all possible forms of the first arising through the (finite)

multiformity of the coefficients : and the new equation would conform to the specified

conditions.
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Let v denote tan— , and w' denote tan — ^ '
\ then the corresponding

values of the function are determined by the equations

and wVo ( ^) + w'v-^f^ ( IT) + . . . +A ( li^) = 0.

The relation between o! , v, w is

u'v'w + XI -\- V — w' — 0.

The elimination of the three quantities u , v' , w' amt^ig the f(jur eciuations

leads as before to an algebraical equation

G{U, V, W) = 0,

where G denotes an algebraical function (now of degree mp-) with coefficients

independent of u and v. The function U therefore possesses an algebraical

addition-theorem.

Thirdly, let the coefficients be uniform doubly-periodic functions of the

argument u. Let w and co' be the two periods ; and let ^.> (u), the Weier-

strassian elliptic function in those periods, be denoted by |. Then every

coefficient can be expressed in the form

M+N£{u)
L

where L, M, N are rational integral algebraical functions of ^ of finite

degree. Unless each of the quantities N is zero, the form of the eipiation

when these values are substituted for the coefficients is

so that A^-^B^{^^^-g.^-fj.:)-

and this is of the form

U'^O. (D + U--^g, (^) + . . . + g.,n (^) = 0,

where the coefficients g are rational algebraical (and can be taken as integral)

functions of ^. If q be the highest degree of ^ in any of them, the equation

can be transformed into

^^/o(^) + ^^-'/:(tO + ••• +f,{U) = 0,

where the coefficients f are rational integral algebraical functions of U of

degree not higher than 2?n.

Let 7] denote ^ {v) and ^ denote g> {u + v) ; then the corresponding values

of the function are determined by the equations

v%{y)-^'n''-\MV) + +A(>^)=o,
and rV;(^n + r^-yo(Tf)+ +f,{W) = 0,

By using Ex. 4, § 131, it is easy to shew that the relation between |, ?/, ^ i«

l«(^ + 77 + r)-^(|-^)-^-8(^+7; + ^){4(p + 7r)-i/.(^ + '7)-2i/3l

+ (4|- + 4|7; + 471- - r/,)^ = 0.
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The elimination of ^, ?;, ^ from the three equations leads as before to au

algebraical equation

G(U, V, W) = 0,

of finite degree and with coefficients independent of u and v. Therefore in this

case also the function U possesses an algebraical addition-theorem.

If, however, all the quantities N be zero, the equation defining U is of the

form

U^ho (I) + U-^-'h, (I) + . . . + h„, (I) = 0,

and a similar argument then leads to the inference that U possesses an

algebraical addition-theorem.

The proposition is thus completely established.

151. The generalised converse of the preceding proposition now suggests

itself : what are the classes of functions of one variable that possess an alge-

braical addition-theorem? The solution is contained in Weierstrass's theorem:

—

An analytical function ^ (u), which possesses an algebraical theorem, is

either

(i) an algebraical function of u ; or

(ii) an algebraical function of e " , luhere co is a suitably chosen

constant ; or

(iii) an algebraical function of the elliptic function (^{u), the periods—or

the invariants g. and g.^
—being suitably chosen constants.

Let U denote 0(u).

For a given general value of u, the function U may have m values where,

for functions in general, there is not a necessary limit to the value of m ; it

will be proved that, when the function possesses an algebraical addition-

theorem, the integer m must be finite.

For a given general value of U, that is, a value of U when its argument is

not in the immediate vicinity of a branch-point if there be branch-points, the

variable u may have j) values, where j) may be finite or may be infinite.

Similarly for given general values of v and of V, which will be used to

denote (j) {v).

First, let p be finite. Then because u has p values for a given value of U
and V has j) values for a given value of V, and since neither set is afiected by the

value of the other function, the sum u + v has p- values because any member of

the set u can be combined with any member of the set v ; and this number

P' of values oi u + v is derived for a given value of U and a given value of V.

Now in forming the function (f)(u + v), which will be denoted by W, we

have m values of W for each value of u + v and therefore we have mp" values

of W for the whole set, that is, for a given value of U and a given value of V.



151.] POSSESSING AX ADDITION-THEOREM 301

Hence the equation between U, V, W is of degree* mp- in W, necessarily

finite when the equation is algebraical ; and therefore ni is finite.

Because m is finite, U has a finite rnimber m of values for a given value of

n ; and, because p is finite, n has a finite number p of values for a given value of

U. Hence U is determined in terms of n hy an algebraical equation of degree

m, the coefficients of which, are rational integral algebraical functions of

degree^:); and therefwe U is an algebraic function of u.

152. Next, let ^j be infinite ; then (see Note, p. 303) the system of values

may be composed of (i) a single simply-infinite series of values or (ii) a finite

number of simply-infinite series of values or (iii) a simply-infinite number of

simply-infinite series of values, say, a single doubly-infinite series of values or

(iv) a finite number of doubly-infinite series of values or (v) an infinite

number of doubly-infinite series of values where, in (v), the infinite number
is not restricted to be simply-infinite.

Taking these alternatives in order, we first consider the case where the p
values of u for a given general value of U constitute a single simjily-infinite

series. They may be denoted by f {n, n), where n has a simply-infinite

series of values and the form ofy is such thaty(?/, 0) = u.

Similarly, the p values of v for a given general value of V may be denoted

by/(?;, n), where n has a simply-infinite series of values. Then the different

values of the argument for the function W are the set of values given by

/(«, n)+f{v, n),

for the simply-infinite series of values for n and the similar series of values

for n'.

The values thus obtained as arguments of W must all be contained in

the series f{u-\-v, n"), where n" has a simply-infinite series of values; and,

in the present caso,/(« + v, n") cannot contain other values. Hence for some
values of n and some values of n', the total aggi-egate being not finite, the

equation

f{u, n) +f(v, n') =f{u + V, n")

must hold, for continuously varying values oi u and v.

In the first place, an interchange of u and v is equivalent to an interchange

of n and n on the left-hand side ; hence n" is symmetrical in n anfl n'.

Again, we have
9/'(w, n) _ df{iL -f V, n")

du d {u + v)

Jfjv,r^
dv '

* The degree for special functions may be recluceil, as in Cor. 1, Prop. XIII, § 118; but in no
case is it increased. Similarly modifications, in the way of finite reductions, may occur in the

succeeding cases ; but they will not be noticed, as tliey do not give rise to essential modification

in the reasoning.



302 FORM OF ARGUMENT [152.

SO that the form of f(u, ?i) is such that its first derivative with regard to u is

independent of u. Let 6 {n) be this vahie, where 6 {n), independent of ?/, may
be dependent on v ; then, since

df{u,n) _

we have /O'j '0 = ^'^ ('0 + "^ (")>

yjr (7t) being independent of u. Substituting this expression in the former

equation, we have the equation

uO (n) + ^Jr {n) + v9 (n) + i/r («') = (u + v) 6 {n") + ^/r {n"\

which must be true for all values of u and v ; hence

e (n) = e {n") = e {n'),

so that 9{n) is a constant and equal to its value when n = 0. But when n is

zero,y(ii, 0) is u ; so that 6 (0) = 1 and \/r (0) = 0, and therefore

f{u, n)= u + y\r{n),

where y^ vanishes with n.

The equation defining -v^ is

for values of n from a singly-infinite series and for values of n from the same

series, that series is reproduced for n". Since i/r (») vanishes with n, we take

i/r {n) = nx («),

and therefore n% (n) + n'x (n) = n"x (n").

Again, when n vanishes, the required series of values of n" is given by taking

n" = n ; and, when n' does not vanish, n" is symmetrical in n and n, so that

we have
n" = 11 + 71 + nn'X,

where X is not infinite for zero or finite values of n or n'. Thus

"X (") + '^'x ("') "= ('' + ^^' + ""'^) X (^^ + "' + "'^'''^)-

Since the left-hand side is the sum of two functions of distinct and inde-

pendent magnitudes, the form of the equation shews that it can be satisfied

only if

X = 0, so that n" = n + n'

:

and X (") = X ("")

= %(A
so that each is a constant, say (o ; then

f{u, n) = u + nw,

which is the form that the series must adopt when the series f{u + v, n") is

obtained by the addition off(u, n) iindf(v, n').
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It follows at once that the single series of arguments for W is obtained,

as one simply-infinite series, of the form u + v + n"(o. For each of these

arguments we have m values of W, and the set of m values of W is

the same for all the different arguments ; that is, W has m values for a

given value of U and a given value of V. Moreover, U has m values for each

argument and likewise V\ hence, as the equation between U, V, W is of

a degree that is necessarily finite because the equation is algebraical, the

integer m is finite.

It thus appears that the function U has a finite number m of values for

each value of the argument n, and that for a given value of the function the

values of the argument form a simply-periodic series represented by u + nw.

But the function tan
[
—

j
is such that, for a given value, the values of the

argument are represented by the series u + nw ; hence for each value of

tan [
— \ there are m values of U and for each value of U there is one value

of tan — . It therefore follows, by §§ 113, 114, that between U and tan (—
j

there is an algebraical relation which is of the first degree in tan — and the

mth degi'ee in U, that is, U is an algebraic function of tan . Hence U is

irtu

an algebraic function also of e "
.

Note. This result is based upon the supposition that the series of argu-

ments, for which a branch of the function has the same value, can be arranged

in the form/(?t, n), where n has a simply-infinite series of integral values. If,

however, there were no possible law of this kind—the foregoing proof shews

that, if there be one such law, there is only one such law, with a properly

determined constant w—then the values would be represented by u^, Uo, ...,Up

with p infinite in the limit. In that case, there would be an infinite number of

sets of values for u-\- v oi the type u^ + v^, where \ and /x might be the same

or might be different ; each set would give a branch of the function W and then

there would be an infinite number of values of W corresponding to one branch

of U and one branch of V. The ecjuation between U, V and W would be of

infinite degree in W, that is, it would be transcendental and not algebraical.

The case is excluded by the hypothesis that the addition-theorem is alge-

braical, and therefore the equation between U, V and W is algebraical.

153. Next, let there be a number of simply-infinite series of values of

the argument of the function, say q, where q is greater than unity and

may be either finite or infinite. Let iti,Ui, ..., tiq denote t^^ical members
of each series.

Then all the members of the series containing ?(i must be of the form
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fi{i(i> n), for an infinite series of values of the integer n. Otherwise, as in the

preceding note, the sum of the values in the series of arguments u and of

those in the same scries of arguments v would lead to an infinite number of

distinct series of values of the argument u + v, with a corresponding infinite

number of values W ; and the relation between U, V, W would cease to be

algebraical.

In the same way, the members of the corresponding series containing v^

must be of the formyi(yi, n) for an infinite series of values of the integer n'.

Among the combinations

fi(uuri)+fi(vi, n')

the simply-infinite series fi{u-^+v-^, n") must occur for an infinite series

of values of ?i"; and therefore, as in the preceding case,

/i(«i, n) = 2(i + 7J&)i,

where W] is an appropriate constant. Further, there is only one series of

values for the combination of these two series ; it is represented by

Ui -f Vi + 'h"(Wi.

In the same way, the members of the series containing «„ can be repre-

sented in the form lu + nwo, where Wo is an appropriate constant, which may

be (but is not necessarily) the same as w^ ; and the series containing u.^,

when combined with the set containing v^, leads to only a single series

represented in the form u.,-\-v» + n"(o.,. And so on, for all the series in order.

But now since u. -t- tiuw.,, where m., is an integer, is a value of u for a given

value of U, it follows that U (u. + m-.w.) = U (u.) identically, each being equal

to U. Hence
U (»i 4- niiWi + m.M..) = U («i -f ?ni&)i) = U{uj) = U,

and therefore u^ + viiOJi + m.fi)., is also a value of u for the given value of U,

leading to a series of arguments which must be included among the original

series or be distributed through them. Similarly u^ -H Sm^eo^, where the

coefficients m are integers and the constants co are properly determined,

represents a series of values of the variable «., included among the original

series or distributed through them. And generally, when account is taken of

all the distinct series thus obtained, the aggregate of values of the variable u

can be represented in the form w^-f S^H/COr, for X = 1, 2, ..., /c, where k is

some finite or infinite integer.

Three cases arise, (a) when the quantities w are equal to one another or

can be expressed as integral multiples of only one quantity w, (h) when the

quantities w are equivalent to two quantities Hi and H.^ (the ratio of which is

not real), so that each quantity « can be expressed in the form

the coefficients p^,., P-ir being finite integers
;
(c) when the quantities (o are

not equivalent to only two (juantities, such as Hi and fl.,.
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For case (a), each of the k infinite series of values u can be expressed

in the form Wa +^J&j, for X = 1, 2, ..., « and integral values of ^?.

First, let k be finite, so that the original integer q is finite. Then the

values of the argument for W are of the type

that is, Uk + v^+p"q),

for all combinations of X, and fx, and for integral values of p". There are thus

K- series of values, each series containing a simply-infinite number of terms

of this type.

For each of the arguments in any one of these infinite series, W has m
values; and the set of ?/i values is the same for all the arguments in one and

the same infinite series. Hence W has mK- values for all the arguments in

all the series taken together, that is, for a given value of U and a given

value of V. The relation between IT, V, W is therefore of degree vik-,

necessarily finite when the equation is algebraical ; hence ni is finite.

It thus appears that the function U has a finite number m of values for

each value of the argument u, and that for a given value of the function thei'e

are a finite number k of distinct series of values of the argument of the form

u+pco, CO being the same for all the series. But the function tan — has
(0

one value fur each value of ?( and the series u+pco represents the series of

values of ii for a given value of tan , It therefore follows that there are

TTlt TTU
in values of U for each value of tan — and that there are k values of tan —
for each value of U; and therefore there is an algebraical relation between

TTlfj

U and tan — , which is of degree k in the latter and of degree m in the

ijru

former. Hence U is an algebraic function of tan — and therefore also of e "
.

Next, let K be infinite, so that the original integer q is infinite. Then,

as in the Note in § 152, the equation between U, V, W will cease to be

algebi-aical unless each aggregate of values itx+^Jft), for each particular

value of p and for the infinite sequence X= 1, 2, ..., /c, can be arranged in a

system or a set of systems, say cr in number, each of the form fp{u+pco, pp)
for an infinite series of values of pp. Each of these implies a series of values

fpiv+p'co, Pp') of the argument of V for the same series of values of pp as of

Pp, and also a series of values fp(u + v+p"Q), p/') of the argument of W for

the same series of values of pp". By proceedhig as in § 152, it follows that

fp (u +p(o, Pp) = ii+p(o +ppCOp',

where cOp is an appropriate constant, the ratio of which to &> can be proved

F. 20
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(as in § 106) to be not purely real, and 2^p has a simply-infinite succession of

values. The integer <j may be finite or it may be infinite.

When CO and all the constants a which thus arise are linearly equivalent

to two quantities Hj and Ho, so that the terms additive to u can be expressed

in the form sSl-i + s.Vl.., then the aggregate of values u can be expressed

in the form

for a simply-infinite series for ih and for p.. ; and p has a series of values

1, 2, ..., a. This case is, in effect, the same as case {h).

When CO and all the constants co' are not linearly equivalent to only

two quantities, such as Hj and Oo, we have a case which, in effect, is the

same as case (c).

These two cases must therefore now be considered.

For case (6), either as originally obtained or as derived through part

of case (a), each of the (doubly) infinite series of values of u can be expressed

ill the form

Ux+Pi^i+p-Sl.,

for A, = 1, 2, ..., a and for integral values of |)j and p,. The integer a may be

finite or infinite ; the original integer q is infinite.

First, let a be finite. Then the values of the argument for TT'^ are of the

type

2tA -rpS^-^-\-pSL-2 + V^ +Pi^i +p/n.2,

that is, U;, + v^+pi"rti + p."n.2,

for all combinations of X and fi and for integral values of jj/' and p..". There

are thus a" series of values, each series containing a doubly-infinite number of

terms of this type.

For every argument there are m values of W ; and the set of in values is

the same for all the arguments in one and the same infinite series. Thus W
has ma- values for all the arguments in all the series, that is, for a given value

of U and a given value of V; and it follows, as before, from the consideration

of the algebraical relation, that m is finite.

The function U thus has m values for each value of the argument w ; and

for a given value of the function there are a series of values of the argument,

each series being of the form Wx + p^fl-^ + p.^O...

Take a doubly-periodic function having Hj and Ho for its periods, such*

that for a given value of the values of its arguments are of the foregoing

form. Whatever be the expression of the function, it is of the order a.

Then U has m values for each value of ©, and has one value for each

value of U; hence there is an algebraical equation between U and 0, of

• All that is necessary for this purpose is to construct, by the use of Prop. XII, § 118, a

function having, as its irreducible simple infinities, a series of points rtj, a^, ..., a^—special

values of Uj, xi^, ..., Ua—in the parallelogram of periods, chosen so that no two of the tr points a

coincide.
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the first degree in the latter and of the mth degree in U: that is, U is an

algebraical function of 0. But, by Prop. XV. § 119, can be expressed in

the form

where L, M, N are rational integral algebraical functions of ^ (u), if Vl^ and O,

be the periods of g) {u)\ and ^' {u) is a two-valued algebraical functi(jn of ^ (m),

so that Ls an algebraical function of ^ {u). Hence also U is an alcjehraical

function of ^ (n), the periods of ^D (u) being jwoperly chosen.

This inference requii-es that a, the order of 0, be gi-eater than 1.

Because U has 7n values for an argument u, the symmetric function %U
has one value for an argument u and it is therefore a uniform function.

But each term of the sum has the same value for u + jyiQ^+p.jCi.., as for

u ; and therefore this uniform function is doubly-periodic. The number of

independent doubly-infinite series of values of u for a uniform doubly-

periodic function is at least two : and therefore there must be at least two

doubly-infinite series of values of u, so that o-> 1. Hence a function, that

possesses an addition-theorem, cannot have only one doubly-infinite series of

values for its argument.

If a be infinite, there is an infinite series of values of u of the form

Mx -I- p^D.], + P.2Q2 ; an argument, similar to that in case (a), shews that this is,

in effect, the same as case (c).

It is obvious that cases (ii), (iii) and (iv) of § 152 are now completely

covered ; case (v) of § 1.52 is covered by case (c) now to be discussed in § 154.

154. For case (c), we have the series of values u represented by a number
of series of the form

Ux + % m,.(Or,
r=l

where the quantities co are not linearly equivalent to two quantities fij and

n.,. The original integer q is infinite.

Then, by §§108, 110, it follows that integers m can be chosen in an

unlimited variety of ways so that the modulus of

is infinitesimal, and therefore in the immediate vicinity of any point «x

there is an infinitude of points at which the function resumes its value.

Such a function would, as in previous instances, degenerate into a mere

constant ; and therefore the combination of values which gives rise to this

case does not occur.

All the possible cases have been considered: and the truth of Weierstrass's

20—2
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theorem* that a function, which has an algebraical addition-theorem, is either

iiTH

an algebraical function of u, or of e "' (where &> is suitably chosen), or of g? (u),

where the periods of g? (ii) are suitably chosen, is established ; and it has

incidentally been established—it is, indeed, essential to the derivation of the

theorem—that afunction, which has an algebraical addition-theorem, has only

a finite number of values for a given argument.

It is easy to see that the first derivative has only a finite number of values

for a given argument ; for the elimination of U between the algebraical

equations

G{U,u) = 0, l^U'+'^^ = 0,
dU an

leads to an equation in U' of the same finite degree as G in TJ.

Further, it is now easy to see that if the analytical function
(f)

(u), luhich

possesses an algebraical addition-theorem, be uniform, then it is a rational

function either of u, or of e '^
, or of ^ (u) and ^' (u) ; and that any uniform

function, which is transcendental in the sense of § 47 and which possesses an

algebraical addition-theorem, is either a simply-periodic function or a doubly-

periodic function.

The following examples will illustrate some of the inferences in regard to the number
of values of

<f)
{u + v) arising from series of values for w and v.

Ex. 1 . Let U=u^+ {2u+l)K

Evidently m, the number of values of U for a value of u, is 4 ; and, as the rationalised

form of the equation is

the value of p, being the number of values of u for a given value of U, is 2. Thus the

equation in W should be, by § 151, of degree (4.22 = ) 16.

This equation is n {3 ( TF2 - U'^ - V^) + 1 - 21;.} = 0,

where k,. is any oue of the eight values of

r (2 Tf 2 _ 1
) J+ U (2 r^ -!)''-!- V (2 V^ - 1)h

an equation, when rationalised, of the 16th degree in W.

Ex.2. Let U=co^u.

Evidently rii=\', the values of u for a given value of f '' are contained in the double

series u-\-2iTn, -u + 2Tr7i, for all values of ?i fi'om -co to + qo . The values of u+ v are

u+ 27rn+ v+ 27rni, that is, ic+ v+ 2Trp ; —u + 27r7i+ v+ 2Tr7n, that is, -u+ v+ 27rp
;

II+ 2Trn — v+ 277111, that is, u — v+ 27rp; -u+ 2Trn—v+ 2Tr77i, that is, -u-v+ 2ttp,

* The theorem has been used by Schwarz, Ges. Werke, t. ii, pp. 260—208, in determining all

the families of plane isothermic curves which are algebraical curves, an 'isothermic' curve being

of the form ii — c, where m is a function satisfying the potential-equation

dx- dy^
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so that the number of series of vaUies of u + v is four, each scries being simply-infinite.

It might thus be expected that the equation between C, V, W would be of degree

(1.4= ) 4 in W; but it happens that

cos (u+ v)= cos {-u-v),

and so the degi'ce of the equation in W is reduced to half its degree. The equation is

Tr2 - 2 WCV+ U^+ V^-l = 0.

Ux. 3. Let U^Huu.

Evidently m— l; and there are two doubly-infinite series of values of u determined

by a given value of t/', having the forua ic+ 2iii(,)-\-2m'(o', (o-u+ 2mat-\-2in'o)'. Hence the

values of u+ v are

= u+ v {mod. 2a), 2ci)') ; = a - u+ v {mod. 2o, 2a)');

= o) -f M - y (mod. 2a), 2a)'); = —ii — v{m.od. 2a), 2a)');

four in number. The equation may therefore be expected to be of the fourth degree

in W ; it is

4(1- r2)(i_ F^)(l- ir^)= (2- t^2_ y2_ W^+kK^W^W'^f.

155. But it must not be supposed that any algebraical ecpiation between

U, V, W, which is symmetrical in U and V, is one necessarily implying the

representation of an algebraical addition-theorem. Without entering into a

detailed investigation of the fi^rmal characteristics of the equations that are

suitable, a latent test is given by implication in the following theorem, also

due to Weierstrass :

—

1/ an analytical function possess an algebraical addition-theorem, an

algebraical equation involviitg the function and its first derivative with regard

to its argument exists ; and the coej/icients in this equation do not involve the

argument of the function.

The proposition might easily be derived by assuming the preceding

proposition, and applying the known results relating to the algebraical

dependence between those functions, the types of which arc suited to the

representation of the functions in question, and their derivatives; we shall,

however, proceed more directly from the equation expressing the algebraical

addition-theorem in the form

G{U,V, W)^0,

which may be regarded as a rationally irreducible equation.

Differentiating with regard to u, we have

dG dG
dU ^dW '

and similarly, with regard to v, we have

from which it follows that

dU dV
"•
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This equation* will, in general, involve W ; in order to obtain an equation

free from W, we eliminate W between

the elimination being possible because both equations are of finite degree;

and thus in any case we have an algebraical equation independent of W and

involving U, U', V, V

.

Not more than one equation can arise by assigning various values to v, a

quantity that is independent of u ; for we should have either inconsistent

equations or simultaneous equations which, being consistent, determine a

limited number of values of 11 and U' for all values of ii, that is, only a

number of constants. Hence there can be only one equation, obtained by

assigning varying values to v ; and this single equation is the algebraical

equation between the function and its first derivative, the coefficients being

independent of the argument of the function.

Note. A test of suitability of an algebraical equation G = between

three variables JJ, V, W to represent an addition-theorem is given by the

condition that the elimination of W between

G = and f^'^=F'||
oU V

leads to only a single equation between U and U' for different values of V
and T.

Ex. Consider the equation

(2-6^- V- Wf-A{l-U){\- F)(l- T^) = 0.

The deduced equation involving U' and V is

(2FTf- V- W+ U) U'= {2UW- U- TF+ V) V,

so that W- (^-^)(^'+^'
)

The elimination of W is simple. We have

1 _ w= {v^u-i){U' -v')
{^V-\)U'-{2U-l)V"

Neglecting 4(F+f-l) = 0, which is an irrelevant equation, and multiplying by

(2F-1) U' -{2U—V) F', which is not zero unless the numerator also vanish, and this

would make both U' and 1"' zero, wo have

( F+ U- 1) {(1 -V)U'-{1- U) V'} •^= (1 - U) {\-V){U'- V) {2 F- 1) U' - (2 U- 1) F'},

and therefore V{U- V) (1 - F) U'^-\- U{ V- U) (1 - U) V^= 0.

* It is permissible to adopt any subsidiary irrational or non-algebraical form as the equivalent

of G — 0, jn-ovided no special limitation to the subsidiary form be implicitly adopted. Thus, if W
can be expressed explicitly in terms of U and V, this resoluble (but irrational) equivalent of the

equation often leads rapidly to the equation between U and its derivative.
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When the irrelevant factor U - V is neglected, this equation gives

U{\-U)^ r(l-F)'

the equation required : and this, indeed, is the necessary form in whicli the equation

involving U and U' arises in general, the variables being combined in associate pairs.

Each side is evidently a constant, say Aa^ ; and then we have

U'-'= Aa'^U{\-U).

Then the value of U is sin''*(aw+/3), the arbitrary additive constant of integration

being (i ; by substitution in the original equation, j3 is easily proved to be zero.

156. Again, if the elimination between

be supposed to be performed by the ordinary algebraical process for iinding

the greatest common measure of G and U' ^r"^' ^y' ^^S^^'^^^ ^^ functions

of W, the final remainder is the eliminant which, equated to zero, is the

differential equation involving U, U', V, V\ and the greatest common measure,

equated to zero, gives the simplest equation in virtue of which the equations

(r = and ,r^^ JJ' = ^yt-
^' subsist. It will be of the form

oU oV
/(F, JJ, V, U', F') = 0.

If the function have only one value for each value of the argument, so that it

is a uniform function, this last equation can give only one value for W ; for all

the other magnitudes that occur in the ecjuation arc uniform functions of

their respective arguments. Since it is linear in 11^, the equation can be

expressed in the form

W = R{U, V, U', V),

where R denotes a rational function. Hence* :

—

A uniform analytical function <f)(i(), whicli 'possesses an algebraical

addition-theorem, is such that (ji {u + v) can he expressed rationally in terms

of (j) (m), </>' (m).
i>

(v) (ind
(f)'

(v).

It need hardly be pointed out that this result is not inconsistent with the

fact that the algebraical equation between
(f)

{a + v), (f){t() and (f){v) does not,

in general, express (f)(u +v) as a rational function of
(f)

(u) and <p{v). And it

should be noticed that the rationality of the expression of
(f)

{u + v) in terms

of <f){u), 4>iv), </)'(u), (j>'{v) is characteristic of functions with an algebraical

addition-theorem. Instances do occur of functions such that (f>(u + v) can be

expressed, not rationally, in terms of <}> (u), (fi (v),
(f)'

(u),
(f)'

(v) ; they do not

possess an algebraical addition-theorem. Such an instance is furnished by

^{u); the expression of ^{u 4- v), given in Ex. 3 of § 131, can be modified so

as to have the form indicated.

* The theorem is due to Wcierstrass ; sec Schwarz, § 2, (I.e. in note to p. 297).



CHAPTER XIV.

Connection of Surfaces.

157. In proceeding to the discussion of multiform functions, it was

stated (§ 100) that there are two methods of special importance, one of which

is the development of Cauchy's general theory of functions of complex vari-

ables and the other of which is due to Riemann. The former has been

explained in the immediately preceding chapters ; we now pass to the

consideration of Riemann's method. But, before actually entering upon it,

there are some preliminary propositions on the connection of surfaces which

must be established ; as they do not find a place in treatises on geometry, an

outline will be given here but only to that elementary extent which is

necessary for our present purpose.

In the integration of meromorphic functions, it j)roved to be convenient

to exclude the poles from the range of variation of the variable by means of

infinitesimal closed simple curves, each of which was thereby constituted a

limit of the region : the full boundary of the region was composed of the

aggregate of these non-intersecting curves.

Similarly, in dealing with some special cases of multiform functions, it

proved convenient to exclude the branch-points by means of infinitesimal

curves or by loops. And, in the case of the fundamental lemma of § 16, the

region over which integration extended was considered as one which possibly

had several distinct curves as its complete boundary.

These are special examples of a general class of regions, at all points

within the area of which the functions considered are monogenic, finite, and

continuous and, as the case may be, uniform or multiform. But, important

as are the classes of functions which have been considered, it is necessary to

consider wider classes of multiform functions and to obtain the regions which

are appropriate for the representation of the variation of the variable in each

case. The most conspicuous examples of such new functions are the algebraic

functions, adverted to in §§ 94—99 ; and it is chiefly in view of their value

and of the value of functions dependent upon them, as well as of the kind of

surface on which their variable can be simply represented, that we now

proceed to establish some of the topological properties of surfaces in general.

158. A surface is said to be connected when, from any point of it to any

other point of it, a continuous line can be drawn without passing out of the
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surface. Thus the surface of a circle, that of a plane ring such as arises in

Lambert's Theorem, that of a sphere, that of an anchor-ring, are connected

surfaces. Two non-intersecting spheres, not joined or bound together in any

manner, are not a connected surface but are two different connected surfaces.

It is often necessary to consider surfaces, which are constituted by an

aggregate of several sheets ; but, in order that the surface may be regarded

as connected, there must be junctions between the sheets.

One of the simplest connected surfaces is such a plane area as is enclosed

and completely bounded by the circumference of a cii-cle. All lines drawn in

it from one internal point to another can be deformed into one another ; any

simple closed line lying entirely within it can be deformed so as to be

evanescent, without in either case passing over the circumference ; and any

simple line from one point of the circumference to another, when regarded as

an impassable barrier, divides the surface into two portions. Such a surface

is called* simply connected.

The kind of connected surface next iu point of simplicity is such a plane

area as is enclosed between and is completely bounded by the circumferences

of two concentric circles. All lines in the surface

from one point to another cannot necessarily be

deformed into one another, e.g., the lines z^jaz and

zj)z; a simple closed line cannot necessarily be

deformed so as to be evanescent without crossing

the boundary, e.g., the line azjjza ; and a simple

line from a point in one part of the boundary to

a point in another and different part of the

boundary, such as a line AB, does not divide the

surface into two portions but, set as an impassable barrier, it makes the

surface simply connected.

Again, on the surface of an anchor-ring, a closed line can be drawn in

two essentially distinct ways, ahc, ah'c, such

that neither can be deformed so as to be evanes-

cent or so as to pass continuously into the other.

If ahc be made the only impassable barrier, a

line such as a/37 cannot be deformed so as to be

evanescent ; if ah'c' be made the only impassable

barrier, the same holds of a line such as a/3'7'.

In order to make the surface simply connected,

two impassable barriers, such as ahc and ah'c,

must be set.

Surfaces, like the flat ring or the anchor-

Fig. 35.

Fi". 3(i.

* Sometimes the terra nionadelphlc is used. The Germau equivalent is cinfach zuaammcn-

hangend.



314 CROSS-CUTS AND LOOP-CUTS [158.

ring, are called* mnltiplij connected] the establishment of barriers has made it

possible, in each case, to modify the surface into one which is simply connected.

159. It proves to be convenient to arrange surfaces in classes according

to the character of their connection ; and these few illustrations suggest that

the classification may be made to depend, either upon the resolution of the

surface, by the establishment of barriers, into one that is simply connected,

or upon the number of what may be called independent irreducible circuits.

The former mode—that of dependence upon the establishment of barriers

—

will be adopted, thus following Riemann^- ; but whichever of the two modes

be adopted (and they are not necessarily the only modes) subsequent de-

mands require that the two be brought into relation with one another.

The most effective way of securing the impassability of a barrier is to

suppose the surface actually cut along the line of the barrier. Such a section

of a surface is either a cross-cut or a loop-cut.

If the section be made through the interior of the surface from one point

Fig. 37.

of the boundary to another point of the boundary, wathout intersecting itself

or meeting the boundary save at its extremities, it is called a cross-cut\.

Every part of it, as it is made, is to be regarded as boundary during the

formation of the remainder ; and any cross-cut, once made, is to be regarded

as boundary during the formation of any cross-cut subsequently made.

Illustrations are given in Fig. 37.

The definition and explanation imply that the surface has a boundary.

Some surfaces, such as a complete sphere and a complete anchor-ring, do not

possess a boundary; but, as will be seen later (§§ 163, 168) from the

discussion of the evanescence of circuits, it is desirable to assign some

boundary in order to avoid merely artificial difiiculties as to the numerical

* Sometimes the term pohiddclphic is used. The German equivalent is mchrfach zusammen-

hangend.

t " Grundlagen fUr eine allgemeine Theorie der Functioneu einer veranderhchen complexen

GroBse," Eiemann's Gesammelte IVerke, pp. 9—12; "Theorie der Abel'schen Functionen," ib.,

pp. 84—89. When reference to either of these memoirs is made, it will be by a citation of the

page or pages in the volume of Eiemann's Collected Works.

X This is the equivalent used for the German word QuerscJmitt ; French writers use Section,

and Italian writers use Trasversalc or Taglio trasversale.
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expression of the connection. This assignment usually is made by taking for

the boundary of a surface, which otherwise has no boundary, an infinitesimal

closed curve, practically a point ; thus in the figure of the anchor-ring

(Fig, 36) the point a is taken as a boundary, and each of the two cross-cuts

begins and ends in a.

If the section be made through the interior of the surface from a point

not on the boundary and, without meeting the boundary or crossing itself,

return to the initial point, (so that it has the form of a simple curve lying

Fir. 38.

entirely in the surface), it is called* a loup-cut. Thus a piece can be cut

out of a bounded spherical surface by a loop-cut (Fig. 38) ; but it does

not necessarily give a separate piece when made in the surface of an

anchor-ring.

It is evident that both a cross-cut and a loop-cut furnish a double

boundary-edge to the whole aggregate of surface, whether consisting of two

pieces or of only one piece after the section.

Moreover, these sections represent the impassable barriers of the pre-

liminary explanations ; and no specified form was assigned to those barriers.

It is thus possible, within certain limits, to deform a cross-cut or a loop-cut

continuously into a closely contiguous and equivalent position. If, for

instance, two barriers initially coincide over any finite length, one or other

can be slightly deformed so that finally they intersect only in a point ; the

same modification can therefore be made in the sections.

The definitions of simple connection and of multiple connection will nowf*

be as follows :

—

A surface is simply connected, if it he resolved into twu distinct pieces hij

every cross-cut; hit if there he any cross-cut, which does not resolve it into

distinct pieces, the surface is multiply connected.

160. Some fundamental propositions, relating to the connection of

surfaces, may now be derived.

* This is the equivalent used foi- the German word liiickkcJtrticlinitt ; French writers use tlic

word Retronection.

t Other definitions will be rcciuircd, if the classification of surfaces be made to depend on

methods other than resolution by sections.
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I. Each of the two distinct pieces, into which a simply connected surface S

is resolved hy a cross-cut, is itself simply comiected.

If either of the pieces, made by a cross-cut ah, be not simply connected,

then some cross-cut cd must be possible which will not resolve that piece into

distinct portions.

If neither c nor d lie on ah, then the obliteration of the cut ah will restore

the original surface S, which now is not resolved by the cut cd into distinct

pieces.

If one of the extremities of cd, say c, lie on ah, then the obliteration of the

portion ch will change the two pieces into a single piece which is the original

surface S; and S now has a cross-cut acd, which does not resolve it into

distinct pieces.

If both the extremities lie on ah, then the obliteration of that part of ah

which lies between c and d will change the two pieces into one ; this is the

original surface S, now with a cross-cut acdh, which does not resolve it into

distinct pieces.

These are all the possible cases should either of the distinct pieces of S

not be simply connected ; each of them leads to a contradiction of the simple

connection of S\ therefore the hypothesis on which each is based is untenable,

that is, the distinct pieces of S in all the cases are simply connected.

Corollary 1. A simply connected surface is resolved hy n cross-cuts into

n-\-l distinct pieces, each simply connected ; and an aggregate of m simply

connected surfaces is resolved hy n cross-cuts into n -f- 7^^ distinct pieces each

simply connected.

Corollary 2. A surface that is resolved into two distinct simply con-

nected pieces hy a cross-cut is simply connected hefore the resolution.

Corollary 3. // a multiply connected surface he resolved into two

different pieces hy a cross-cut, hoth of these pieces cannot he simply connected.

We now come to a theorem* of great importance :

—

II. If a resolution of a surface hy m cross-cuts into n distinct simply

connected pieces he pussihle, and also a different resolution of the same surface hy

fi cross-cuts into v distinct simply connected pieces, then m — n = fi — v.

Let the aggregate of the ?i pieces be denoted by S and the aggregate of

the V pieces by 2 : and consider the effect on the original surface of a united

system of m -\- /x simultaneous cross-cuts made up of the two systems of the

m and of the /u, cross-cuts respectively. The operation of this system can be

canied out in two ways : (i) by effecting the system of /j, cross-cuts on S and

* The followiug proof of tliis proposition is substantially due to Neumann, p. 157. Another

proof is given by Eiemann, pp. 10, 11, and is amplified by Durege, Elemente tier Theoric der

Ftinctionen, pp. 183—190; and another by Lippich, see Durege, pp. 190—197.
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(ii) by effecting the system of m cross-cuts on S : with the same result on the

original surface.

After the explanation of § 159, we may justifiably assume that the lines

of the two systems of cross-cuts meet only in points, if at all : let S be the

number of points of intersection of these lines. Whenever the direction of a

cross-cut meets a boundary line, the cross-cut terminates ; and if the direction

continue beyond that boundary line, that produced part must be regarded as

a new cross-cut.

Hence the new system of yu, cross-cuts applied to S is effectively equiva-

lent to /i -f 8 new cross-cuts. Before these cuts were made, 8 was composed

of n simply connected pieces ; hence, after they are applied, the new arrange-

ment of the original surface is made up of n -f (/x -|- S) simply connected

pieces.

Similarly, the new system of m cross-cuts applied to 2 will give an

arrangement of the original surface made up of y + {m + 8) simply connected

pieces. These two arrangements are the same : and therefore

n -\- fM -{- h — V + m 4- S,

so that m — n = fi — v.

It thus appears that, if by any system of q cross-cuts a multiply connected

surface be resolved into a number ^) of pieces distinct from one another and

all simply connected, the integer q — p is independent of the particular

system of the cross-cuts and of their configuration. The integer q — p is

therefore essentially associated with the character of the multiple connection

of the surface : and its invariance for a given surface enables us to arrange

surfaces according to the value of the integer.

No classification among the multiply connected surfaces has yet been

made : they have merely been defined as surfaces in which cross-cuts can be

made that do not resolve the surface into distinct pieces.

It is natural to arrange them in classes according to the number of cross-

cuts which arc necessary to resolve the surface into one of simple connection

or a number of pieces each of simple connection.

For a simply connected surface, no such cross-cut is necessary : then

q = 0, p=l, and in general q — p = — 1. We shall say that the connectivity*

is unity. Examples are furnished by the area of a plane circle, and by a

spherical surface with one hole^f.

A surface is called doubly-connected when, by one appropriate cross-cut,

the surface is changed into a single surface of simple connection : then 5'= 1,

p = \ iov this particular resolution, and therefore in general, q — p = 0. We
* Sometimes order of connection, sometimes adelphic order ; the German word, that is used,

is Grundzahl.

+ The hole is made to give the surface a boundary (§ 1G3).
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shall say that the connectivity is 2. Examples are furnished by a plane ring

and by a spherical surface with two holes.

A surface is called triply-connected when, by two appropriate cross-cuts,

the surface is changed into a single surface of simple connection : then q = 2,

p — 1 for this particular resolution and therefore, in general, q — 'p = \. We
shall say that the connectivity is 8. Examples are furnished by the surface

of an anchor-ring with one hole in it*, and by the surfacesf in Figure 39, the

surface in (2) not being in one plane but one part beneath another.

Fig. 39

And, in general, a surface will be said to be iV-ply connected or its

connectivity will be denoted by JV, if, by iY — 1 appropriate cross-cuts, it can

be changed into a single surface that is simply connected j. For this

particular resolution (7
= iA^— 1, p = l: and therefore in general

q-p = N -2,

or N=q—p + ±

Let a cross-cut I be drawn in a surface of connectivity N. There are

two cases to be considered, according as it does not or does divide the surface

into distinct pieces.

First, let the surface be only one piece after I is drawn : and let its

connectivity then be N'. If in the original surface q cross-cuts (one of

which can, after the preceding proposition, be taken to be I) be drawn

dividing the surface into p simply connected pieces, then

N = q-p+ 2.

To obtain these p simply connected pieces from the surface after the cross-cut

I, it is evidently sufficient to make the q — \ original cross-cuts other than I;

that is, the modified surface is such that by (/ — 1 cross-cuts it is resolved into

p simply connected pieces, and therefore

N' = {q-\)-p + ^.

Hence N' =N — 1, or the connectivity of the surface is diminished by unity.

* The hole is made to give the surface a boundary (§ 1G3).

+ Riemaun, p. 89.

X A.few writers estimate the connectivity of such a surface as N - 1, tlie same as the number

of cross-cuts which can change it into a single surface of the simplest rank of connectivity : the

estimate in the text seems preferable.
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Secondly, let the surface be two pieces after I is drawn, of connectivities

Ni and N^ respectively. Let the appropriate i\^i — 1 cross-cuts in the former,

and the appropriate N., — \ in the latter, be drawn so as to make each a

simply connected piece. Then, together, there are two simply connected

pieces.

To obtain these two pieces from the original surface, it will suffice to

make in it the cross-cut I, the i\^i — 1 cross-cuts, and the N«—\ cross-cuts,

that is, 1 -t- (iVi - 1) -I- {N. -\) ov N^-\- N.,-\ cross-cuts in all. Since these,

when made in the surface of connectivity N, give two pieces, we have

iV = (iV^, + iV,-l)-2-f-2,

and therefore iV^i + iVo = iV -I- 1

.

If one of the pieces be simply connected, the connectivity of the other is N

;

so that, if a simply connected piece of surface be cut off a multiply connected

surface, the connectivity of the remainder is unchanged. Hence :

III. If a cross-cut he made in a surface of connectivity N and if it do

not divide it into separate pieces, the connectivitij of the 'modified surface is

N— 1 ; hut if it divide the surface into tiuo separate pieces of connectivities N^
and N.,, then N, + N. = N+1.

Illustrations are shewn, in Fig. 40, of the effect of cross-cuts on the two

surfaces in Fig. 89.

IV. In the same way it may be proved that, if s cross-cuts he made in a

surface of connectivity N and divide it into r + 1 separate pieces (luhere r ^ s)

of connectivities Ni, N.,, ..., Nr+i respectively, then

N,+N, + ...+ Nr+r ^N+2r-s,

a more general result including both of the foregoing cases.

Thus far we have been considering only cross-cuts : it is now necessary

to consider loop-cuts, so far as they affect the connectivity of a surface in

which they are made.
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A loop-cut is changed into a cross-cut, if from A any point of it a cross-cut

be made to any point G in a boundary-curve of the

original surface, for CAbdA (Fig. 41) is then evi-

dently a cross-cut of the original surface ; and CA is

a cross-cut of the surface, which is the modification

of the original surface after the loop-cut has been

made. Since, by definition, a loop-cut does not

meet the boundary, the cross-cut CA does not

divide the modified surface into distinct pieces

;

hence, according as the effect of the loop-cut is, \ Fig. 41.

or is not, that of making distinct pieces, so will

the effect of the whole cross-cut be, or not be, that of making distinct pieces.

161. Let a loop-cut be drawn in a surface of connectivity iV; as before

for a cross-cut, there are two cases for consideration, according as the loop-cut

does or does not divide the surface into distinct pieces.

First, let it divide the surface into two distinct pieces, say of connectivities

i\^i and iVo respectively. Change the loop-cut into a cross-cut of the original

surface by drawing a cross-cut in either of the pieces, say the second, from a

point in the course of the loop-cut to some point of the original boundary.

This cross-cut, as a section of that piece, does not divide it into distinct

pieces: and therefore the connectivity is now N^'{=N.2 — 1). The effect of

the whole section, which is a single cross-cut, of the original surface is to

divide it into two pieces, the connectivities of which are N^ and No : hence,

by § 160, III.,

and therefore N^ + K. =N+ 2.

If the piece cut out be simply connected, say Ni = l, then the connectivity

of the remainder is iV^-F 1. But such a removal of a simply connected piece

by a loop-cut is the same as making a hole in a continuous part of the

surface : and therefore the effect of making a simple hole in a continuous part

of a surface is to increase by unity the connectivity of the surface.

If the piece cut out be doubly connected, say iVj = 2, then the connect-

ivity of the remainder is N, the same as the connectivity of the original

surface. Such a portion would be obtained by cutting out a piece with a

hole in it which, so far as concerns the original surface, would be the same as

merely enlarging the hole—an operation that naturally would not affect

the connectivity.

Secondly, let the loop-cut not divide the surface into two distinct pieces

:

and let N' be the cormectivity of the modified surface. In this modified

surface make a cross-cut k from any point of the loop-cut to a point of the

boundary : this does not divide it into distinct pieces and therefore the

connectivity after this last modification is N' — \. But the surface thus
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finally modified is derived from the original surface by the single cross-cut,

constituted by the combination of k with the loop-cut : this single cross-cut

does not divide the surface into distinct pieces and therefore the connectivity

after the modification is iV^ — 1. Hence

that is, N' = N, or the connectivity of a surface is not affected hy a loop-cut

ivhich does not divide the surface into distinct pieces.

Both of these results are included in the following theorem :

—

V. If after any number of loop-cuts made in a surface of connectivity

N, there be r + 1 distinct pieces of surface, of connectivities Ni, N^, ..., Nr+u
then

N, + N,+ ^Nr^, = N+2r.

Let the number of loop-cuts be s. Each of them can be changed into a

cross-cut of the original surface, by drawing in some one of the pieces, as may
be convenient, a cross-cut from a point of the loop-cut to a point of a

boundary ; this new cross-cut does not divide the piece in which it is drawn

into distinct pieces. If k such cross-cuts (where k may be zero) be drawn in

the piece of connectivity N^, the connectivity becomes N^, where

K ' — W —h--'' m — -'' m '«' J

r+l r+1 r+l

hence S NJ = S i^,„ - tk = "S N.^ - s.

We now have s cross-cuts dividing the surface of connectivity N into r -hi

distinct pieces, of connectivities N-^ , iV./, ..,, N^' , N^+i \ and therefore, by

§ 160, IV.,

N; + ...+N; + Nr^^ = N-h2r-s,

so that iVi -f- iV. -i- . . . 4- Nr+^ = N-\- 2r.

This result could have been obtained also by combination and repetition

of the two results obtained for a single loop-cut.

Thus a spherical surface with one hole in it is simply connected : when

n — 1 other different holes* are made in it, the edges of the holes being

outside one another, the connectivity of the surface is increased by n—1,
that is, it becomes 7i. Hence a splierical surface witfi n Jioles in it is n-ply

connected.

162. Occasionally, it is necessary to consider the effect of a slit made in

the surface.

If the slit have neither of its extremities on a boundary (and therefore no

point on a boundary) it can be regarded as the limiting form of a loop-cut

which makes a hole in the surface. Such a slit therefore (§ 161) increases the

coimectivity by unity.

* These are holes in the surface, not holes bored through the volume of tlie sphere ; one of

the latter would give two holes in the surface.

F. 21
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If the slit have one extremit}^ (but no other point) on a boundary, it can

be regarded as the limiting form of a cross-cut, which returns

on itself as in the figure, and cuts off a single simply con- /

nected piece. Such a slit therefore (§ 160, III.) leaves the /
connectivity unaltered. -^^

If the slit have both extremities on boundaries, it ceases \

to be merely a slit : it is a cross-cut the effect of w^hich on Fig- 42.

the connectivity has been obtained. We do not regard such

sections as slits.

163. In the preceding investigations relative to cross-cuts and loop-cuts,

reference has continually been made to the boundar}^ of the surface con-

sidered.

The boundary of a surface consists of a line returning to itself, or of a

system of lines each returning to itself. Each part of such a boundary-line

as it is drawn is considered a part of the boundary, and thus a boundary-line

cannot cut itself and pass beyond its earlier position, for a boundary cannot

be crossed: each boundary-line must therefore be a simple curve*.

Most surfaces have boundaries : an exception arises in the case of closed

surfaces whatever be their connectivity. It was stated (§ 159) that a

boundary is assigned to such a surface by drawing an infinitesimal simple

curve in it or, what is the same thing, by making a small hole. The

advantage of this can be seen from the simple example of a spherical

surface.

When a small hole is made in any surface the connectivity is increased

by unity : the connectivity of the spherical surface after the hole is made is

unity, and therefore the connectivity of the complete spherical surface

must be taken to be zero.

The mere fact that the connectivity is less than unity, being that of the

simplest connected surfixces with which we have to deal,

is not in itself of importance. But let us return for a /^^^^~-~~J!^S^^^^\^

moment to the suggested method of determining the / ^ \
connectivity by means of the evanescence of circuits (

- ' —
--]

without crossing the boundary. When the surface is I
'"" ' 1

the complete spherical surface (Fig. 43), there are two \ /
essentially distinct ways of making a circuit G evan- \^^ h _^^
escent, first, by making it collapse into the point a, Fig. 43.

secondly by making it expand over the equator and

then collapse into the point h. One of the two is superfluous : it introduces

an element of doubt as to the mode of evanescence unless that mode be

specified—a specification which in itself is tantamount to an assignment of

* Also a line not returning to itself may be a boundary ; it can be regarded as the limit of a

simple curve when the area becomes infinitesimal.
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boundary. And in the case of multiply connected surfaces the absence of

boundary, as above, leads to an artificial reduction of the connectivity bv

unity, arising not from the greater simplicity of the surface but from the

possibility of carrying out in two ways the operation of reducing any circuit

to given circuits, which is most effective when only one way is permissible.

We shall therefore assume a boundary assigned to such closed surfaces as in

the first instance are destitute of boundary.

164. The relations between the number of boundaries and the connect-

ivity of a surface are given by the following propositions.

I. The houndary of a simply connected surface consists of a single line.

When a boundary consists of separate lines, then a cross-cut can be made
from a point of one to a point of another. By proceeding from

P, a point on one side of the cross-cut, along the boundary

ac.c'a we can by a line lying wholly in the surface reach a

point Q on the other side of the cross-cut : hence the parts of

the surface on opposite sides of the cross-cut are connected.

The surface is therefore not resolved into distinct pieces by the

cross-cut.

A simply connected surface is resolved into distinct pieces Fig. u.

by each cross-cut made in it : such a cross-cut as the foregoing

is therefore not possible, that is, there are not separate lines which make up

its boundary. It has a boundary : the boundary therefore consists of a single

line.

II. A cross-cut either increases hy unity or diminishes by unity the number

of distinct boundary-lines of a multiply connected surface.

A cross-cut is made in one of three ways : either from a point a of one

boundary-line ^ to a point b of another boundary-line B ; or from a point a

of a boundary-line to another point a' of the same boundary-line ; or from a

point of a boundary-line to a point in the cut itself.

If made in the first way, a combination of one edge of the cut, the

remainder of the original boundary A, the other edge of the cut and the

remainder of the original boundary B taken in succession, form a single

piece of boundary ; this replaces the two boundary-lines A and B wdiich

existed distinct from one another before the cross-cut was made. Hence the

number of lines is diminished by unity. An example is furnished by a plane

ring (ii., Fig. 37, p. 314).

If made in the second way, the combination of one edge of the cut with

the piece of the boundary on one side of it makes one boundary-line, and the

combination of the other edge of the cut with the other piece of the boundary

makes another boundary-line. Two boundary-lines, after the cut is made,

21—2
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replace a single boundary-line, which existed before it was made : hence the

number of lines is increased by unity. Examples are furnished by the cut

surfaces in Fig. 40, p. 319.

If made in the third way, the cross-cut may be considered as constituted

by a loop-cut and a cut joining the loop-cut to the boundary. The boundary-

lines may now be considered as constituted (Fig. 41, p. 320) by the closed

curve ABD and the closed boundary ahda'c'e'...eca; that is, there are now

two boundary-lines instead of the single boundary-line ce...e'c'c in the uncut

surface. Hence the number of distinct boundary-lines is increased by unity.

Corollary. A loop-cut increases the number of distinct boundary-lines

by tiuo.

This result follows at once from the last discussion.

III. The number of distinct boundary-lines of a surface of connectivity N
is N — 2k, whe7'e k is a, positive integer that may be zero.

Let m be the number of distinct boundary-lines ; and let N — 1 appro-

priate cross-cuts be drawn, changing the surface into a simply connected

surface. Each of these cross-cuts increases by unity or diminishes by unity

the number of boundary-lines ; let these units of increase or of decrease be

denoted by ej, e^, ..., e^v-i- Each of the quantities e is + 1 ; let A; of them be

positive, and N—\—k negative. The total number of boundary-lines is

therefore

m + k-{N-l-k).
The surface now is a single simply connected surface, and there is therefore

only one boundary-line ; hence

m + k-{N-\-h) = l,

so that m = N —2k;

and evidently k is an integer that may be zero.

Corollary 1. A closed surface ivith a single boundary-line* is of odd

connectivity.

For example, the surface of an anchor-ring, when bounded, is of con-

nectivity 3; the surface, obtained by boring two holes through the volume

of a solid sphere, is, when bounded, of connectivity 5.

If the connectivity of a closed surface with a single boundary be 2p -\-l,

the surface is often said-f- to be of class p (§ 178, p. 349.)

Corollary 2. If the number of distinct boundary lines of a surface of

connectivity N be N, any loop-cut divides the surface into tiuo distinct pieces.

After the loop-cut is made, the number of distinct boundary-lines is

N-\-2; the connectivity of the whole of the cut surface is therefore not less

* See § 159.

t The German word is Geschlecht ; Prencli writers use the word genre, and Italians genere.
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than iV+2. It has been proved that a loop-cut, which does not divide the

surface into distinct pieces, does not affect the connectivity ; hence as the

connectivity has been increased, the loop-cut must divide the surface into

two distinct pieces. It is easy, by the result of § 161, to see that, after the

loop-cut is made, the sum of connectivities of the two pieces is N+2, so

that the connectivity of the whole of the cut surface is equal to iV -f- 2.

Note. Throughout these propositions, a tacit assumption has been made,

which is important for this particular proposition when the surface is the

means of representing the variable. The assumption is that the surface is

bifacial and not unifacial ; it has existed implicitly throughout all the

geometrical representations of variability : it found explicit expression in

§ 4 when the plane was brought into relation with the sphere : and a cut

in a surface has been counted a single cut, occurring in one face, though it

would have to be counted as two cuts, one on each side, were the surface

unifacial.

The propositions are not necessarily valid, when applied to unifacial

surfaces. Consider a surface made out of a long rectangular slip of paper,

which is twisted once (or any odd number of times) and then has its ends

fastened together. This surface is of double comiectivity, because one

section can be made across it which does not divide it into separate pieces

;

it has only a single boundary-line, so that Prop. III. just proved does not

apply. The surface is unifacial ; and it is possible, without meeting the

boundary, to pass continuously in the surface from a point P to another

point Q which could be reached merely by passing through the material

at P.

We therefore do not retain unifacial surfaces for consideration.

165. The following proposition, substantially due to Lhuilicr*, may be

taken in illustration of the general theory.

If a closed surface of connectivity 2N + 1 {or of class N) be divided by

circuits into any number of simply connected portions, each in the form of a

curvilinear polygon, and if F be the number of polygons, E be the number of

edges and S the number of angular points, then

2N=2 + E-F-S.
Let the edges E be arranged in systems, a system being such that any

line in it can be reached by passage along some other line or lines of the

system ; let k be the number of such systems
-f-.

To resolve the surface into a

number of simply connected pieces composed of the F polygons, the cross-cuts

will be made along the edges ; and therefore, unless a boundary be assigned

* Gergonne, Ann. de Math., t. iii, (1813), pp. 181—186; see also Mobius, Ges. M'erke, t. ii,

p. 468. A circuit is defined in § 1G6.

t The value of k is 1 for the proposition and is greater than 1 for the Corollary.
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to the surface in each system of lines, the first cut for any system will be a

loop-cut. We therefore take k points, one in each system as a boundary

;

the first will be taken as the natural boundary of the surface, and the

remaining k—1, being the limiting forms of A; — 1 infinitesimal loop-cuts,

increase the connectivity of the surface by k — 1, that is, the connectivity now

is 2N+k.

The result of the cross-cuts is to leave F simply connected pieces : hence

Q, the number of cross-cuts, is given by

Q = 2N + k-\-F-%

At every angular point on the uncut surface, three or more polygons are

contiguous. Let Sm be the number of angular points, where m polygons arc

contiguous ; then

Again, the number of edges meeting at each of the 8^ points is three, at

each of the ^4 points is four, at each of the 8^ points is five, and so on ; hence,

in taking the sum ZS^ + ^84, + 58^ + ..., each edge has been counted twice, once

for each extremity. Therefore

2E=SS, + 4>8, + 58,-\-...

Consider the composition of the extremities of the cross-cuts ; the number

of the extremities is 2Q, twice the number of cross-cuts.

Each of the k points furnishes two extremities ; for each such point

is a boundary on which the initial cross-cut for each of the systems must

begin and must end. These points therefore furnish 2k extremities.

The remaining extremities occur in connection with the angular points.

In making a cut, the direction passes from a boundary along an edge, past

the point along another edge and so on, until a boundary is reached ; so that

on the first occasion when a cross-cut passes through a point, it is made along

two of the edges meeting at the point. Every other cross-cut passing through

that point must begin or end there, so that each of the ^3 points will furnish

one extremity (corresponding to the remaining one cross-cut through the

point), each of the >S'4 points will furnish two extremities (corresponding to

the remaining two cross-cuts through the point), and so on. The total

number of extremities thus provided is

S, + 28,+ S8, + ...

Hence 2Q = 2k-]-Ss + 28, + :^8, + ...

^2k + 2E-28,

or Q = k + E-8,

which combined with Q = 2N -\-k +F -2,

leads to the relation 2N=2 + E-F-8.
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The simplest case is that of a sphere, when Euler's relation F + S = E +2
is obtained. The case next in simplicity is that of an anchor-ring, for which

the relation is F+S = E.

Corollary. If the result of making the cross-cuts along the various edges

he to give the F iwhjgons, not siviplg connected areas but areas of connectivities

iV^i + 1, iVo + 1, ..., Np+1 respectively, then the connectivity of the original

surface is given by

'2N^2 + E-F-S+ IN,.
r = l

166. The method of determining the connectivity of a surface by means

of a system of cross-cuts, which resolve it into one or more simply connected

pieces, will now be brought into relation with the other method, suggested

in § 159, of determining the connectivity by means of irreducible circuits.

A closed line drawn on the surface is called a circuit.

A cu'cuit, which can be reduced to a point by continuous deformation

without crossing the boundary, is called reducible ; a circuit, which cannot be

so reduced, is called irreducible.

An irreducible circuit is cither (i) simple, when it cannot without crossing

the boundary be deformed continuously into repetitions of one or more

circuits ; or (ii) multiple, when it can without crossing the boundary be

deformed continuously into repetitions of a single circuit ; or (iii) compound,

when it can without crossing the boundary be deformed continuously into

combinations of different circuits, that may be simple or multiple. The

distinction between simple circuits and compound circuits, that involve no

multiple circuits in their combination, depends upon conventions adopted for

each particular case.

A circuit is said to be reconcileable with the system of circuits into a

combination of which it can be continuously deformed.

If a system of circuits be reconcileable with a reducible circuit, the

system is said to be reducible.

As there are two directions, one positive and the other negative, in which

a circuit can be described, and as there are possibilities of repetitions and of

compositions of circuits, it is clear that circuits can be represented by linear

algebraical expressions involving real ([uantities and having merely numerical

coefficients.

Thus a reducible circuit can be denoted by 0.

If a simple irreducible circuit, positively described, be denoted by a, the

same circuit, negatively described, can be denoted by — a.

The multiple circuit, which is composed of m positive repetitions of the

simple irreducible circuit a, would be denoted by ma ; but if the m repetitions

were negative, the multiple circuit would be denoted by — ma.
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A compound circuit, reconcileable with a system of simple irreducible

circuits Oj, (h,, ..., a„ would be denoted by »iif/i + ??Zoao+ ... + ??i,ja„, where

??ii, iiu, ..., iiin are positive or negative integers, being the net number of

positive or negative descriptions of the respective simple irreducible circuits.

The condition of the reducibility of a system of circuits a^, an, ..., a„,

each one of which is simple and irreducible, is that integers ??ii, m^, ..., nin

should exist such that

m^a^ + nucu + • . . + m„an = 0,

the sign of equality in this cc^uation, as in other equations, implying that

continuous deformation without crossing the boundary can change into one

another the circuits, denoted by the symbols on either side of the sign.

The representation of any compound circuit in terms of a system of

independent irreducible circuits is unique : if there were two different

expressions, they could be equated in the foregoing sense and this would

imply the existence of a relation

Pitti+pMr, + ... +paan = 0,

which is excluded by the fact that the system is irreducible.

Further, equations can be combined linearly, provided that the coefficients

of the combinations be merely numerical.

167. In order, then, to be in a position to estimate circuits on a multiply

connected surface, it is necessary that an irreducible system of irreducible

simple circuits should be known, such a system being considered complete

when every other circuit on the surface is reconcileable \^'ith the system.

Such a system is not necessarily unique : and it must be proved that, if

more than one complete system he obtainable, any circuit can be reconciled luith

each system.

First, the number of simple irreducible circuits in any complete system

must be the same for the same surface.

Let fli, ..., ap\ and b^, ...,bn'. be two complete systems. Because a^, ...,

ajy constitute a complete system, every circuit of the system of circuits b is

reconcileable with it ; that is, integers m,j exist, such that

b^ = nijrai + m^ra. + . . . + niprttp,

for r — l, 2, ..., n. If n were >p, then by combining linearly each equation

after the first p equations with those p equations, and eliminating ai, ..., Op

from the set of p + 1 equations, we could derive n —p relations of the foi'm

MA + MJ)2 + . . . + Mnh,, = 0,

where the coefficients M, being determinants the constituents of which are

integers, would be integers. The system of circuits b is irreducible, and there

are therefore no such relations ; hence n is not greater than p.
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Similarly, by considering the reconciliation of each circuit a with the

irreducible system of circuits b, it follows that p is not greater than n.

Hence p and w are equal to one another. And, because each system is a

complete system, there are integers A and B such that

ttr = ArA + ^«&2 4 . . . + Arnbn (r = l, ..., w)

hs = BsiU, + Bg.Xl. + . . . 4- BsnCln (s = 1, . . ., n)

The determinant of the integers A is equal to + 1 ; likewise the deter-

minant of the integers B.

Secondly, let x he a circuit reconcileable with the systein of circuits a : it is

reconcileable with any other complete system of circuits.

Since X is reconcileable with the system a, integers m^, ..., m„ can be

found such that

x = m^a^-\- ... + w,ia,i.

Any other complete system of n circuits b is such that the circuits a can

be expressed in the form

ar = ArA + •'+ Arnbn, (r=l, ...,n),

where the coefficients A are integers ; and therefore

M n n

X = biX mrAri + b^X MrAr^ + . . . + 6,i 2 7?V^,„
r=l r = l r=l

= qA + qA + •• + qnbn,

where the coefficients q are integers, that is, x is reconcileable with the

complete system of circuits b.

168. It thus appears that for the construction of any circuit on a surface,

it is sufficient to know some one complete system of simple irreducible

circuits. A complete system is supposed to contain the smallest possible

number of simple circuits : any one which is reconcileable with the rest is

omitted, so that the circuits of a system may be considered as independent.

Such a system is indicated by the following theorems :

—

I. No irreducible simple circuit can be drawn on a simply connected

surface*.

If possible, let an irreducible circuit C be drawn in a simply connected

surface with a boundary B. Make a loop-cut along C, and change it into a

cross-cut by making a cross-cut A from some point of G to a point of B\
this cross-cut divides the surface into two simply connected pieces, one of

which is bounded by B, the two edges of J., and one edge of the cut along C,

and the other of which is bounded entirely by the cut along C.

The latter surfjxce is smaller than the original surface ; it is simply

connected and has a single boundary. If an irreducible simple circuit can

be drawn on it, we proceed as before, and again obtain a still smaller simply

connected surface. In this way, we ultimately obtain an infinitesimal

* All surfaces considered are supposed to be bounded.
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element; for every cut divides the surface, in which it is made, into

distinct pieces. Irreducible circuits cannot be drawn in this element; and

therefore its boundary is reducible. This boundary is a circuit in a larger

portion of the surface : the circuit is reducible so that, in that larger portion

no irreducible circuit is possible and therefore its boundary is reducible.

This boundary is a circuit in a still larger portion, and the circuit is

reducible : so that in this still larger portion no irreducible circuit is possible

and once more the boundary is reducible.

Proceeding in this way, we find that no irreducible simple circuit is

possible in the original surface.

Corollary. No irreducible circuit can be drawn on a simply connected

surface.

II. A complete system of irreducible simple circuits for a surface of

connectivity N contains N—1 simple circuits, so that every other circuit on the

surface is reconcileable luitli that system.

Let the surface be resolved by cross-cuts into a single simply connected

surface : N —1 cross-cuts will be necessary. Let CD be

any one of them : and let a and b be two points on the /«

opposite edges of the cross-cut. Then since the surface is
q la d

simply connected, a line can be drawn in the surface from rr

a to b without passing out of the surface or without \,

meeting a part of the boundary, that is, without meeting "^

any other cross-cut. The cross-cut CD ends either in -^^8- -15.

another cross-cut or in a boundary; the line ae...fb

surrounds that other cross-cut or that boundary as the case may be : hence,

if the cut CD be obliterated, the line ae...fba is irreducible on the surface in

which the other N—2 cross-cuts are made. But it meets none of those cross-

cuts ; hence, when they are all obliterated so as to restore the unresolved

surface of connectivity N', it is an irreducible circuit. It is evidently not

a repeated circuit ; hence it is an irreducible simple circuit. Hence the

line of an irreducible simple circuit on an unresolved surface is given by

a line jmssing from a j^oint on one edge of a cross-cut in the resolved

surface to a point on the opposite edge.

Since there are N —\ cross-cuts, it follows that N—\ irreducible simple

circuits can thus be obtained : one being derived in the foregoing manner

from each of the cross-cuts, which are necessary to render the surface simply

connected. It is easy to see that each of the irreducible circuits on an

unresolved surface is, by the cross-cuts, rendered impossible as a circuit on

the resolved surface.

But every other irreducible circuit G is reconcileable with the N—\
circuits, thus obtained. If there be one not reconcileable with these N —\
circuits, then, when all the cross-cuts are made, the circuit G is not rendered
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impossible, if it be not reconcileable with those which are rendered impossible

by the cross-cuts : that is, there is on the resolved surface an irreducible

circuit. But the resolved surface is simply connected, and therefore no

irreducible circuit can be drawn on it : hence the hypothesis as to G, which

leads to this result, is not tenable.

Thus every other circuit is reconcileable with the system of iV - 1 circuits :

and therefore the system is complete*.

This method of derivation of the circuits at once indicates how far a

system is arbitrary. Each system of cross-cuts leads to a complete system of

irreducible simple circuits, and vice versa ; as the one system is not unique,

so the other system is not unique.

For the general question, Jordan's memoir, Des contours traces sur les surfaces,

Liouville, 2"'° Scr., t. xi., (1866), pp. 110— 130, may be consulted.

Ex. 1. On a doubly connected surface, one irreducible simple circuit can be drawn.

It is easily obtained by first resolving the surface into one that is simply connected

—

a single cross-cut CD is eftectivc for this purpose—and then by drawing a curve aeb in the

Fig. 46, (i).

surface from one edge of the cross-cut to the otlicr. All other irreducible circuits on tlic

unresolved surface are reconcileable with the circuit aeba.

Ex. 2. On a triply-connected surface, two independent irreducible circuits can be

Fig. 46, (ii).

* If the number of independent irreducible simple circuits be adopted as a basis for the

definition of the connectivity of a surface, the result of the proposition would be taken as the

definition : and the resolution of the surface into one, which is simply connected, would then be

obtained by developing the preceding theory in the reverse order.
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drawn. Thus in the figure C^ and C, will form a complete system. The circuits C^ and Ci

are also irreducible : they can evidently be deformed into Cj and C, and reducible circuits

by continuous deformation : in the algebraical notation adopted, we have

Ex. 3. Another example of a triply connected surface is given in Fig. 47

cible simple circuits are Tj and C.,. Another irreducible circuit is Cj

Two irredu-

this can be

Fig. 47.

reconciled with C^ and C2 by drawing the point a into coincidence with the intersection

of Ci and C, and the point c into coincidence with the same point.

Kv. 4. As a last example, consider the surface of a solid sphere with )i holes bored

through it. The connectivity is 2n+ l : hence 2n independent irreducible simple circuits

Fig. 48.

can be drawn on the surface. The simplest complete system is obtained by taking -In

curves : made up of a set of 71, each round one hole, and another set of n, each through

one hole.

A resolution of thi.s surface is given by taking cross-cuts, one round each hole (making

the circuits through the holes no longer possible) and one through each hole (making the

circuits romid the holes no longer possible).

The simplest case is that for which n=l : the surf;ice is equivalent to the anchor-ring.

169. Surfaces are at present being considered in view of their use as a

means of representing the value of a complex variable. The foregoing inves-

tigations imply that surfaces can be classed according to their connectivity

;

and thus, having regard to their designed use, the question arises as to

whether all surfaces of the same connectivity are equivalent to one another,

so as to be transformable into one another.
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Moreover, a surface can be physically deformed and still remain suitable for

representation of the variable, provided certain conditions are satisfied. We
thus consider geometrical transformation as well as physical deformation ; but

we are dealing only with the general results and not with the mathematical

relations of stretching and bending, which are discussed in treatises on

Analytical Geometry*.

It is evident that continuity is necessary for both : discontinuity would

imply discontinuity in the representation of the variable. Points that are

contiguous (that is, separated only by small distances measured in the surface)

must remain contiguous -f*: and one point in the unchanged surface must

correspond to only one point in the changed surface. Hence in the continuous

deformation of a surface there may he stretching and there may he hending

;

hut there must he no tearing and there must he no joining.

For instance, a single untwisted ribbon, if cut, comes to be simply connected. If a twist

through 180° be then given to one end and that end be then joined to the other, we shall

have a once-twisted ribbon, which is a surface with only one face and only one edge;

it cannot be looked upon as an equivalent of the former surface.

A spherical surface with a single hole can have the hole stretched and the surface

flattened, so as to be the same as a bounded portion of a plane : the two surfaces are

equivalent to one another. Again, in the spherical surface, let a large indentation be

made : let both the outer and the inner surfaces be made spherical ; and let the mouth of

the indentation be contracted into the form of a long, narrow hole along a part of a great

circle. When each point of the inner surface is geometrically moved so that it occupies the

position of its reflexion in the diametral plane of the hole, the final form§ of the whole

surface is that of a two-sheeted surface with a junction along a line : it is a spherical

winding-surface, and is equivalent to the simply connected spherical surface.

170. It is sufficient, for the purpose of representation, that the two

surfaces should have a point-to-point transformation : it is not necessary

that physical deformation, without tears or joins, should be actually possible.

Thus a ribbon with an even number of twists would be as effective as a

limited portion of a cylinder, or (what is the same thing) an untwisted ribbon :

but it is not possible to deform the one into the other physically :|:.

It is easy to see that cither deformation or transformation of the kind

considered will change a hifacial surface into a hifacial surface ; that it luill

not alter the connectivity, for it will not change irreducible circuits into

* See, for instance, Frost's Solid Geovietnj, (3rd ed.), pp. 342—352.

t Distances between points must be measured along the surface, not through space ; the

distance between two points is a length which one point would traverse before reaching the

position of the other, the motion of the point being restricted to take place in the surface.

Examples will arise later, in Riemann's surfaces, in which points that are contiguous in space

are separated by finite distances on the surface.

§ Clifford, Cull. Math. Papers, p. 250.

J The difference between the two cases is that, in jjhysical deformation, the surfaces arc the

surfaces of continuous matter and are impenetrable ; while, in geometrical transformation, the

surfaces may be regarded as penetrable witliout interference with the continuity.
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reducible circuits, and the number of independent irreducible circuits

determines the connectivity: and that it will not alter the number of boundary

curves, for a boundary will be changed into a boundary. These are necessary

relations between the two forms of the surface : it is not difficult to see that

they are sufficient for correspondence. For if, on each of two bifacial surfaces

^^^th the same number of boundaries and of the same connectivity, a complete

system of simple irreducible circuits be drawn, then, when the members of the

systems are made to correspond in pairs, the full transformation can be effected

by continuous deformation of those corresponding irreducible circuits. It

therefore follows that :

—

The necessary and suficient conditions, that two bifacial surfaces may be

equivalent to one another for the representation of a variable, are that the two

surfaces should be of the same connectivity and sJiould Jiave the same number of

boundaties.

As already indicated, this equivalence is a geometrical equivalence

:

deformation may be (but is not of necessity) physically possible.

Similarly, the presence of one or of several knots in a surface makes no

essential difference in the use of the surface for representing a variable. Thus

a long cylindrical surface is changed into an anchor-ring when its ends are

joined together ; but the changed surface would be equally effective for

purposes of representation if a knot were tied in the cylindrical surface before

the ends are joined.

But it need hardly be pointed out that though surfaces, thus twisted or

knotted, are equivalent for the purpose indicated, they are not equivalent for

all topological enumerations.

Seeing that bifacial surfaces, with the same connectivity and the same

number of boundaries, are equivalent to one another, it is natural to adopt, as

the surface of reference, some simple surface with those characteristics ; thus

for a surface of connectivity 2p + 1 with a single boundary, the surface of a

solid sphere, bounded by a point and pierced through with p holes, could be

adopted.

Klein calls* such a surface of reference a Noi^mal Surface.

It has been seen that a bounded spherical surfixce and a bounded simply connected

part of a plane are equivalent—they are, moreover, physically deforniable into one

another.

An untwisted closed ribbon is equivalent to a bounded piece of a plane with one hole

in it—they are deformable into one another : but if the ribbon, previous to being closed,

have undergone an even number of twists each through 180", they are still equivalent

but are not physically deformable into one another. Each of the bifacial sui'faces is

doubly coimected (for a single cross-cut renders each simply connected) and each of them

* TJeher RiemaniVs Theorie der algehraischen Functionen und Hirer Integrale, (Leipzig,

Teubner, 1882), p. 26.
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has two boundaries. If however the ribbon, previous to being closed, have undergone

an odd number of twists each through 180", the surface thus obtained is not equivalent to

the single-holed portion of the plane ; it is iiniftxcial and has only one boundary.

A spherical surface pierced in n+ 1 holes is equivalent to a bounded portion of the

plane with n holes ; each is of connectivity n + l and has n+ 1 boundaries. The spherical

surface can be deformed into the plane surftxce by stretching one of its holes into the form

of the outside boundary of the plane surface.

Kv. Prove that the surface of a boimded anchor-ring can be phy.sically deformed into

the surface in Fig. 47, p. 332.

For continuation and fuller development of the subjects of the present chapter, the

following references, in addition to those v?hich have been given, will be found useful :

Klein, Math. Ann., t. vii, (1874), pp. 548—557; ib., t. ix, (1876), pp. 476—482.

Lippich, 3fath. Ann., t. vii, (1874), pp. 212—229 ; Wiener Sitzungsh., t. Ixix, (ii),

(1874), pp. 91—99.

Dur5ge, Wiener Sitzungsh., t. Ixix, (ii), (1874), pp. 115—120; and section 9 of liis

treatise, quoted on p. 316, note.

Neumann, chapter vii of his treatise, quoted on p. 5, note.

Dyck, Math. Ann., t. xxxii, (1888), pp. 457—512, ib., t. xxxvii, (1890), pp. 273—316;

at the beginning of the first part of this investigation, a valuable series of references

is given.

Dingeldey, Topologische Studien, (Leipzig, Teubner, 1890).



CHAPTER XV.

Riemann's Surfaces.

171. The method of representing a variable by assigning to it a position

in a plane or on a sphere is effective when properties of uniform functions of

that variable are discussed. But when multiform functions, or integrals of

uniform functions occur, the method is effective only when certain parts of

the plane are excluded, due account being subsequently taken of the effect of

such exclusions ; and this process, the extension of Cauchy's method, was

adopted in Chapter IX.

There is another method, referred to in § 100 as due to Riemann, of an

entirely different character. In Riemann's representation, the region, in

which the variable z exists, no longer consists of a single plane but of a

number of planes ; they are distinct from one another in geometrical concep-

tion, yet, in order to preserve a representation in which the value of the

variable is obvious on inspection, the planes are infinitesimally close to one

another. The number of planes, often called sheets, is the same as the

number of distinct values (or branches) of the function w for a general

argument z and, unless otherwise stated, will be assumed finite; each sheet

is associated with one branch of the function, and changes from one branch

of the function to another are effected by making the ^-variable change

from one sheet to another, so that, to secure the possibility of change

of sheet, it is necessary to have means of passage from one sheet to another.

The aggregate of all the sheets is a surface, often called a Riemanns

Surface.

For example, consider the function

the cube roots being independent of one another. It is evidently a nine-valued function
;

the number of sheets in the appropriate Eiemann's surface is therefore nine.

The branch-points are 2= 0, 2= 1, 2=oc. Let w and a denote a cube-root of unity,

independently of one another ; then the values of z-^ can be represented in the form
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and the values of {z-l) -^ can be represented in the form (2-I)
,

a^i2-\)---\a{z-l)- The nine values of vj can be symbolically expressed as follows :

—

Wi
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that, for variations of z iu that surface, the multiformity of the function is

changed to uniformity. From the nature of the case, the character of the

surface will depend on the character of the function : and thus, though all the

functions are uniform within their appropriate surfaces, these surfaces are

mdely various. Evidently for uniform functions of z the appropriate surface

on the above method is the single plane already adopted.

172. The simplest classes of functions for which a Riemann's surface is

useful are (i) those called (| 94) algebraic functions, that is, multiform functions

of the independent variable defined by an algebraical equation of the form

f{w,z)=^,

which is of finite degree, say n, in w ; and (ii) those usually called Abelian

functions, which arise through integrals connected with algebraic functions.

Of such an algebraic function there are, in general, n distinct values ; but

for the special values of z, that are the branch-points, two or more of the

values coincide. The appropriate Riemann's surface is composed of n sheets

;

one branch, and only one branch, of w is associated with a sheet. The

variable z, in its relation to the function, is determined not merely by its

modulus and argument but also by its sheet ; that is, in the language of the

earlier method, we take account of the path by which z acquires a value. The

particular sheet in which z lies determines the particular branch of the

function. Variations of z, which occur within a sheet and do not coincide

with points lying in regions of passage between the sheets, lead to variations

in the value of the branch of w associated with the sheet ; a return to an

initial value of z, by a path that nowhere lies within a region of passage,

leaves the 2^-point in the same sheet as at first and so leads to the initial

branch (and to the initial value of the branch) of w. But a return to an

initial value of z by a path, which, in the former method of representation,

would enclose a branch-point, implies a change of the branch of the function

according to the definite order prescribed by the branch-point. Hence the

final value of the variable z on the Riemann's surface must lie in a sheet that

is different from that of the initial (and algebraically equal) value ; and

therefore the sheets must be so connected that, in the immediate vicinity of

branch -points, there are means of passage from one sheet to another, securing

the proper interchanges of the branches of the function as defined by the

equation.

173. The first necessity is therefore the consideration of the mode in

which the sheets of a Riemann's surface are joined : the mode is indicated by

the theorem that sheets of a Riemann's surface are joined along lines.

The junction might be made either at a point, as with two spheres in

contact, or by a common portion of a surface, as with one prism lying on
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another, or along lines ; but whatever the character of the junction be, it

must be such that a single passage across it (thereby implying entrance to

the junction and exit from it) must change the sheet of the variable.

If the junction were at a point, then the 2^-variable could change from one

sheet into another sheet, only if its path passed through that point : any

other closed path would leave the ^r-variable in its original sheet. A small

closed curve, inhnitesimally near the point and enclosing it and no other

branch-point, is one which ought to transfer the variable to another sheet

because it encloses a branch-point : and this is impossible with a point-junction

when the path does not pass through the point. Hence a junction at a point

only is insufficient to provide the proper means of passage from sheet to

sheet.

If the junction were effected by a common portion

of surface, then a passage through it (implying an ^--- --.

entrance into that portion and an exit from it) ought to ,^—i -^

change the sheet. But, in such a case, closed contours '•'--'''

can be constructed which make such a passage without ^^8- ^^'

enclosing the branch-point a: thus the junction would cause a change of

sheet for certain circuits the description of which ought to leave the

2;-variable in the original sheet. Hence a junction by a continuous area of

surface does not provide proper means of passage from sheet to sheet.

The only possible junction which remains is a line.

The objection in the last case does not apply to a closed — / "\

contour which does not contain the branch-point ; for the /..--''

line cuts the curve twice and there are therefore two Fig. 52.

crossings ; the second of them makes the variable return to the sheet which

the first crossing compelled it to leave.

Hence the junction between any two sheets takes place along a line.

Such a line is called* a hranch-line. The branch -points of a multiform

function lie on the branch-lines, after the foregoing explanations ; and a

branch-line can be crossed by the variable only if the variable change its

sheet at crossing, in the sequence prescribed by the branch-point of the

function which lies on the line. Also, the sequence is reversed when the

branch-line is crossed in the reversed direction.

Thus, if two sheets of a surface be couiiccted along a branch-line, a point which

crosses the line from the first sheet must pass into the second and a point which crosses

the line from the second sheet must pass into the first.

Again, if, along a common direction of branch-line, the first sheet of a surface

be connected with the second, the second with the third, and the third with

* Sometimes cross-line, sometimes IrancJi-scction. The German title is Verziceigungschnitl

;

the French is lignc de inissagc ; see also the note on the eiiuivalents of branch-point, p. 15.

•2-2 9
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the first, a p^int which crosses the line from tlic first sheet in one direction must pass

into the second sheet, but if it cross the line in the other direction it must pass into

the third sheet.

A branch-point does not necessarily affect all the branches of a function

:

when it affects only some of them, the corresponding property of the Riemann's

surface is in evidence as follows. Let z—a determine a branch-point affecting,

say, only r branches. Take n points a, one in each of the sheets ; and through

them draw n lines cab, having the same geometrical position in the respective

sheets. Then in the vicinity of the point a in each of the w sheets, associated

with the r affected branches, there must be means of passage from each one

to all the rest of them ; and the lines cab can conceivably be the branch-lines

with a properly established sequence. The point a does not affect the other

n — r branches : there is therefore no necessity for means of passage in the

vicinity of a among the remaining n — r sheets. In each of these remaining

sheets, the point a and the line cab belong to their respective sheets alone

:

for them, the point a is not a branch-point and the line cab is not a branch-

line.

174. Several essential properties of the branch-lines are immediate

inferences from these conditions.

I. A free end of a branch-line in a surface is a branch-point.

Let a simple circuit be drawn round the free end so small as to enclose no

branch-point (except the free end, if it be a branch-point). The circuit meets

the branch-line once, and the sheet is changed because the branch-line is

crossed ; hence the circuit includes a branch-point which therefore can be

only the free end of the line.

Note. A branch-line may terminate in the boundary of the surface,

and then the extremity need not be a branch-point.

II. When a branch-line extends beyond a brancli-jyoint lying in its course,

the sequence of intercliange is not the same on the two sides of tlie point.

If the sequence of interchange be the same on the two sides of the branch-

point, a small circuit round the point would first cross one part of the branch-

line and therefore involve a change of sheet and then, in its course, would

cross the other part of the branch-line in the other direction which, on the

supposition of unaltered sequence, would cause a return to the initial sheet.

In that case, a circuit round the branch-point would fail to secure the proper

change of sheet. Hence the sequence of interchange caused by the branch-

line cannot be the same on the two sides of the point.

III. If two branch-lines ivith different sequences of interchange have a

common extremity, that point is either a branch-jwint or an extr-emity of at

least one other branch-line.
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If the point be not a branch-point, then a simple curve enclosing it, taken

so small as to include no branch-point, must

leave the variable in its initial sheet. Let A
be such a point, AB and ^C be two branch-

lines having A for a common extremity ; let

the sequence be as in the figure, taken for a

simple case ; and suppose that the variable

initially is in the ?'th sheet. A passage across AB makes the variable

pass into the sth sheet. If there be no branch-line between AB and AG
having an extremity at A, and if neither n nor m be s, then the passage

across AG makes no change in the sheet of the variable and, therefore, in

order to restore r before AB, at least one branch-line must lie in the angle

between AC and AB, estimated in the positive trigonometrical sense.

If either n or m, say n, be s, then after passage across AG, the point is in

the 7Hth sheet ; then, since the sequences are not the same, ini is not r and

there must be some branch-line between AG and AB io make the point

return to the rth sheet on the completion of the circuit.

If then the point A be not a branch-point, there must be at least one

other branch-line having its extremity at A. This proves the proposition.

Corollary 1. Ifhoili of two branch-lines extend beyond a point of inter-

section, which is not a branch-point, no sheet of the surface has both of them for

branch-lines.

Corollary 2. If a change of sequence occur at any point of a branch-

line, then either that point is a branch-point or it lies also on some other

branch-line.

Corollary 3. No part of a brxinch-line with only one branch-point on it

can be a closed curve.

It is evidently superfluous to have a branch-line without any branch-point

on it.

175. On the basis of these properties, we can obtain a system of branch-

lines satisfying the requisite conditions which are :

—

(i) the proper sequences of change from sheet to sheet nuist be

secured by a description of a simple circuit round a branch-

point : if this be satisfied for each of the branch-points, it

will evidently bo satisfied for any combination of simple circuits,

that is, for any ])ath whatever enclosing one or more branch-

points.

(ii) the sheet, in which the variable re-assumes its initial value after

describing a circuit that encloses no branch-point, must be the

initial sheet.



342 SYSTEM OF BRANCH-LINES [175.

In the ^^-plaiic of Cauchy's method, let lines be drawn from any point /, not

a branch-point in the first instance, to each of the branch-points, as in fig. 19,

p. 156, so that the joining lines do not meet except at /: and suppose the

?; -sheeted Riemann's surface to have branch-lines coinciding geometrically

with these lines, as in § 173, and having the sequence of interchange for

passage across each the same as the order in the cycle of functional values

for a small circuit round the branch-point at its free end. No line (or j)art

of a line) can be a closed curve ; the lines need not be straight, but they

will be supposed drawn as direct as possible to the points in angular

succession.

The first of the above requisite conditions is satisfied by the establish-

ment of the sequence of interchange.

To consider the second of the conditions, it is convenient to divide

circuits into two kinds, (a) those which exclude /, (/3) those which include /,

no one of either kind (for our present purpose) including a branch-point.

A closed circuit, excluding / and all the branch-points, must intersect a

branch-line an even number of times, if

it intersect the line in real points. Let

the figure (fig. 54) represent such a case

:

then the crossings at A and B counter-

act one another and so the part be-

tween A and B may without effect be

transferred across IB^ so as not to cut

the branch-line at all. Similarly for

the points C and D: and a similar

transference of the part now between

G and D may be made across the

branch-line without effect: that is, the p- ^^

circuit can, without effect, be changed

so as not to cut the branch-line IB3 at all. A similar change can be made

for each of the branch-lines : and so the circuit can, without effect, be changed

into one which meets no branch-line and therefore, on its completion, leaves

the sheet unchanged.

A closed circuit, including / but no branch-point, must meet each branch-

line an odd number of times. A change similar in character to that in

the previous case may be made for each branch-line : and without affecting

the result, the circuit can be changed so that it meets each branch-line only

once. Now the effect produced by a branch-line on the function is the same

as the description of a simple loop round the branch-point which with /

determines the branch-line : and therefore the effect of the circuit at present

contemplated is, after the transformation which does not affect the result, the

same as that of a circuit, in the previously adopted mode of representation,
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enclosing all the branch-points. But, by Cor. III. of § 90, the effect of a

circuit which encloses all the branch-points (including z = zc , ii it be a

branch-point) is to restore the value of the function which it had at the

beginning of the circuit : and therefore in the present case the effect is to

make the point return to the sheet in which it lay initially.

It follows therefore that, for both kinds of a closed circuit containing no

branch-point, the effect is to make the ^^-variable return to its initial sheet

on resuming its initial value at the close of the circuit.

Next, let the point / be a branch-point ; and let it be joined by lines,

as direct* as possible, to each of the other branch-points in angular succes-

sion. These lines will be regarded as the branch-lines ; and the sequence of

interchange for passage across any one is made that of the interchange pre-

scribed by the branch-point at its free extremity.

The proper sequence of change is secured for a description of a simple

closed circuit round each of the branch-points other than /. Let a small

circuit be described round 7; it meets each of the branch-lines once and

therefore its effect is the same as, in the language of the earlier method of

representing variation of z, that of a circuit enclosing all the branch-points

except /. Such a circuit, when taken on the Neumann's sphere, as in Cor.

III., § 90 and Ex. 2, § 104, may be regarded in two ways, according as one or

other of the portions, into which it divides the area of the sphere, is regarded

as the included area ; in one way, it is a circuit enclosing all the branch-

points except /, in the other it is a circuit enclosing / alone and no other

branch-point. Without making any modification in the final value of w, it

can (by § 90) be deformed, either into a succession of loops round all the

branch-points save one, or into a loop round that one ; the effect of these two

deformations is therefore the same. Hence the effect of the small closed

circuit round / meeting all the branch-lines is the same as, in the other mode
of representation, that of a small curve round / enclosing no other branch-

point; and therefore the adopted set of branch-lines secures the proper

sequence of change of value for description of a circuit round /.

The first of the two necessary c(jnditions is therefore satisfied b}' the

present arrangement of branch -lines.

The proof, that the second of the two necessary conditions is also satisfied

by the present arrangement of branch-lines, is similar to that in the preceding

case, save that only the first kind of circuit of the earlier proof is possible.

It thus appears that a system of branch-lines can be obtained which

secures the proper changes of sheet for a multiform function : and therefore

Riemann's surfaces can be constructed for such a function, the essential

property being that over its appropriate surface an otherwise multiform

function of the variable is a uniform function.

* The reason for this will appear in §§ 183, 184.
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The multipartite character of the function has its influence preserved by

the character of the surface to which the function is referred : the surface,

consisting of a number of sheets joined to one another, may be a multiply

connected surface.

In thus proving the general existence of appropriate surfaces, there has

remained a large arbitrary element in their actual construction : moreover,

in particular cases, there are methods of obtaining varied configurations of

branch-lines. Thus the assignment of the n branches to the n sheets has

been left unspecified, and is therefore so far arbitrary : the point /, if not a

branch-point, is arbitrarily chosen and so there is a certain arbitrariness of

position in the branch -lines. Naturally, what is desired is the simplest

appropriate surface : the particularisation of the preceding arbitrary qualities

is used to derive a canonical form of the surface.

176. The discussion of one or two simple cases will help to illustrate the

mode of junction between the sheets, made by branch-lines.

The simplest case of all is that in which the surface has only a single

sheet : it does not require discussion.

The case next in simplicity is that in which the surface is two-sheeted

:

the function is therefore two-valued and is consequently defined by a

quadratic equation of the form

Lu-+2Mu+N=0,
where L and M are uniform functions of z. When a new variable lu is

introduced, defined by Lu + M=iu, so that values of w and of u correspond

uniquely, the equation is

It is evident that every branch-point of u is a branch-point of lu, and

vice versa ; hence the Riemann's surface is the same for the two equations.

Now any root of P (z) of odd degree is a branch-point of w. If then

Piz) = Q^(z)R{z),

where R(z) is a product of only simple factors, every factor of B (z) leads to

a branch-point. If the degree of R (z) be even, the number of branch-points

for finite values of the variable is even and z= oo is not a branch-point ; if the

degree of R(z) be odd, the number of branch-points for finite values of the

variable is odd and z = oo is a branch-point : in either case, the number of

branch-points is even.

There are only two values of w, and the Riemann's surface is two-sheeted

:

crossing a branch-line therefore merely causes a change of sheet. The free

ends of branch-lines are branch-points ; a small circuit round any branch-

point causes an interchange of the branches w, and a circuit round any two

branch-points restores the initial value of w at the end and therefore leaves

the variable in the same sheet as at the beginning. These are the essential

requirements in the present case ; all of them are satisfied by taking each
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hrancli-line as a line connecting hvo (and only two) of the branch-points. The

ends of all the branch -lines are free : and their number, in this method, is

one-half that of the (even) number of branch-points. A small circuit round

a branch-point meets a branch-line once and causes a change of sheet ; a

circuit round two (and not more than two) branch-points causes either no

crossing of branch-line or an even number of crossings and therefore restores

the variable to the initial sheet.

A branch-line is, in this case, usually drawn in the form of a straight line

when the surface is plane : but this form is not essential and all that is

desirable is to prevent intersections of the branch-lines.

Note. Junction between the sheets along a branch-line is easily secured.

The two sheets to be joined are cut along the branch-line. One edge of the

cut in the upper sheet, say its right edge looking along the section, is joined

to the left edge of the cut in the lower sheet ; and the left edge in the upper

sheet is joined to the right edge in the lower.

A few simple examples will illustrate these remarks as to the sheets : illustrations of

closed circuits will arise later, in the consideration of integrals of multiform functions.

Ex. 1. Let XD'= A{z-a){z-h),

so that a and h are the only branch-points. The surface is two-sheeted : the line ah may
be made the branch-line. In Fig. 55 only part of the upper sheet is shewn* as likewise

only part of the lower sheet. Continuous lines imply what is visible ; and dotted lines

what is invisible, on the supposition that the sheets are opaque.

The circuit, closed in the surface and passing round 0, is made up of OJK in the upper

sheet : the point crosses the branch-line and then passes into the lower sheet, where it

describes the dotted line KLH : it then meets and crosses the branch-line at H, passes

into the upper sheet and in that sheet returns to 0. Similarly of the line ABC, the part

AB lies in the lower sheet, the part BC in the upper : of the line DU the part DE lies in

the upper sheet, the part EEG in the lower, the piece FG of this part being there visible

beyond the lioundary of the retained portion of the upper surface.

Ex. 2. Let \iv'^= z^-a^.

The branch-points (Fig. 56) are A ( = «), B ( = aa), C{= aa^), where a is a primitive cube

root of unity, and s= qo. The branch-lines can be made by BC, Ace ; and the two-

sheeted surface will be a surface over which w is uniform. Only a part of each sheet

is shewn in the figure; a section also is made at J/ across the surface, cutting the branch

-

line Ace

.

Ex. 3. Let w"'= s",

where n and in are prime to each other. The branch-points arc i = and 2=00
; and the

branch-line extends from to qo . There are m sheets ; if we associate them in order with

the branches tVg, where
n («fl+2S7r)i

for s=l, 2, ..., m, then the first sheet is connected witli tlie second forwards, tlio .second

with the third forwards, and so on ; tlie mth being connected with tlic tirst forwards.

* The form of the three figures in the phite opposite p. 346 is suggested by Holzraiiller, Kin-

fuhrung in die Theorie der isogonalcn Verwandschaften itud der conformen Abbildnngeii, (Leipzig,

Teubner, 1882), in which several iUustrations are given.
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The surface is sometimes also called a vniiding-surface ; and a branch-point such as

1= on the surface, where a number m of sheets pass into one another in succession, is

also called a icinding-point of order m-\ (seep. 15, note). An illustration of the surface

for wi= 3 is given in Fig. 57, the branch-line being cut so as to shew the branching : what

is visible is indicated by continuous lines ; what is in the second sheet, but is invisible, is

indicated by the thickly dotted line ; what is in the third sheet, but is invisible, is indic-

ated by the thinly dotted line.

Ex. 4. Consider a three-sheeted surface having four branch-points at a, b,c,d; and

let each point interchange two branches, say, to.,, w^ at a ; it\, w^ at h ; u:,, tv^ at c ; 10^, w^

Fig. 58.

at d; the points being as in Fig. 58. It is e;\sy to verify that these branch-points

satisfy the condition that a circuit, enclosing them all, restores the initial value of v:.

The branching of the sheets may be made as in the figm-e, the integei-s on the two sides

of the line indicating the sheets that are to be joined along the line.

A canonical form for such a surface can lie derived from the more general case given

later (in §§ 186—189).

Ex. 5. Shew that, if the equation

/(»-,. ) =

be of degree n in w and lie irreducible, all the a sheets of the surface are connected, that

is, it is possible by an appropriate path to pass from any sheet to any other sheet.

177. It is not necessary to limit the surface representing the variable to

a set of planes; and, indeed, as with uniform functions, there is a convenience

in using the sphere for the purpose.

We take n spheres, each of diameter unity, touching the Eiemann's plane

surface at a point ^4 ; each sphere is regarded as the stereographic projection

of a plane sheet, with regard to the other extremity A' of the spherical

diameter through A. Then, the sequence of these spherical sheets being

the same as the sequence of the plane sheets, branch-points in the plane

surface project into branch-points on the spherical surface: branch -lines be-

tween the plane sheets project into branch-lines between the spherical sheets

and are terminated by corresponding points ; and if a branch-line extend in

the plane surface to z= y: , the corresponding branch-line in the spherical

surface is terminated at A'.

A surface will thus be obtained consisting of n spherical sheets; like

the plane Riemann's surface, it is one over which the n-valued function is a

uniform function uf the position of the variable point.
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To face jo. 346.

Fig. 57.
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But also the connectivity of tJie n-sheeted spherical surface is the same as

that of the n-sheeted plane surface with which it is associated.

In fact, the plane surface can be mechanically changed into the spherical

surface without tearing, or. repairing, or any change except bending and

compression : all that needs to be done is that the n plane sheets shall be

bent, without making any change in their sequence, each into a spherical

form, and that the boundaries at infinity (if any) in the plane-sheet shall

be compressed into an infinitesimal point, being the South pole of the cor-

responding spherical sheet or sheets. Any junctions between the plane

sheets extending to infinity are junctions terminated at the South pole. As

the plane surface has a boundary, which, if at infinity on one of the sheets, is

therefore not a branch-line for that sheet, so the spherical surface has a

boundary which, if at the South pole, cannot be the extremity of a branch-

line.

178. We proceed to obtain the connectivity of a Riemami's surface : it

is determined by the following theorem :

—

Let the total number of branch-jwints in a Riemanns n-sheeted surface be

r ; and let the number of branches of the function interchanging at the first

point be m^, the mimber interchanging at the second be m..>, and so on. Then

the connectivity of the surface is

n - 2n + 3,

where n denotes m^ -\- m., + . . . -f- m,. — r.

Take* the surface in the bounded spherical form, the connectivity N of

which is the same as that of the plane surface : and let the boundary be a

small hole A in the outer sheet. By means of cross-cuts and loop-cuts, the

surface can be resolved into a nimiber of distinct simply connected pieces.

First, make a slice bodily through the sphere, the edge in the

outside sheet meeting A and the direction of the

slice through A being chosen so that none of the

branch -points lie in any of the pieces cut off. Then n

parts, one from each sheet and each simply connected,

are taken away. The remainder of the surface has a

cup-like form ; let the connectivity of this remainder

be M.

This slice has implied a number of cuts.

The cut made in the outside sheet is a cross-cut,

because it begins and ends in the boundary A. It ^^s- 59

divides the surface into two distinct pieces, one being

the portion of the outside sheet cut off, and this piece is simply connected

;

* The proof is founded on Neumann's, pp. 108—172.
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hence, by Prop. III. of § 160, the remainder has its connectivity still repre-

sented by iV.

The cuts in all the other sheets, caused by the slice, are all loop-cuts,

because they do not anywhere meet the boundary. There are n — 1 loop-

cuts, and each cuts off a simply connected piece ; and the remaining surface

is of connectivity M. Hence, by Prop. V. of § 161,

M + n-l=N+2(n-l),
and therefore 31=1^+11-1.

In this remainder, of connectivity M, make r — I cuts, each of which

begins in the rim and returns to the rim, and is to be made through the n

sheets together ; and choose the directions of these cuts so that each of the

r resulting portions of the surface contains one (and only one) of the branch-

points.

Consider the portion of the surface which contains the branch-point

where Wj sheets of the surface are connected. The Wj connected sheets

constitute a piece of a winding-surface round the winding-point of order

nil — 1 ; the remaining sheets are unaffected by the winding-point, aud

therefore the parts of them are n - m^ distinct simply connected pieces.

The piece of winding-surface is simply connected ; because a circuit, that

does not contain the winding-point, is reducible without passing over the

winding-point, and a circuit, that does contain the winding-point, is reducible

to the winding-point, so that no irreducible circuit can be drawn. Hence

the portion of the surface under consideration consists of n — mj -}- 1 distinct

simply connected pieces.

Similarly for the other portions. Hence the total number of distinct

simply connected pieces is

r

S {n — tUtj + \)
9 = 1

r

= iw — S Diq + r
9 = 1

= nr — n.

But in the portion of connectivity M each of the / — 1 cuts causes, in

each of the sheets, a cut passing from the boundary and returning to the

boundary, that is, a cross-cut. Hence there are n cross-cuts from each of the

?•— 1 cuts, and therefore n {r— 1) cross-cuts altogether, made in the portion of

surface of connectivity M.

The effect of these w(r — 1) cross-cuts is to resolve the portion of con-

nectivity M into nr — Vl distinct simply connected pieces; hence, by § 160,

M=n{r-l)-{nr-n) + 2,

and therefore N=M - (n - 1 ) = fl - 2n + 8,

the connectivity of the Riemann's surface.
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r

The quantity Cl, having the vahie ^ {'ni,, — \), may be called the rami-
7 = 1

fication of the surface, as indicating the aggregate sum of the orders of

the different branch-points.

Note. The surface just considered is a closed surface to which a point

has been assigned for boundary; hence, by Cor. I., Prop. III., § 104, its

connectivity is an odd integer. Let it be denoted by 2p -y \\ then

and 2/> is the number of cross-cuts which change the Riemann's surface into

one that is simply connected.

The integer p is often called (Cor. I., Prop. III., § 164) the class of the

Riemann's surface ; and the equation

f{tv, ^) =

is said to he of class p, luheii p is the class of the associated Rieinanns

surface.

Ex. 1. When the equiition is

w^= \{z-~ a) {z - b),

we have a two-sheeted surface, n= 2. There are two branch-points, z = a and z = b; hut

2= 00 is not a branch-point; so that r=2. At each of the branch-points tlie two vahies arc

interchanged, so that ??i-i
= 2, ?;i.2 = 2; thus Q = 2. Hence the connectivity =2 — 4-1-3 = 1,

that is, the surface is simply connected.

The surface can be deformed, as in the example in § 169, into a sphere.

Ex. 2. When the equation is

= 4iz-e,)iz-e.;){z-e,),

we have n= 2. There are four branch -points, viz., e,, e.^, e^, oc , so that /•= 4 ; and at e;ich

of them the two values of w are interchanged, so that ??ig= 2 (for s= 1, 2, 3, 4), and therefore

12 = 8 - 4= 4. Hence the connectivity is 4 - 4 -f 3, that is, 3 ; and the value of p is unity.

Similarly, the surface associated with the equation

^ifl=U{z),

where Viz) is a rational, integral, algebraical function of degree 2)n-\ or of degree 2in,

is of connectivity 2m + 1 ; so that^ = ;». The equation

M;2= (l-22)(l-yt222)

is of class p = 1. The case next in importance is that of the algebraical equation le;u.ling to

the hyporelliptic functions, when {'^is either a quintic or a sextic ; and then p = 2.

Ex. 3. Obtain the connectivity of the Riemami's surface associated with tlie equation

xv-^+ z^-Zawz^^X,

where a is a constant, (i) when a is zero, (ii) when a is different from zero.



350 RESOLUTION OF A RIEMANN'S SURFACE [178.

Ex. 4. Shew that, if the surface associated with the equation

f{io,z) = 0,

have fi boundaiy-hnes instead of one, and if the equation have the same branch-points

as in the foregoing proposition, the connectivity is Q — 2h + /a+ 2.

179. The consideration of irreducible circuits on the surface at once

reveals the multiple connection of the surface, the numerical measure of

which has been obtained. In a Riemann's surface, a simple

closed circuit cannot he deformed over a branch-point. Let ^ /q'

A he a branch-point, and let AE... be the branch-line \;-p\^'

having a free end at A. Take a curve ...CED... crossing d D'

the branch-line at E and passing into a sheet diflferent -p- gQ

from that which contains the portion CE ; and, if possible,

let a slight deformation of the curve be made so as to ti'ansfer the portion

GE across the branch-point A. In the deformed position, the curve

...G'E'D'... does not meet the branch-line; there is, consequently, no

chansfe of sheet in its course near A and therefore E'D'..., which is the

continuation of ...CE', cannot be regarded as the deformed position of ED.

The two paths are essentially distinct ; and thus the original path cannot be

deformed over the branch-point.

It therefore follows that continuous deformation of a circuit over a

branch-point on a Riemann's surface is a geometrical impossibility.

Ex. Trace the variation of the curve CEB, as tlie point E moves up to A and then

returns along the other side of the branch-hne.

Hence a circuit containing two or more of the branch-points is irreducible
;

but a circuit containing all the branch-points is equivalent to a circuit that

contains none of them, and it is therefore reducible.

If a circuit contain only one branch-point, it can be continuously deformed

so as to coincide with the point on each sheet and therefore, being deformable

into a point, it is a reducible circuit. An illustration has already occurred in

the case of a portion of winding-surface containing a single winding-point

(p. 348) ; all circuits drawn on it are reducible.

It follows from the preceding results that the Riemann's surface associated

with a multiform function is generally one of multiple connection ; we shall

find it convenient to know how it can be resolved, by means of cross-cuts, into

a simply connected surface. The representative surface will be supposed a

closed surface with a single boundary ; its connectivity, necessarily odd, being

2/} -t- 1, the number of cross-cuts necessary to resolve the surface into one

that is simply connected is 1p ; when these cuts have been made, the simply

connected surface then obtained will have its boundary composed of a single

closed curve.
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One or two simple examples of resolution of special Riemann's surfaces will be useful

in leading up to the general explanation ; in the examples it will be shewn how, in

conformity with § 168, the resolving cross-cuts render irreducible circuits impossible.

Ex. 1. Let the equation be

w^= A{z-a){z-b){z-c){z-d),

where «, /), c, d are four distinct points, all of finite moduhis. The surface is two-sheeted

;

each of the points a, b, c, d is a branch-i)oint where the two values of w interchange ; and

so the surface, assumed to have a single boundary, is triply connected, the value of p
being unity. The branch-lines are two, each connecting a pair of branch-points ; let them

be ah and cd.

Two cross-cuts are necessary and sufficient to resolve the surface into one that is

simply connected. We fii'st make a cross-cut,

beginning at the boundary B, (say it is in the

upper sheet), continuing in that sheet and re-

turning to B, so that its course encloses the

branch-line ab (but not cd) and meets no branch-

line. It is a cross-cut, and not a loop-cut, for it

begins and euds in the boundary ; it is evidently

a cut in the upper sheet alone, and does not

divide the surface into distinct portions ; and,

once made, it is to be regarded as boundary for

the partially cut surface.

The surface in its present condition is con-

nected : and therefore it is possible to pass from one edge to the other of the cut just

made. Let P be a point on it ; a curve that passes from one edge to the other is indicated

by the line PQR in the upper sheet, US in the lower, and SP in the upi)er. Along this

line make a cut, beginning at /' and returning to P ; it is a cross-cut, partly in the

upper sheet and partly in the lower, and it does not divide the sm-face into distinct

portions.

Two cross-cuts in the triply connected surface have now been made ; neither of them,

as made, divides the surface into distinct portions, and each of them when made reduces

the connectivity by one unit ; hence the surface is now simply connected. It is easy to

see that the boundary consists of a single line not intersecting itself ; for beginning

at P, we have the outer edge of PBT, then the inner edge of PQRSP, then the imier

edge of PTB, and then the outer edge of PSRQP, returning to P.

The required resolution has been effected.

Before the surface was resolved, a number of irreducible circuits could be drawn ; a

complete system of irreducible circuits is composed of two, by § 168. Such a system may
be taken in various ways ; let it be composed of a simple ciu've C lying in the upper sheet

and containing the points a and b, and a simple curve I), lying partly in the uj^per

and partly in the lower sheet and containing the points a and c ; each of these curves

is irreducible, because it encloses two branch-points. Every other irreducible circuit

is reconcileable with these two ; the actual reconciliation in particular cases is effected

most simply when the surface is taken in a spherical form.

The irreducible circuit C on the unresolved surface is impossible on the resolved

surface owing to the cross-cut SPQRS ; and the irreducible circuit D on the unresolved

surface is impossible on the resolved surface owing to the cross-cut PTB. It is easy

to verify that no irreducible circuit can be drawn on the resolved surface.
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In practice, it is conveniently effective to select a complete system of irreducible

simple circuits and then to make the cross-cuts so that each of them renders one circuit

of the system impossible on the resolved surface.

Ex. 2. If the equation be

'^-9^-03
= 4 (2 -Ci) (4-6^(^-63),

the branch-points are e^, e^, tJ-j and 00 . When the two-sheeted surface is spherical, and the

branch-lines are taken to be (i) a line joining e^, e.^; and (ii) a line joining e, to the South

pole, the discussion of the siuface is similar in detail to that in the preceding example.

Kv. 3. Let the equation be

and for simplicity suppose that k, A, /x are real quantities subject to the inequalities

1 <K<X</X<QO.

The associated surface is two-sheeted and has a boundary assigned to it ; assuming

that its sheets are planes, we shall take some point in the finite part of the upper sheet,

not being a branch-point, as the boundary. There are six branch-points, viz., 0, \, k,

X, /x, 00 at each of which the two values of w interchange ; and so the connectivity of the

surface is 5 and its class, p, is 2. The branch-lines can be taken as three, this being

the simplest arrangement ; let them be the lines joining 0, I ; k, X
; fi, 00

.

Four cross-cuts are necessary to resolve the surface into one that is simply connected

and has a single boundary. They may be obtained as follows.

Fig. 02.

Beginning at the boundary L, let a cut LHA be made entirely in the upper sheet

along a line which, when complete, encloses the points and 1 but no other branch-points

;

let the cut return to L. This is a cross-cut and it does not divide the siu-face into

distinct pieces ; hence, after it is made, the connectivity of the modified surface is 4, and

there are two boundary lines, being the two edges of the cut LHA.

Beginning at a point A in LHA, make a cut along ABC in the upper sheet until

it meets the branch-line fiao , then in the lower sheet along CSD until it meets the

branch-line 01, and then in the upper sheet from D returning to the initial point A.

This is a cross-cut and it does not divide the surface into distinct pieces ; hence, after it

is made, the connectivity of the modified surface is 3, and it is easy to see that there

is only one boundary edge, similar to the single boundary in Ex. 1 when the surface

in that example has been completely resolved.

Make a loop-cut EFG along a line, enclosing the points k and X but no other branch-

points
; and change it into a cross-cut by making a cut from E to some point B of the

boundary. This cross-cut can be regarded as BEFGE, ending at a point in its own

earlier course. As it does not divide the surface into distinct pieces, the connectivity is

reduced to 2 ; and there are two boundary lines.
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Beginning at a point G make another cross-cut GQPRG, ,ns in the figure, enclosing

the two branch-points X and /x and lying partly in the upper sheet and partly in the lower.

It does not divide the surface into distinct pieces : the connectivity is reduced to unity

and there is a single boundary line.

Four cross-cuts have l)een made ; and the surface has been resolved into one that is

simply connected.

It is easy to verify :

(i) that neither in the upper sheet, nor in the lower sheet, nf)r partly in the

upper sheet and partly in the lower, can an irreducible circuit be drawn in the resolved

surfrice ; and

(ii) that, owing to the cross-cuts, the simplest irreilucible circuits in the unre.solved

surface—viz. those which enclose 0, 1 ; 1, k ; k, X ; X, ^ ; respectively—are rendered

imi)ossible in the resolved surface.

The equation in the present example, and the Kiemann's surface associated with it,

lead to the theory of hyperelliptic functions*.

180. The last example suggests a method of resolving any two-sheeted

surface into a surface that is simply connected.

The number of its branch-points is necessarily even, say 2/) -+- 2. The
branch-lines can be made to join these points in pairs, so that there will be

p + \ oi^ them. To determine the connectivity (§ 178), we have n = 2 and,

since two values are interchanged at every branch-point, 11 = 2p -1- 2 ; so

that the connectivity is 2p 4- 1. Then 2p cross-cuts are necessary for the

required resolution of the surface.

We make cuts round j) of the branch-linos, that is, round all of them but

one ; each cut is made to enclose two branch-points, and each lies entirely in

the upper sheet. These are cuts corresponding to the cuts LUA and EFG
in fig. 62 ; and, as there, the cut round the first branch-line begins and ends

in the boundary, so that it is a cross-cut. All the remaining cuts are loop-

cuts at present. The system oi p cuts wc denote by a^, cu, ..., a^.

We make other p cuts, one passing from the inner edge of each of the p
cuts a already made to the branch-line which it surrounds, then in the lower

sheet to the (jj-f l)th branch-line, and then in the upper sheet returning to

the point of the outer edge of the cut a at which it began. This system of

cuts corresponds to the cuts ADSGBA and GQPRG in fig. 62. Each of them

can be taken so as to meet no one of the cuts a except the one in which it

begins and ends; and they can be taken so as not to meet one another.

This system of p cuts we denote by 6,, b.,, ..., b^,, where b,. is the cut which

begins and ends in a,.. All these cuts arc cross-cuts, because they begin and

end in boundary-lines.

Lastly, we make other jj — 1 cuts from a,, to 6,._i, for r = 2, 3, ..., jh all in

* One of the most direct discussions of the theory from this point of view is fjiven by Prj-m,

Neitc Tlieorie der ultrdelliptisrlwii Fuitctioiim, (Berlin, Mayer and Miillor, 2nd cd., 1885).

K. 23
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the upper sheet ; no one of them, except at its initial and its final points,

meets any of the cuts already made. This system of p—1 cuts we denote

by C;, Ca, ..., Cp.

Because br-i is a cross-cut, the cross-cut c,. changes a^ (hitherto a loop-

cut) into a cross-cut when Cr and a,, are combined into a single cut.

It is evident that no one of these cuts divides the surface into distinct

pieces ; and thus we have a system of 2p cross-cuts resolving the two-sheeted

surface of connectivity 2p + 1 into a surface that is simply connected. The

cross-cuts in order* are

tti, hi, Co and a^, 6.>, Cs and (is, b^, ..., Cp and ap, hp.

181. This resolution of a general two-sheeted surface suggests"}* Rie-

mann's general resolution of a surface with any (finite) number of sheets.

As before, we assume that the surface is closed and has a single boundary

and that its class is p, so that 2^3 cross-cuts are necessary for its resolution

into one that is simply connected.

Make a cut in the surface such as not to divide it iiito distinct pieces;

and let it begin and end in the boundary. It is a cross-cut, say a^ ; it

changes the number of boundary-lines to 2 and it reduces the connectivity

of the cut surface to 2p.

Since the surface is connected, we can pass in the surface along a

continuous line from one edge of the cut Oj to the opposite edge. Along

this line make a cut b^ : it is a cross-cut, because it begins and ends in

the boundary. It passes from one edge of a^ to the other, that is, from one

boundary-line to another. Hence, as in Prop. II. of § 164<, it does not divide

the surface into distinct pieces ; it changes the number of boundaries to 1

and it reduces the connectivity to 2jj — 1.

The problem is now the same as at first, except that now only

2^j — 2 cross-cuts are necessary for the required resolution. We make a

loop-cut cu, not resolving the surface into distinct pieces, and a cross-cut

Ci from a point of a» to a point on the boundary at b^ ; then c^ and rto, taken

together, constitute a cross-cut that does not resolve the surface into distinct

pieces. It therefore reduces the connectivity to 2^; — 2 and leaves two pieces

of boundary.

The surface being connected, we can pass in the surface along a continuous

line from one edge of a.^ to the opposite edge. Along this line we make a cut

6.,, evidently a cross-cut, passing, like h^ in the earlier case, from one

boundary-line to the other. Hence it does not divide the surface into

* See Neumanu, pp. 178—182; Prym, Zur Theorie der Functionen in einer ziceihUUtrigen

Fliiche, (1866).

+ Rlemann, Gen. IVerke, pp. 122, 123; Neumauu, pp. 182—185.
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and it reducesdistinct pieces; it changes the number of boundaries to 1

the connectivity to 2p — 3.

Proceeding in p stages, each of two cross-cuts, we ultimately obtain a

simply connected surface with a single boundary ; and the general effect on

the original unresolved surface is to have a system of cross-cuts somewhat of

the form

Fig. G3.

The foregoing resolution is called the canonical resolution of a Riemann's

surface.

Ex. 1. Construct the Riemann's surface for the equation

w^ + z^ — 3awz=l,

both for a = and for a clifierent from zero ; and resolve it by cross-cuts into a simply

connected surface with a single boundary, shewing a complete system of irreducible simple

circuits on the unresolved surface.

E:v. 2. Shew that the Riemann's surface for the equation

{z-a){z-b)

(z-c) (z—d)

is of class p= '2
; indicate the possible systems of branch-lines, and, for each system,

resolve the surface by cross-cuts into a simply connected surfoce with a single boundary.

(Burnside.)

182. Among algebraical e(|uations with their associated Riemann's

surfaces, two general cases of great importance and comparative simplicity

distinguish themselves. The first is that in which the surface is two-

sheeted ; round each branch-point the two branches interchange. The

sec(Hid is that in which, while the surface has a finite number of sheets

greater than two, all the branch-points are of the first order, that is, are

such that round each of them only two branches of the function interchange.

The former has already been considered, in so far as concerns the surfiice

;

we now proceed to the consideration of the latter.

The equation is f(t^, z) — 0,

of degree n in w ; and, for our present purpose, it is convenient to regai'd

/= as an etjuation corresponding to a generalised plane cui-ve of degree n,

so that no term in / is of dimensions higher than n.

The total number of branch-points has been proved, in § 98, to be

n(w-l)-2S-2«,

23—2
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where 8 is the number of points which are the generalisation of double

points on the curve with non-coincident tangents and k is the number
of double points on the curve \\dth coincident tangents. Round each of

these branch-points, two branches of w interchange and only two, so that

all the numbers niq of § 178 are equal to 2 ; hence the ramification

n is

2 [n{n - 1) - 2S - 2k] - [n (n - 1) -28- 2k},

that is, n^n{n-l)-28-2K.

The connectivit}' of the surface is therefore

» (n -I) -28 -2k- 2,1 -f 8
;

and therefore the class j) of the surface is

^{n-l){n-2)-8-K.

Now this integer is known* as the deficiency of the curve; and therefore it

appears that the deficiency of the curve is the same as the class of the Riemann

surface associated with its equation, and also is the same as the class of its

equation.

Moreover, the number of branch-points of the original equation is H, that

is,

=
2i) +2n-2

= 2{p + (n-l)].

Note. The equality of these numbers, representing the deficiency and

the class, is one among many reasons that lead to the close association of

algebraic functions (and of functions dependent on them) with the theory of

plane algebraic curves, in the investigations of Neither, Brill, Clebsch and

others, referred to in §§ 191, 242.

183. With a view to the construction of a canonical form of Riemann's

surface of class p for the equation under consideration, it is necessary to

consider in some detail the relations between the branches of the functions

as they are affected by the branch- points.

The effect produced on any value of the function by the description of a

small circuit, enclosing one branch-point (and only one), is known. But

when the small circuit is part of a loop, the effect on the value of the

function with which the loop begins to be described depends upon the form

of the loop; and various results (e.g. Ex. 1, § 104) are obtained by taking

different loops. In the first form (§ 175) in which the branch-lines were

established as junctions between sheets, what was done was the equivalent

* Salmon's Higher Plane Curves, §§ 44, 83; Clebsch's Vorlesungen iiber Geometrie, (edited

by Lindemann), t. i, pp. 351—429, the German word used instead of deficiency being Geschlecht.

The name 'deficiency' was introduced by Cayley in 1865: see Proc. Loud. Math. Soc, vol. i.,

" On the transformation of plane curves."
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of drawing a number of straight loops, which had one extremity common to

all and the other free, and of assigning the law of junction according to the

law of interchange determined by the description of the loop. As, however,

there is no necessary limitation to the forms of branch-lines, we may draw

them in other forms, always, of course, having branch-points at their free

extremities ; and according to the variation in the form of the branch-line,

(that is, according to the variation in the form of the corresponding loop

or, in other words, according to the deformation of the loop over other

branch-points from some form of reference), there will be variation in the law

of junction along the branch-lines.

There is thus a large amount of arbitrary character in the forms of the

branch-lines, and consequently in the laws of junction along the branch-lines,

of the sheets of a Riemann's surface. Moreover, the assignment of the n

branches of the function to the n sheets is arbitrary. Hence a consider-

able amount of arbitrary variation in the configuration of a Riemann's

surface is possible within the limits imposed by the invariance of its

connectivity. The canonical form will be established by making these

arbitrary elements definite.

184. After the preceding explanation and always under the hypothesis

that the branch-points are simple, we shall revert temporarily to the use of

loops and shall ultimately combine them into branch-lines.

When, with an ordinary point as origin, we construct a loop round a

branch-point, two and only two of the values of the function are affected

by that particular loop ; they are interchanged by it ; but a different form of

loop, from the same origin round the same branch-point, might affect some

other pair of values of the function.

To indicate the law of interchange, a symbol will be convenient. If the

two values interchanged by a given loop be Wi and w.,,,,, the loop will be

denoted by im ; and i and m will be called the numbers of the symbol of that

loop.

For the initial C(jnfiguration of the loops, wc shall (as in § 175) take an

ordinary point : we shall make loops beginning at 0, forming them in the

sequence of angular succession of the branch-points round and tlrawing the

double linear part of the loop as direct as possible from to its branch-point

:

and, in this configuration, we shall take the law of interchange by a loop to

be the law of interchange by the branch-point in the loop.

In any other configuration, the symbol of a loop round any branch-point

depends upon its form, that is, depends upon the deformation over other

branch-points which the loop has suffered in passing from its initial form.

The effect of such deformation must first be obtained : it is determined by

the following lemma :

—



358 MODIFICATION [184.

When one loop is deformed over another, the symbol of the deformed loop is

unaltered, if neither of its numbers or if both of its numbers occur in the

symbol of the unmoved loop; but if, before deformation, the symbols have one

number common, the new symbol of tlie deformed loop is obtained from the old

symbol by substituting, for the common number, the other number in the symbol

of the unmoved loop.

The sufficient test, to which all such changes must be subject, is that

the effect on the values of the function at any point of a contour enclosing

both branch-points is the same at that point for all deformations into two

loops. Moreover, a complete circuit of all the loops is the same as a contovu-

enclosing all the branch-points; it therefore (Cor. III. § 90) restores the initial

value with which the circuit began to be described.

Obviously there are three cases.

First, when the symbols have no number common : let them be mn, rs.

The branch-point in the loop o's docs not affect w,„ or w„: it is thus effectively

not a branch-point for either of the values w,n and Wn ; and therefore (§ 91)

the loop mn can be deformed across the point, that is, it can be deformed

across the loop mn.

Secondly, when the symbols are the same : the symbol of the deformed

loop must be unaltered, in order that the contour embracing only the two

branch-points may, as it should, restore after its complete description each of

the values affected.

Thirdly, when the symbols have one number common : let be any

point and let the loops be OA, OB in any given position such as (i), Fig. 64,

with symbols mr, nr respectively. Then OB may be deformed over OA as

in (ii), or OA over OB as in (iii).

Fig. 64.

The effect at of a closed circuit, including the points A and B and

described positively beginning at 0, is, in (i) which is the initial configura-

tion, to change tv.n into w,., lu,. into ta,„ lu^ into w,„; this effect on the

values at 0, unaltered, must govern the deformation of the loops.

The two alternative deformations (ii) and (iii) will be considered separately.

When, as in (ii), OB is deformed over OA, then OA is unmoved and

therefore unaltered: it is still mr. Now, beginning at with w,n, the loop
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OA changes w,n into w,. : the whole circuit changes w,n into tUr, so that OB
must now leave Wr unaltered. Again, beginning with lUn, it is unaltered by

OA, and the whole circuit changes iu,i into ru„^ : hence OB must change vjn

into Wm, that is, the symbol of OB must be nin. And, this being so, an

initial Wr at is changed by the whole circuit into w^, as it should be.

Hence the new symbol jnn of the deformed loop OB in (ii) is obtained from

the old symbol by substituting, for the common number ?% the other number

171 in the symbol of the unmoved loop OA.

We may proceed similarly for the deformation in (iii) ; or the new symbol

may be obtained as follows. The loop OA in (iii) may be deformed to the

form in (iv) without crossing any branch- point and therefore without

changing its symbol. When this form of the loop is described in the

positive direction, Wu initially at is changed into Wr after the first loop

OB, for this loop has the position of OB in (i), then it is changed into w,„

after the loop OA, for this loop has the position of OA in (i), and then lUja i^^

unchanged after the second (and inner) loop OJl Thus Wn is changed into

w,n, so that the symbol is run, a symbol which is easily proved to give the

proper results with an initial value w,n or Wr for the whole contour. This

change is as stated in the theorem, which is therefore proved.

JSx. If the deformation from (i) to (ii) be called superior, and that from (i) to (iii)

inferior, then x successive superior deformations give the same loop-configuration, in

symbols and relative order for positive description, as 6 — x successive inferior deform-

ations.

Corollary. A looj) can be passed unchanged over two loops that have the

same symbol.

Let the common symbol of the unmoved loops be inn. If neither number

of the deformed loop be m or n, passage over each of the loops mn makes no

difference, after the lemma ; likewise, if its symbol be mn. If only one of its

numbers, say n, be in mn, its symbol is n?', where r is different from in. When
the loop nr is deformed over the first loop mn, its new symbol is 7)i7' ; when

this loop mr is deformed over the second loop mn, its new symbol is nr, that

is, the final symbol is the same as the initial symbol, or the loop is unchanged.

185. The initial configuration of the loops is used by Clebsch and

Gordan to establish their simple cycles and thence to deduce the periodi-

city of the Abelian integrals connected with the equation f(io, z) = 0,

without reference to the Ricmann's surface ; and this method of treating

the functions that arise through the eipiation, always supposed to have

merely simple branch-points, has been used by Casorati* and Liiroth-f-.

We can pass from any value of tu at the initial point to any other

* Annali di Matematica, 2^ Ser., t. iii, (1870), pp. 1—27.

t Abh. d. K. bay. Akad. t. xvi, i Abth., (1887), pp. 199—241.
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value by a suitable series of loops ; because, were it possible to inter-

change the values of only some of the branches, an equation could be

constructed which had those branches for its roots. The fundamental

equation could then be resolved into this equation and an equation having

the rest of the branches for its roots : that is, the fundamental equation

would cease to be irreducible.

We begin then with any loop, say one connecting lUi with Wo. There

will be a loop, connecting the value Wg with either w^ or w. ; there will

be a loop, connecting the value w^ with either lu^, iv.., or W3; and so on,

until we select a loop, connecting the last value Wn with one of the other

values. Such a set of loops, n — 1 in number, is called fundaiiiental.

A passage round the set will not at the end restore the branch with

which the description began. When we begin with any value, any other

value can be obtained after the description of properly chosen loops of the

set.

Any other loop, when combined with a set of fundamental loops, gives

a system the description of suitably chosen loops of which restores some

initial value ; only two values can be restored by the description of loops

of the combined system. Thus if the loops in order be 12, 13, 14,..., \n

and a loop qr be combined with them, the value %Uq is changed into lu^ by

\q, into lUy by 1?-, into w^ by qr; and similarly for lOf. Such a combuiation

of n loops is called a simple cycle.

The total number of branch-points, and therefore of loops, is (§ 182)

2^ + 0^-1)1;

and therefore the total number of simple cycles is 'ip +n — \. But these

simple cycles are not independent of one another.

In the description of any cycle, the loops vary in their operation

according to the initial value of lu : and, for two different initial values of

w, no loop is operative in the same way. For otherwise all the preceding

and all the succeeding loops would operate in the same way and would

lead, on reversal, to the same initial value of lu. Hence a loop of a given

cycle can be operative in only two descriptions, once when it changes, say, 2Ui

into Wj, and the other when it changes ivj into lUi.

Now consider the circuit made up of all the loops. When lUi is taken as

the initial value, it is restored at the end : and in the description only a

certain number of loops have been operative : the cycle made up of these loops

can be resolved into the operative parts of simple cycles, that is, into simple

cycles : hence one relation among the simple cycles is given by the considera-

tion of the operative loops when the whole system of the loops is described

with an initial value.

Similarly when any other initial value is taken ; so that apparently there
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are n relations, one arising from each initial value. These n relations are not

independent : for a simultaneous combination of the operations of all the

loops in all the circuits leads to an identically null effect (but no smaller

combination would be effective), for each loop is operative twice (and only

twice) with opposite effects, shewing that one and only one of the relations is

derivable from the remainder. Hence there are n—\ independent relations

and therefore* the number of independent simple cycles is 2p.

186. We now proceed to obtain a typical form of the Riemann's surface

by deforming the initial configuration of the loops into a typical configu-

ration
-f*.

The final arrangement of the loops is indicated by the two

theorems :

—

I. Tlie loops can he made in pairs in which all loop-si/iuhols are of the

fo7'm (m, m + ^),for i)i — l,'l,...,n — \. (With this configuration, w^ can be

changed by a loop only into w.^, w.>, by a loop only into w^, and so on in

succession, each change being effected by an even number of loops.) This

theorem is due to Liiroth.

II. The loops can he made so that tJiere is only one pair 12, onhj one

pair 23, ..., only one pair (jt — 2, n — 1), and the remaining p + \ pairs are

(n — 1, n). This theorem is due to Clebsch.

187. We proceed to prove Luroth's theorem, assuming that the loops

have the initial configuration of § 184.

Take any loop 12, say OA : beginning it with Wi, describe loops positively

and in succession ; then as the value w^ is restored sooner or later, for it

must be restored by the circuit of all the loops, let it be restored first by a

loop OB, the symbol of OB necessarily containing the number 1. Between OA
and OB there may be loops whose symbols contain 1 but which have been

inoperative. Let each of these in turn be deformed so as to pass back over

all the loops between its initial position and OA ; and then finally over OA.

Before passing over OA its symbol must contain 1, for there is no loop over

which it has passed that, having 1 in its symbol, could make it drop 1 in the

passage ; but it cannot contain 2, for, if it did, the effect of OA and the

deformed loop would be to restore 1, an effect that would have been

caused in the original position, contrary to the hypothesis that OB is the

first loop that restores 1. Hence after it has passed over OA its symbol

no longer contains 1.

* Clebsch und Gordan, Thcoric tier AhcVschen Functioiien, p. 85.

t The investigation is based upon the following memoirs :

—

Liiroth, "Note iiber Verzweigungsschnitte und Querschnitte in einer Kiemann'scheu Fliiche,"

Math. Ann., t. iv, (1871), pp. 181—184; "Ueber die kanonischen Periodcn dcr Abel'.schen

Integrale," Abh. d. K. bay. Akad., i. xv, ii Abth., (1885), pp. 329—360.

Clebsch, "Zur Theorie der Kiemann'schen Fliiclien," Math. Ann., t. vi, (1873), pp. 216—230.

Clifford, " On the canonical form and dissection of a liiemann's Surface," Land. Math. Soc.

Five, vol. viii, (1877), pp. 292—301.
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Next, pass OB over the loops between its initial position and OA bnt not

over OA : its symbol must be 12 in the deformed position since lu^ is restored

by the loop OB. Then OA and the deformed loop OB are each 12 ; hence each

of the loops, between the new position and the old position of OB, can be passed

over OA and the new loop OB without any change in its symbol. There are

therefore, behind OA, a series of loops that do not affect tu^. Thus the loops

are

(a) loops behind OA not affecting Wi, (b) OA, OB each 12,

(c) other loops beyond the initial position of OB.

Begin now with w.2 at the loop OB and again describe loops positively

and in succession : then w., must be restored sooner or later. It may be

only after OA is described, so that there has been a complete circuit of

all the loops ; or it may first be by an intermediate loop, say OC.

For the former case, when OA is the first loop by which w., is restored,

we deform as follows. Deform all loops affecting Wj, which lie between

OB and OA, in the positive direction from OB back over other loops and

over OB. The symbol of each just before its deformation contains 1 but

not 2, and therefore after its deformation it does not contain 1. Moreover

just after OB is described, w^ is the value, and just before OA is described,

Wi is the value ; hence the intermediate loops, which have affected Wi,

must be even in number. Let OG be the first after OB which affects tu^,

and let the symbol of OG be Ir. Then beginning OG with Wi, the value

tUi must be restored by a complete circuit of all the loops, that is, it

must be restored by OB ; and therefore the value must be w^ when

beginning OA, or Wi must be restored before OA. Let OH be the first

loop after OG to restore tv^; then, by proceeding as above, we can deform

all the loops between OG and OH over OG, with the result that no such

deformed loop affects w^ and that OG and OH are both 1?\ Hence all

the loops affecting Wi can be arranged in pairs having the same symbol.

Since OG and OH are a pair with the same symbol, every loop between

OB and OG can be passed unchanged over OG and OH together. When
this is done, pass OG over OB so that it becomes 2r, and then OH over

OB so that it also is 2r. Thus these deformed loops OG, OH are a pair

'2r; and therefore OA can, without change, be deformed over both so as

to be next to OB. Let this be done with all the pairs ; then, finally, we
have

(a) loops not affecting Wi, (b) a paii- with the symbol 12,

(c) pairs affecting w., and not tu^, (d) loops not affecting w^.

We thus have a pair 12 and loops not affecting w^, so that such a change

has been effected as to make all the loops affecting Wj possess the symbol 12.

For the second case, when OC is the first loop to restore Wo, the
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value with which the loop OB whose symbol is 12 began to be described, we

treat the loops between OB and 00 in a manner similar to that adopted in

the former case for loops between OA and OB ; so that, remembering that

now w., instead of the former w^ is the value dealt with in the recurrence, we

can deform these loops into

(tt) loops behind OB which change w^ but not v).,,

(b) OB and 00, the symbol of each of which is 12.

Now OB was next to OA ; hence the set (a) are now next to OA. Each of

them when passed over OA drops the number 1 from its symbol and so the

whole system now consists of

(a) loops behind OA not affecting w^, (b) OA, OB, 00 each of which

is 12, (c) other loops.

Begin again with the value w^ before OA. Before 00 the value is Wj

;

and the whole circuit of the loops must restore vji, which must therefore

occur before OA. Let OD be the first loop by which lu^ is restored. Then

treating the loops between 00 and 01), as formerly those between the initial

positions of OA and OB were treated, we shall have

(a) loops behind OA not affecting Wj, (b) OA, OB each being 12,

(c) loops between OB and 00 not affecting Wj, (d) 00, OD each

being 12, (e) other loops.

Except that fewer loops affecting Wi have to be reckoned with, the con-

figuration is now in the same condition as at the end of the first stage.

Proceeding therefore as before, we can arrange that all the loops affecting Wi

occur in paii"s with the symbol 12. Moreover, each of the loops in the set

(c) can be passed unchanged over OA and OB; so that, finally, we have

(a) pairs of loops with the symbol 12, (b') loops nut affecting Wj.

We keep (a) in pairs, so that any desired deformation of loops in {b') over

them can be made without causing any change; and we treat the set {b') in

the same manner as before, with the result that the set {b') is replaced by

(6) pairs of loops with the symbol 23, (c) loops not affecting Wi or w...

And so on, with the ultimate result that the loops can be tnade in paii'n in

which each symbol is of theform {m, m + \)for m = 1, . .. , ?i — 1.

188. We now come to Clebsch's Theorem that the loops thus made can

be so deformed that there is only one pair 12, only one pair 23, and so on,

until the last symbol («— 1, n), which is the common symbol oi p-\-l pairs.

This can be easily proved after the establishment of the lemma that, if

there be two pairs 12 and one pair 23, the loops can be deformed into one pair

12 and two pairs 23.
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The actual deformation leading to the lemma is shewn in the accompany-

ing scheme : the deformations implied by the
. 1"^ 1'^ I'' 12 23 23

continuous lines are those of a loop from the left - - - j^ ^

to the right of the respective lines, and those 12 12 12 23 13 23

implied by the dotted lines are those of a loop 12 12 23 13 13 23

from the right to the left of the respective lines.
. -. . 12 12 13 13 93 23

It is interesting to draw figures, representing -

the loops in the various configurations. 12 23 12 13 23 23

By the continued use of this lemma we can 12 23 23 12 23 23

change all but one of the pairs 12 into pairs 23, ^2 12 ^3 93 23 23

all but one of the pairs 23 into pairs 34, and

so on, the final configuration being that there are one pair 12, one pair 23, ...

and p + 1 pairs (n — 1, n). Thus Clebsch's theorem is proved.

189. We now proceed to the construction of the Riemann's surface.

Each loop is associated wnth a branch-point, and the order of interchange

for passage round the branch-point, by means of the loop, is given by the

numbers in the symbol of the loop.

Hence, in the configuration which has been obtained, there are two branch-

points 12: we therefore connect them (as in § 176) by a line, not necessarily

along the direction of the two loops 12 but necessarily such that it can,

without passing over any branch-point, be deformed into the lines of the

two loops ; and we make this the branch-line betw^een the first and the

second sheets. There are two branch-points 23 : we connect them by a line

not meeting the former branch-line, and we make it the branch-line between

the second and the third sheets. And so on, until we come to the last two

sheets. There are 2p + 2 branch-points n—1, n: we connect these in paii's

(as in § 176) by ^j + 1 linos, not meeting one another or any of the former

lines, and we make them the p -\- \ branch-lines between the last two sheets.

It thus appears that, luheii the winding-points of a Riemanns surface with

n sheets of connectivity 2p -{- 1 are all simple, the surface can he taken in such

a form that there is a single branch-line between consecutive sheets exceptfor the

last two sheets: and between the last two sheets there arep-\-l branch-lines.

This form of Riemann's surface may be regarded as the canonical form for a

surface, all the branch-points of which are simple.

Further, let AB be a branch-line such as 12. Let two points P and Q
be taken in the first sheet on opposite sides of AB, so that PQ in space is

infinitesimal ; and let P' be the point in the second sheet determined by the

same value of z as P, so that P'Q in the sheet is infinitesimal. Then the

value ^^1 at P is changed by a loop round A (or round B) into a value at Q
differing only infinitesimally from w.^, which is the value at P' : that is, the

change in the function from Q to P' is infinitesimal. Hence tlie value of the

function is continuous across a line ofpassage from one sheet to another.
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190. The class of the foregoing surface is p ; and it was remarked, in

§ 170, that a convenient surface of reference of the same class is that of a

solid sphere with p holes bored through it. It is, therefore, proper to in-

dicate the geometrical deformation of a Riemami's surface of this canonical

form into a ^j-holed sphere.

The Riemann's surfece consists of n sheets connected chainwise each with

a single branch-line to the sheet on cither side of it, except that the first is

connected only with the second and that the last two have p -{-l branch-

lines. We may also consider the whole surface as spherical and the sequence

of the sheets from the inside outwards : and the outmost sheet can be con-

sidered as bounded.

Let the branch-line between the first and the second sheets be made to

lie along part of a great circle. Lot the first sheet of the Riemann's sni-face

be reflected in the plane of this great circle : the line becomes a long

narrow hole along the great circle, and the reflected sheet becomes a large

indentation in the second sheet. Reversing the process of § 169, we can

change the new form of the second sheet, so that it is spherical again : it is

now the inmost of the n — 1 sheets of the surface, the connectivity and the

ramification of which are unaltered by the operation.

Let this process be applied to each surviving inner sheet in succession.

Then, after ?i — 2 operations, there will be left a two-sheeted surface ; the

outer sheet is bounded and the two sheets are joined by ju -|- 1 branch-

lines ; so that the connectivity is still '2p-^\. Let these branch-lines be

made to lie along a great circle : and let the inner surfiice be reflected

in the plane of this circle. Then, after the reflexion, each of the branch-lines

becomes a long narrow hole along the great circle ; and there are two

spherical surfaces which pass continuously into one another at these holes,

the outer of the surfaces being bounded. By stretching one of the holes

and flattening the two surfaces, the new form is that of a bif;xcial flat

surface : each of the p holes then becomes a hole through the body

bounded by that surface ; the stretched hole gives the extreme geo-

metrical limits of the extension of the surface, and the original boundary of

the outer surface becomes a boundary hole existing in only one face. The

body can now be distended until it takes the form of a sphere, and the final

form is that of the surface of a solid sphere with p holes bored through it

and having a single boundary.

This is the normal surface of reference (| 170) of connectivity 2p -f- 1.

As a last ground of comparison between the Riemann's surface in its

canonical form and the surface of the bored sphere, we may consider the

system of cross-cuts necessary to transform each of them into a simply

connected surface.

We begin with the spherical surface. The simplest irreducible circuits
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are of two classes, (i) those which go round a hole, (ii) those which go through

a hole; the cross-cuts, 2p in number, which make the surface simply con-

nected, must be such as to prevent these irreducible circuits.

Round each of the holes we make a cut a, the first of them beginning

and ending in the boundary : these cuts prevent circuits through the holes.

Through each hole we make a cut b, beginning and ending at a point in the

corresponding cut a : we then make from the first b a cut Cj to the second a,

from the second b a cut c. to the third a, and so on. The surface is then

simply connected : Oj is a cross-cut, bi is a cross-cut, Ci + a.^ is a cross-cut,

60 is a cross-cut, Co + ffs is a cross-cut, and so on. The total number is

evidently 2p, the number proper for the reduction ; and it is easy to verify

that there is a single boundary.

To compare this dissection with the resolution of a Niemann's surface by

cross-cuts, say of a two-sheeted surface (the 7i-sheeted surface was trans-

formed into a two-sheeted surface), it must be borne in mind that only p of

the jJ -1- 1 branch-lines were changed into holes and the remaining one, which,

after the partial deformation, was a hole of the Riemann's surface, was

stretched out so as to give the boundary.

It thus appears that the dii-ection of a cut a round a hole in the normal

surface of reference is a cut round a branch-line in one sheet, that is, it is a

cut a as in the resolution (§ 180) of the Riemann's surface into one that is

simply connected.

Again, a cut 6 is a cut from a point in the boundary across a cut a and

through the hole back to the initial point ; hence, in the Riemann's surface,

it is a cut from some one assigned branch-line across a cut «,., meeting the

branch-line surrounded by a^., passing into the second sheet and, without

meeting any other cut or branch-line in that surface, returning to the initial

point on the assigned branch-line. It is a cut b as in the resolution of the

Riemann's surface.

Lastly, a cut c is made from a cut b to a cut a. It is the same as in the

resolution of the Riemann's surface, and the purpose of each of these cuts is

to change each of the loop-cuts a (after the first) into cross-cuts.

A simple illustration arises in the case of a two-sheeted Riemann's sinface, of classjo= 2.

The various forms are :

(i) the surface of a two-holed sphere, with tlie directions of cross-cuts that resolve it

into a simply connected surface; as in (i), Fig. 65, B, K being at opposite edges of

the cut Cj where it meets a.2^: H, C at opposite edges where it meets b^: and so on;

(ii) the spherical surface, resolved into a simply connected surface, bent, stretched,

and flattened out ; as in (ii), Fig. 65;

(iii) the plane Riemann's siu-face, resolved by the cross-cuts ; as in Fig. 63, p. 355.

Numerous illustrations of transformations of Riemann's surfaces are given by
Hofmann, Methodik der stetigen Deformation von zweihliittrigen Rieynanyi'sc/ien Flachen,

(Halle a. S., Nebert, 1888).
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Fig. 65

191. We have seen that a bifacial surface with a single boundary can be

deformed, at least geometrically, into any other bifacial surftice with a single

boundary, provided the two surfaces have the same connectivity ; and the

result is otherwise independent of the constitution of the surface, in regard

to sheets and to form or position of branch-lines. Further, in all the geo-

metrical deformations adopted, the characteristic property is the uniform

correspondence of points on the surfaces.

Now with every Riemann's surface, in its initial form, an algebraical

equation y(w, z) = is associated; but when deformations of the surface

are made, the relations that establish uniform correspondence between

different forms, practically by means of conformal representation, are often

of a transcendental character (Chap. XX.). Hence, when two surfaces are

thus equivalent to one another, and when points on the surfaces are

determined solely by the variables in the respective algebraical equations,

no relations other than algebraical being taken into consideration, the

uniform correspondence of points can only be secured by as.signing a new
condition that there be uniform transformation between the variables w and

z of one surface and the variables w' and z' of the other surface. And, when
this condition is satisfied, the equations are such that the deficiencies of the

two (generalised) curves represented by the equations are the same, because

they are equal to the common connectivity. It may therefore be expected

that, when the variables in an ecjuation are subjected to uniform transfor-

mation, the class of the c(|uation is unaltered; or in other words that the

deficiency of a curve is an invariant for uniform transformation.

This inference is correct : the actual proof is more directly connected

with geometry and the theory of Abelian functions, and must be sought

elsewhere*. The result is of importance in justifying the adoption of a

simple normal surface of the same class as a surface of reference.

* Clebsch's Vorlesungen iiher Geometric, t. i, p. 459, whore other references are given; Salmon's

Higher Plane Curves, pp. 93, 319; Clebsch und Gordan, Thcorie der AhcVt^ciien Fuitctionen,

Section 3; Brill, Math. Ann., t. vi, pp. 3.S—05.



CHAPTER XVI.

Algebraic Functions and their Integrals.

192. In the preceding chapter sufficient indications have been given as

to the character of the Rieniann's surface on which the ?i-branched function

w, determined by the equation

can be represented as a uniform function of the position of the variable. It

is unnecessary to consider algebraically multiform fimctions of position on

the surface, for such multiformity would merely lead to another surface of

the same kind, on which the algebraically multiform functions would be

uniform functions of position ; transcendentally multiform functions of

position will arise later, through the integrals of algebraic functions. It

therefore remains, at the present stage, only to consider the most general

uniform function of position on the Riemann's Surface.

On the other hand, it is evident that a Riemann's Surface of any number

of sheets can be constructed, with arbitrary branch-points and assigned

sequence of junction ; the elements of the surface being subject merely to

general laws, which give a necessary relation between the number of sheets,

the ramification and the connectivity, and which require the restoration of

any value of the function after the description of some properly chosen

irreducible circuit. The essential elements of the arbitrary surface, and the

merely general laws indicated, are independent of any previous knowledge

of an algebraical ecpiation associated with the surface ; and a question arises

whether, when a Riemann's surface is given, an associated algebraical equa-

tion necessarily exists.

Two distinct subjects of investigation, therefore, arise. The first is the

most general uniform function of position on a surface associated with a given

algebraical equation, and its integral ; the second is the discussion of the

existence of functions of position on a surface that is given independently
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of an algebraical equation. Both of them lead, as a matter of fact, to the

theory of transcendental (that is, non-algebraical) functions of the most

general type, commonly called Abelian transcendents. But the first is,

naturally, the more direct, in that the algebraical er|uation is initially given

:

whereas, in the second, the prime necessity is the establishment of the so-

called Existence-Theorem—that such functions, algebraical and transcen-

dental, exist.

193. Taking the subjects of investigation in the assigned order, we

suppose the fundamental eijuation to be irreducible, and algebraical as

regards both the dependent and the independent variable ; the general form

is therefore

W^G, {z) + w''-'G, (2) -}-... + wGn-, {z) + Gn (z) = 0,

the coefficients Go(z), Gi{z), ..., Gn{z) being rational, integral, algebraical

functions.

The infinities of lo are, by § 95, the zeros of Go (z) and, possibly, s" = 00

.

But, for our present purpose, no special interest attaches to the infinity of a

function, as such ; we therefore take wG^ (z) as a new dependent variable,

and the equation then is

/ (w, z) = w'' + w^-i gi{z)+...+ ivgn-i {z) + g,, {z) = 0,

in which the functions g {z) are rational, integral, algebraical functions

of z.

The distribution of the branches for a value of z which is an ordinary

point, and the determination of the branch-points together with the cyclical

grouping of the branches round a branch-point, may be supposed known.

When the corresponding w-sheeted Riemann's surface (say of connectivity

2j[) 4- 1) is constructed, then w is a uniform function of position on the

surfiice.

Now not merely w, but every rational function of w and z, is a unifoini

function of position on the surface; and its branch-points (though not

necessarily its infinities) are the same as that of the function rv.

Conversely, every uniform function of position on the Riemanns surface,

having accidental singularities and infinities only of finite order, is an

algebraical rational function of lu and z. The proof* of this proposition,

to which we now proceed, leads to the canonical expression for the most

general uniform function of position on the surface, an expression which is

used in Abel's Theorem in transcendental integrals.

Let w' denote the general uniform function, and let Wi , w.,', ..., w,/ denote

the branches of this function for the points on the n sheets determined by

* The proof adopted follows Prym, Crclle, t. Ixxxiii, (1877), pp. 251—261 ; see also Klein,

Ueher Riemnnu's Theoric der algebraischen Functionen und Hirer Integrale, p. 57.

F. 24
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the algebraical magnitude z\ and let Wj, w., ...,iVn be the corresponding

branches of w for the magnitude z. Then the quantity

where 6' is any positive integer, is a symmetric function of the possible values

of wHu' ; it has the same value in whatever sheet z may lie and by whatever

path z may have attained its position in that sheet ; the said quantity is there-

fore a uniform function of z. Moreover, all its singularities are accidental in

character, by the initial hypothesis as to lu' and the known properties of

w ; they are finite in number ; and therefore the uniform function of z is

algebraical. Let it be denoted by hg (z), which is an integi'al function only

when the singularities are for infinite values of z ; then

lVi^U\' + WJtU.2 + . . . + U'a'Wn = kg {z),

an equation which is valid for any positive integer s, there being of course

the suitable changes among the rational integral algebraical functions k (z) for

changes in s. It is unnecessary to take s ^ n, when the equations for the

values 0, 1, ..., n — 1 of s are retained: for the equations corresponding to

values of s ^ n can be derived, from the n equations that are retained, by

using the fundamental equation determining w.

Solving the equations

w/ + W.2 + . . . + w,^ = h, {z),

W^Wi + lU.AuJ + . . . + IVn^Un = K {z),

1,
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But / (w, z) = (^y - Wi) (w - w,) ...(w- w,,),

so that h = Wi + gi{z),

h = w^^+ Wig,{z) + g.,{z),

kn = Wi"-^ + w.^^'-g, {z)+... + gn-, (z).

When those expressions for k are substituted in the numerator of the ex-

pression for tUi, it takes the form of a rational integral algebraical function

of w of degree n—1 and of z, say

/io (z) Wi"-l + H, (Z) Wi"-- + . . . + Hn-, (z) tU, + Hn-i {z).

The denominator is evidently dfjdwi, when w is replaced by iVi after differen-

tiation, so that we now have

,_ ho(z)w,''-' + ...+Hn-Az)
'"'

-
dfldtu.

The corresponding form holds for each of the branches of 7y': and therefore we

have

, K {z) W^-' + H, {z) w''-' -I- . . . -h Hn-x {z)
nil = ^^^ ^^1 ^^

df/dw

^ ho JZ) W-^-^ + H, (z) VO^-' -I- ... -I- Hn-x {z)

mv'i-i + (n-l) w"-- g,(z)+...+ gn-, {z)
'

so that w' is a rational, algebraical, function of lu and z. The proposition is

therefore proved.

By eliminating lu between f{iv, z) = and the equation which expresses

w in terms of w and z, or by the use of § 99, it follows that w satisfies an

algebraical equation

F{io,z) = 0,

where F is of order n in w ; the equations / {lu, z) — () and F {w', z) — have

the same Riemann's surface associated with them*.

194. It thus appears that there arc Tuiiform functions of position on

the Riemann's surface just as there are uniform functions of position in

a plane. The preceding proposition is limited to the case in which the

infinities, whether at branch-points or not, are merely accidental ; had the

function possessed essential singularities, the general argument would still

be valid, but the forms of the uniform functions h {z) would no longer be

algebraical. In fact, taking account of the difference in the form of the

surface on which the independent variable is represented, we can extend

to multiform functions, which arc uniform on a Riemann's surface, those

propositions for uniform functions which relate to expansion near an ordinary

point or a singularity or, by using the substitution of § 93, a branch

singularity, those which relate to continuation of functions, and so on

;

* See § 15)1. Functions related to one anotlicr, as w and w' are, are called gleichverzweigt,

Riemann, p. 93.

24—2
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and their validity is not limited, as in Cor. VI., § 90, to a portion of the

surface in which there are no branch-points.

Thus we have the theorem that a uniform algebraical function ofposition

on the Riemanns surface has as many zeros as if has infinities.

This theorem may be proved as follows.

The function is a rational algebraical function of w and z. If it be also integi'al,

let it be v/ = U {w, z), where U is integral.

Then the number of the zeros of w' on the surface is the number of simultaneous roots

common to the two equations U{w, z) = 0,f{iv, z) = 0. If ?<^ '"^"d/ denote the aggregates

of the terms of highest dimensions in these equations—say of dimensions X and
fj.

respec-

tively—then X/i is the number of common roots, that is, the number of zeros of w'.

The number of points, where w' assumes a value A, is the number of simultaneous

roots common to the equations U (jc, z) = A, f{w, z) = 0, that is, it is X/x as before. Hence

there are as many points where «'' assumes a given value as there are zeros of iv'; and

therefore the number of the infinities is the same as the number of zeros. The number

of infinities can also be obtained by considering them as simultaneous roots common to

U (w z)
If the function be not integral, it can (§ 193) be expressed in the form w'=^~-^ , where

U and T' are integral, rational algebraical functions. The zeros of 70' are the zeros of U
and the infinities of V, the numbers of which, by what precedes, are respectively the same

as the infinities of C and the zeros of T'. The latter are the infinities of ^v'; and therefore

w' has as many zeros as it has infinities.

Note. When the numerator and the denominator of a uniform fractional

function of z have a common zero, we divide both of them by their greatest

common measure; and the point is no lo)iger a common zero of their new
forms. But when the numerator U (w, z) and the denominator V {iv, z) of a

uniform function of position on a Riemann's surface have a common zero, so

that there are simultaneous values of w and z for which both vanish, U and V
do not necessarily possess a rational common factor ; and then the common
zero cannot be removed.

It is not difticult to shew that this possibility docs not aflfect the preceding theorem.

195, In the case of uniform functions it was seen that, as soon as their

integrals were considered, deviations from uniformity entered. Special inves-

tigations indicated the character of the deviations and the limitations to

their extent. Incidentally, special classes of functions were introduced,

such as many-valued functions, the values differing by multiples of a

constant ; and thence, by inversion, simply-periodic functions were deduced.

So, too, when multiform functions defined by an algebraical equation are

considered, it is necessary to take into special account the deviations from

uniformity of value on the Riemann's surface which may be introduced by

processes of integration. It is, of course, in connexion with the branch-

points that difficulties arise ; but, as the present method of representing the

variation of the variable is distinct from that adopted in the case of uniform
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functions, it is desirable to indicate how we deal with, not merely branch-

points, but also singularities of functions when the integrals of such functions

are under consideration. In order to render the ideas familiar and to avoid

prolixity in the explanations relating to general integrals, we shall, after

one or two propositions, discuss again some of the instances given in

Chapter IX., taking the opportunity of stating general results as occasion

may arise.

One or two propositions already proved must be restated : the difference

from the earlier forms is solely in the mode of statement, and therefore the

reasoning which led to their establishment need not be repeated.

I. TJie j)ath of integration between any two points oil a Riemanns surface

can, without affectinrj the value of the integr'al, be deformed in any possible

continuous manner that does not make the patii pass over any discontinuity of

the subject of inteyixition.

This proposition is established in § 100.

II. A simjyle closed curve on a Riemanns surface, whicli is a pa.tli of

integration, can, without affecting the value of the integral, be deformed in

any possible continuous manner that does not make the curve ptass over any

discontinuity of the subject of integration.

Since the curve on the surface is closed, the initial and the final points

are the same ; the initial branch of the function is therefore restored after

the description of the curve. This proposition is established in Corollary II.,

§100.

III. If the path of integration be a curve between tivo points on different

sheets, determined by the same algebraical value of z, the curve is not a closed

curve; it must be regarded as a path betiueen the two points ; its deformation

is subject to Proposition I.

No restatement, from Chapter IX., of the value of an integral, along

a path which encloses a branch-point, is necessary. The method of dealing

with the point when that value is infinite will be the same as the method of

dealing with other infinities of the function.

196. We have already obtained some instances of multiple-valued

functions, in the few particular integrals in Chapter IX. ; the differences in

the values of the functions, arising as integrals, consist solely of multiples of

constants. The way in which these constants enter in Riemann's method is

as follows.

When the surface is simply connected, there is no substantial difference

from the previous theory for uniform functions ; we therefore proceed to the

consideration of multiply connected surfaces.

On a general surface, of any connectivity, take any two points z^ and z.

As the surface is one of multiple connection, there will be at least two
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essentially .distinct paths between Zq and z, that is, paths which cannot be

reduced to one another ; one of" these paths can be deformed so as to be

made equivalent to A combination of the other with some irreducible circuit.

Let Zi denote the extremity of the first ])ath, and let z.. denote the same point

when regarded as the extremity of the second ; then the difference of the

two paths is an irreducible circuit passing from z^ to z^. When this circuit

is made impossible by a cross-cut C passing through the point z, then z^

and z„ may be regarded as points on the opposite edges of the cross-cut : and

the irreducible circuit on the unresolved surface becomes a path on the

partially resolved surface passing from one edge of the cross-cut to the other.

When the surface is resolved by means of the proper number of cross-cuts

into a simply connected surface, there is still a path in the surface from

z^ to z., on opposite edges of the cross-cut G : and all paths between z^ and

z^ in the resolved surface are reconcileable with one another. One such path

will be taken as the canonical path from z^ to z.^; it evidently does not meet

any of the cross-cuts, so that we consider only those paths which do not

intersect any cross-cut.

If then Z be the function of position on the surface to be integrated, the

value of the integral for the first path from z^^ to z^ is

/:
Zdz;

and for the second path it is I Zdz,
J So

or, by the assigned deformation of the second path, it is

Zdz +r^' Zdz,

the second integral being taken along the canonical path from z^ to z.. in the

surface, that is, along the irreducible circuit of canonical form, which would be

possible in the otherwise resolved surface were the cross-cut C obliterated.

The difference of the values of the integral is evidently

Zdz,

which is therefore the change made in the value of the integral 1 Zdz,
I So

when the upper limit passes from one edge of the cross-cut to the other ; let

it be denoted by /. As the curve is, in general, an irreducible circuit, this

integral / may not, in general, be supposed zero.

We can arbitrarily assign the positive and the negative edges of some one

cross-cut, say A. The edges of a cross-cut B that meets A are defined to be

positive and negative as follows : when a point moves from one edge of B to

the other, by describing the positive edge of ^ in a direction that ig to the

right of the negative edge of A, the edge of B on which the point initially
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lies is called ita jjositive edge, and the edge of B on which the point finally

lies is called its negative edge. And so on with the cross-cuts in succession.

The lower limit of the integi-al determining the modulus for a cross-cut

is taken to lie on the negative edge, and the upper on the positive edge.

Regarding a point ^ on the cross-cut as defining two points z^ and 2. on

opposite edges which geometrically are coincident, we now prove that for all

points on the cross-ait whicJi can be reached from ^ without passing over any

other cross-cut, luhen the surface is resolved into one that is simply connected,

the integral I is a constant. For, if ^' be such a point, defining 2/ and z.2 on

opposite edges, then ZiZ.,z.^ZiZi is a circuit on the simply connected surface,

which can be made evanescent ; and it will be assumed that no infinities of Z
lie in the surface within the circuit, an assumption which will be taken into

account in §§ 197, 199. Therefore the integral of Z, taken round the circuit,

is zero. Hence

f
"' Zdz 4- [" Zdz -h

I*

" Zdz -}- I

" Zdz = 0,

that is, f" Zdz - t\ Zdz = T' Zdz - f" Zdz.

Along the direction of the cross-cut, the function Z is uniform : and

therefore Zdz is the same for each element of the two edges, so long as the

cross-cut is not met by any other. Hence the sums of the elements on the

two edges are the same for all points on the cross-cut that can be reached

from ^ without meeting a new cross-cut. The two integrals on the right-

hand side of the foregoing equation are equal to one another, and therefore

also those on the left-hand side, that is.

l~'Zdz=r]Zdz,
J z, J z,'

which shews that the integral I is constant for different points on a portion of

cross-cut that is not met by any other cross-cut.

If however the cross-cut be met by another cross-cut C", two cases arise

according as C" has only one extremity, or has both extremities, on C.

First, let C have only one extremity on G. By what precedes, the

integral is constant along OP, and it is constant

along OQ ; but we cannot infer that it is the same ^

constant for the two parts. The preceding proof

fails in this case ; the distance z.z.,' in the resolved

surface is not infinitesimal, and therefore there is Q^ «2

no element Zdz for z.,z.i to be the same as the Q ^i O ^i

element for z^Zj'. Let I., be the constant for OP, I^ Fig 66.

that for QO ;
and let QP be the negative edge. Then

L=i~'zdz, i,=r
J Z, J 2,'

Zdz.
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Let /' be the constant value for the cross-cut OR, and let OR be the

negative edge ; then

/'=/ Zdz.
Jz,

In the completely resolved surface, a possible path from z. to z.f is z^ to z^, Zi

to Zi, Zi to Z2 ; it therefore is the canonical path, so that

/'= (''Zdz+
f'

Zdz+ r Zdz

^-L + I,+ [''
Zdz.

But I Zdz is an integral of a uniform finite function along an infinitesimal

arc ZiOzi, and it is zero in the limit when we take z^ and Zi as coincident.

Thus

or the constant for tJie cross-cut OR is the excess of the constant for the jmrt of

PQ at the positive edge of OR over the constant for the part of FQ at the

negative edge.

Secondly, let C have both extremities on C, close to one another so that

they may be brought together as in the figure : it

is effectively the case of the directions of two cross-

cuts intersecting one another, say at 0. Let /j, I.,

I3, li be the constants for the portions QO, OP, OR,

SO of the cross-cuts respectively, and let ZsZn be =
the positive edge of QOP ; then z^z^ is the positive

edge of SOR. Then if &{z) denote the value of

the integral I Zdz at 0, which is definite because

the surface is simply connected and no discontinuities of Z lie within the

paths of integration, we have

/i =
(~' Zdz = © (z,) - (z,),

J Zl

L= rZdz=®{z,)-S(z,);

S
Fig. 67.

and /. r Zdz = © (^3) - @ (^2), 14= j^' Zdz = (H) (z,) - % {z,)

so that Ii — I., — 13 — li,

or the excess of tlte constant for the ijortion of a cross-cut on the positive edge,

over the constant for the portion on the negative edge, of another cross-cut is

equal to the excess, similarly estimated, for that other cross-cut

Ex. Consider the con.stants for the various portions of the cross-cuts in the canonical

resolution (§§ 180, 181) of a Riemann's surface. Let the constants for the two portions

oi Oy. h^^ A^, Ar ; and the constants for the two portions of h^ be By, By ; and let the

constant for c, be Cr-
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Fig. 68.

Then, at the j unction of c^ and a^ + 1 > we have

at the junction of c^ and h,., we have

Vj-^ til- ~ -i>)-
)

and, at the crossing of a,, and 6^, we have

Now, becau.se Z^j is the only cross-cut which meets Oj

,

we have A^= Ai; hence B^= B{, and therefore C^= 0.

Hence ^2= -^2') therefore B^— Bo, and therefore also

C2= 0. And so on.

Hence tlie constant for each of the portions of a cross-cut a is the same ; the coiistant for
each of the j)ortions of a cross-cut b is the same ; and the cojistant for each cross-act c is zero.

A single con.stant may thus be associated with each cross-cut a, and a single constant with

each cross-cut b, in connexion with the integral of a given uniform function of position on

the Riemann's surface. It has not been proved—and it is not neces.sarily the fact—that

any one of these constants is different from zero ; but it is sufficiently evident that, if all

the constants be zero, the integral is a uniform function of ^losition on the surface, that is,

a rational algebraical function of w and z.

197. Hence the values of the integral at points on opposite edges of a

cross-cut differ by a constant.

Suppose now that the cross-cut is obliterated : the two paths to the point

z will be the same as in the case just considered and will furnish the same

values respectively, say U and U + 1. But the irreducible circuit which

contributes the value / can be described any number of times ; and

therefore, taking account solely of this irreducible circuit and of the cross-cuts

which render other circuits impossible on the resolved surface, the general

value of the integral at the point z is

U +kl,

where k is an integer and U is the value for some prescribed path.

The constant / is called* a modulus ofperiodicity.

It is important that every modulus of periodicity should be finite; the path

which determines the modulus can therefore pass through a point c where

Z= <x> , or be deformed across it without change in the modulus, only if the

limit of (z — c)Z be a uniform zero at the point. If, however, the limit of

(z— c) Z at the point be a constant, implying a logarithmic infinity for the

integi-al, or if it be an infinity of finite order (the order not being necessarily

an integer), implying an algebraical infinity for the integral, we surround

the point c by a simple small curve and exclude the internal area from the

range of variation of the independent variable-f*. This exclusion is secured

by making a small loop-cut in the surfiicc round the point ; it increases

by unity the connectivity of the surface on which the variable is represented.

* Sometimes the inodulus for the cross-cat.

t This is the reason for the assumption made on p. 375.
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When the limit of {z — o)Z is a unifonn zero at c, no such exckision

is necessary : the order of the infinity for Z is easily seen to be a proper

fraction and the point to be a branch-point.

Similarly, if the limit of zZ for ^ = oo be not zero and the path which

determines a modulus can be deformed so as to become infinitely large, it is

convenient to exclude the part of the surface at infinity from the range of

variation of the variable, proper account being taken of the exclusion. The

reason is that the value of the integral for a path entirely at infinity (or

for a point-path on Neumann's sphere) is not zero ; ^^ = go is either a

logarithmic or an algebraic infinity of the function. But, if the limit of zZ

be zero for ^ = 00, the exclusion of the part of the surface at infinity is

unnecessary.

198. When, then, the region of variation of the variable is properly

bounded, and the resolution of the surface into one that is simply connected

has been made, each cross-cut or each portion of cross-cut, that is marked off

either by the natural boundary or by termination in another cross-cut,

determines a modulus of periodicity. The various moduli, for a given

resolution, are therefore equal, in number, to the various portions of the

cross-cuts. Again, a system of cross-cuts is susceptible of great variation,

not merely as to the form of individual members of the system (which does

not affect the value of the modulus), but in their relations to one another.

The total number of cross-cuts, by which the surface can be resolved into one

that is simply connected, is a constant for the surface and is independent of

their configuration : but the number of distinct pieces, defined as above, is

not independent of the configuration. Now each piece of cross-cut furnishes

a modulus of periodicity ; a question therefore arises as to the number of

independent moduli of periodicity.

Let the connectivity of the surface be i\^-l- 1, due regard being had to the

exclusions, if any, of individual points in the surface : in order that account

may be taken of infinite values of the variable, the surface will be assumed
spherical. The number of cross-cuts necessary to resolve it into a surface

that is simply connected is iV; whatever be the number of portions of the

cross-cuts, the number of these portions is not less than N.

When a cross-cut terminates in another, the modulus for the former and
the moduli for the two portions of the latter are connected by a relation

so that the modulus for any portion can be expressed linearly in terms of
the modulus for the earlier portion and of the modulus for the dividing

cross-cut.
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Similarly, when the directions of two cross-cuts intersect, the moduli of

the four portions are connected by a relation

6)1 ~ Oil — ^3 ~ (^1 5

and by passing along one or other of the cross-cuts, some relation is obtainable

between Wj and &j/ or between a., and <y./, so that, again, the modulus of any

portion can be expressed linearly in terms of the modulus for the earlier

portion and of moduli independent of the intersection.

Hence it appears that a single constant must be associated with each

cross-cut as an independent modular constant ; and then the constants

for the various portions can be linearly expressed in terms of these inde-

pendent constants. There are therefore N linearly independent moduli of
periodicity: but no system of moduli is unique, and any system can be

modified partially or wholly, if any number of the moduli of the system be

replaced by the same number of independent linear combinations of members

of the system. These results are the analytical ecjuivalent of geometrical

results, which have already been proved, viz., that the number of independent

simple irreducible circuits in a complete system is N, that no complete

system of circuits is unique, and that the Circuits can be replaced by

independent combinations reconcileable with them.

199. If, then, the moduli of periodicity of a function U at the cross-cuts

in a resolved surface be /j, I., ..., ly, all the values of the function at

any point on the unresolved surface are included in the form

11+ mJi + m.J„ + ... + vijfljy,

where mi,m.,, ..., 111 y are integers.

Some .special examples, treated by the present method, will be useful in leading up to

the consideration of integrals of the most general functions of position on a Riemann's

surface.

fdz
Ex. 1. Con.sidcr the integral \-^-

The subject of integration is uniform, so that the surftxce is one-sheeted. The origin

is an accidental singularity and gives a logaritlimic infinity for the integral ; it is tliercforc

excluded by a small circle round it. Moreover, the value of the integral romid a circle

of infinitely large radius is not zero: and therefoi'e 2=00 is excluded from the range of

variation. The boundary of the single spherical sheet can be taken to be the point

3=cx) ; and the bounded sheet is of connectivity 2, owing to the small circle at the origin.

The surface can be resolved into one that is simply connected by a single cross-cut drawn
from the boundary at s=qo to the circumference of the small circle.

If a plane sm'face be used, this cross-cut is, in effect, a section (§ 103) of the plane

made from the origin to the point i = 00

.

There is only one modulus of periodicity : its value is evidently I — , taken round the

origin, that is, the modulus is 2ni. Hence whenever the g
path of variation from a given point to a point z passes :-.-.v.-.v.v.-.;-.::.vr=^zz=0 O
from A to B, the value of the integral increases by 2Tr/ ; but

if the path pass from D to A, the value of the integral ^o- ^''^•

decreases by 2tvL Thus J is the negative edge, and B the positive edge of the cross-cut.
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If, then, any one value of / f be denoted by w, all values at the point in the

unresolved surface are of the form u'-\-'imni, where m is an integer; when z is regarded

as a function of w, it is a simply-periodic function, having ^iri for its period.

Ex. 2. Consider I ,
"

, . The subject of integration is uniform, so that the svuface

consists of a single sheet. There are two infinities +a, each of the first order, because

(:; + a) Z is finite at these two points : they must be excluded by small circles. The limit,

when s= 00 , of 2/(2^ - cfi) is zero, so that the point z— cc does not need to be excluded. We
can thus regard one of the small circles as the boundary of the surface, which is then

doubly connected : a single cross-cut from the other circle to the boundary, that is, in

effect, across-cut joining the two points a and -a, resolves the surface into one that is

simply connected.

It is easy to see that the modulus of periodicity is — : that A is the negative edge and

D the positive edge of the cross-cut : and that, if w be

a value of the integral in the unresolved surface at any -aQ —rsg

point, all the values at that point are included in the A

form Fig. 70.

nl
iv+ n —

,

where n is an integer.

Ex. 3. Consider \ {a^ — z'^)~" dz. The subject of integration is two-valued, so that the

surface is two-sheeted. The branch-points are +a, and cc is not a branch-point, so that

the single branch-line between the sheets may be taken as the straight line joining a

and -a. The infinities are +a; but as (?+ «) (a- -2-) " vanishes at the points, they do

not need to be excluded. As the limit of z (a^-^^j"*^ for s=x, is not zero, we exclude

2= c» by small curves in each of the sheets.

Taking the surftice in the spherical form, we assign as the boundary the small curve

round the point s= 00 in one of the sheets. The connectivity of the surface, through its

dependence on branch-lines and branch-points, is unity : owing to the exclusion of the point

2=00 by the small curve in the other sheet, the connectivity is increased by one unit: the

surface is therefore doubly connected. A single cross-cut will resolve the surface into one

that is simply connected : and this cross-cut must pass from the boundary at z= cx) which

is in one sheet to the excluded point 2= oo

.

Since the (single) modulus of periodicity is the value of the integral along a circuit in

the resolved surface from one edge of the cross-cut to ,---rrr;---

the other, this circuit can be taken so that in the un- R /'/-''

-r
—

resolved surface it includes the two branch-points ; i-a
and then, by 11. of § 195, the circuit can be deformed q
until it is practically a double straight line in the upper

sheet on either side of the branch line, together with two

small circles round a and - a respectively. Let P be the

origin, practically the middle point of these straight hues. O'

Consider the branch {cfi -z^)~^ belonging to the upper Fig
.

71-

sheet. Its integi-al from P to a is

^;i

/:
(a2-s2) '^dz.

From a to -a the branch is - {a- - z-)~'^
; the point R is contiguous in the surfoce,
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not to P, but (as in § 189) to the point in the second sheet beneath P at which the branch is

-(a2_22)"^, the other branch having been adopted for the upper sheet. Hence, from a

to -a by R, the integral is

'"~"-(a2-s2) dz.

I:

From - a to Q, the branch is + (a^ - z-) -, the same branch as at P : hence from -a to Q,

the integral is

i:

The integral, along the small arcs round a and round a' respectively, vanishes for each.

Hence the modulus of periodicity is

ha^- z'')~-dz + f
~"- (a2_ 22)-J

,1, + r (a^-z'-y-dz,
Jo J a J -a

that is, it is 2ir.

This value can be obtained otherwise tlius. The modulus is the same for all points

on the cross-cut ; hence its value, taken at 0' where z= cc , is

jia^-z'^y^dz,

passing from one edge of the cross-cut at 0' to the other, that is, round a curve in the

plane everywhere at infinity. This gives

2ni Lt z (a2 -z"^)'^ =^= 2n,

the same value as before.

The latter curve round (J, from edge to edge, can easily be deformed into the former

curve round a and — a from edge to edge of the cross-cut.

Again, let w^ be a value of the integral for a point z^ in one .sheet and u:^ be a value for

a point z.^ in the other sheet with the same algebraical value as z^^: take zero as the

common lower limit of the integral, being the same zero

for the two integrals. This zero may be taken in either

sheet, let it be in that in which z, lies : and then ^ O'
' 1 -a

w,= j"^{a^-zT''dz.
p.g 72.

To pass from to s.^ for w.^, any path can be justifiably deformed into the following:

(i) a path round either branch-point, say a, so as to return to the point under in the

second sheet, say to O.^, (ii) any number m of irreducible circuits round a and -a, always

returning to 0.j, in the .second sheet, (iii) a path from 0^ to 23 lying exactly under the path

from to 2i
for w^. The parts contributed by these paths respectively to the integral w.^

are seen to be

(i) a quantity -J-tt, arising from I (a^- z^)~^ dz + I - («^- z'^)~- d:, for rea-sons

similar to those above
;

(ii) a quantity yn^n, where m is an integer positive or negative;

(iii) a quantity I
* - {a^ - z^)~^ dz.

In the last quantity the minus sign is prefixed, because the subject of integration is

everywhere in the second sheet. Now 2.2= ^1, and therefore tlie quantity in (iii) is

-j\a^-zT^dz,

that is, it is - i>\ ; hence w.^= (2m -fl ) tt - JPj .
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If then we take v= I {a'-z-)~- dz, the integi-al extending along some defined curv^e from

an assigned origin, say along a straight line, the values of w belonging to the same

algebraical value of z are 2nn + w or {2m-\-l)Tr—w, and the inversion of the functional

relation gives

(f)
(w) ^z= cf> {{2mr+ vS)

= (f>{{2m+ \)Tr-w},
where m and n are any integers.

Ex. 4. Consider | r, assuming |c|>|«|. The surface is two-sheeted,
J {z - c) {a- - z-y

with branch-points at +«• but not at oo : hence the line joining a and —a is the sole

branch-line. The infinities of the subject of integration are a, —a, and r. Of these a

and -a need not be excluded, for the same reason that

their exclusion was not required in the last example. But

c must be excluded ; and it must be excluded in both

sheets, because z— c makes the subject of integration

infinite in both sheets. There are thus two points of

accidental singularity of the subject of integration; in

the vicinity of these points, the two branches of the

subject of integration are

J_(«2_,2)-*+.. J_(«2_,2)-*_..
"'

Fig. 73.

z-c z-c

the relation between the coefficients of {z - c)~i in them being a special case of a more

general proposition (§ 210). And since z/{{z — c)(a'^-z^)-} when s=qo is zero, oo does not

need to be excluded.

The surface taken plane is doubly connected, as in the last example, one of the curves

surrounding c, say that in the upper sheet, being taken as the boimdary of the surface.

A single cross-cut will suffice to make it simply connected : the direction of the cross-cut

miLst pass from the c-cmwe in the lower sheet to the branch-line and thence to the

boimdary in the upper sheet.

There is only a single modulus of periodicity, being the constant for the single cross-cut.

This modulus can be obtained by means of the curve AB in the first sheet; and, on

contraction of the curve (by II, § 195) so as to be infinitesimally near c, it is easily seen to be

2Tri{a^-c'^)~^, or say 2ir{c^ — a^)~-. But the modulus can be obtained also by means of

the curve CD; and when the crn-ve is contracted, as in the previous example, so as

practically to be a loop round a and a loop round - a, the \alue of the integral is

dz

{Z - C) (a2 _ 22)5

which is easily proved to be Stt (c- — o-)~-.

As in Ex. 4, a curve in the upper sheet which encloses the branch-points and the

branch-lines can he deformed into the curve AB.

Ex. 5. Consider vj= \{Az^—g^ —g^~ - dz= \udz.

The subject of integration is two-valued, and therefore the Riemann's surface is two-

sheeted. The branch-points are s = go , gj, eg, eg where ej, e^, e^ are the roots of

Az^-g.^-g, = 0;

and no one of them needs to be excluded from the rantre of variation of the variable.
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The connectivity of tlie surface is 3, so that two cross-cuts are necessfvry to resolve

the surface into one that is simply connected. The configurations of the branch-lines and

Fig. 74.

of the cross-cuts admit of some variety; two illustrations of branch-lines are given in

Fig. 74, and a point on Q^ in each diagram is taken as boundary.

The modulus for the cross-cut Q^—say from tlie inside to the outside— can be obtained

in two different ways. First, from P, a point on Q^, draw a line to e.^ in the first sheet,

then across the branch-line, then in the second sheet to e^ and across the branch-line,

then in the first sheet round e^ and back to P : the circuit is represented by the douV)le

line between e.^ and e^. The value of the integral is

I
udz+

j
{~u)dz, that is, 2 I udz.

Again, it can be obtained by a line from /•", another point on Q^, to cc , round the branch-

point there and across the branch-line, then in the second sheet to Cj and round e,, then

across the branch-line and back to P : the value of the

integral is

^1= 2 r udz.
J ei

But the modulus is the same for P as for /"
: hence

^1 = 2
fy^-'ji

udz.

This relation can be expressed in a difterent form. The
path from cv to e^ can be stretched into another form

towards 2= 00 in the first sheet, and similarly for the

path in the second sheet, without affecting the value of

the integral. Moreover as the integral is zero for 2= 00,

we can, without affecting the value, add the small part

necessary to complete the circuits from e., to x and from e^ to oc

circuits being given by the arrows, we have

2 r\idz= 2 / udz + 2 i%idz,
J e.2 J d J ro

Fig. 75.

The directions of these

or, if

for X = l, 2, 3, we have*

say

E, -/:udz,

"I:
JS'i = 2 I 'udz= E^-E.^,

Ei= Ei-\-E^;

and ^1 is the modulus of periodicity for the cross-cut Q^

.

* See Ex. G, § 104.
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In the same way the modulus of periodicity for Q.^^ is found to be

£^3=2 I udz and to be 2 I
' udz,

J e, J ^2

the equivalence of which can be established as before.

Hence it appears that, if w be the value of the integral at any point in the surface,

the general value is of the form w-\-mE^ + nE^, where m and n are integers. As the

integral is zero at infinity (and for other reasons which have already appeared), it is

convenient to take the fixed limit z^ so as to define w by the relation

I

-/: udz.

Now corresponding to a given algebraical value of s, there are two points in the surface

and two values of w : it is important to know the relation to one another of these two

values. Let z' denote the value in the lower sheet : then the jiath from z' to x can be

made iip of

(i) a path from s' to oo
' ;

(ii) any nimiber of irreducible circuits from qo ' to ex-
'

; and

(iii) across the branch-line and round its extremity to co

.

These parts respectively contribute to the integral

/'*' /""^

(i) a quantity I {-u)dz, that is, - I udz,ov, -w; (n) a quantity 7w£'j + 71^3,

where m and n are integers
;

(iii) a quantity zero, since the integral vanishes

at infinity : so that w'=mE^ -{-iiE^- iv.

If now we regard z as a function of w^ say z— ^{w), we have

^{w) = z= ^ (mE, + nE, + w), ^ {w')= z'.

But z' = z algebraically, so that we have

2= g) (w) = g) (m^i + nE^ ± w)

as the function expressing z in terms of %u.

Similarly it can be proved that

g>' iw) = ± g>' {mEi+ nE^ ± w),

the upper and the lower signs being taken together. Now ^ (iy), by itself, determines a

value of z, that is, it determines two points on the surface : and ^' (lo) has difl:erent values

for these two points. Hence a point on the surface is uniquely determined l>y^{w) and ^'{w).

-fj{l-z^){l-l-h^)}-'^dz=fEx. 6. Consider w=\ {{\ - z"^) {\ - Jch"^)) - dz= \ udz. The subject of integration is

two-valued, so that the surface is two-sheeted. The branch -points are +1, ±j but

not 00 ; no one of the branch-points need be excluded, nor need infinity.

The connectivity is 3, so that two cross-cuts will render the surface simply connected

:

let the branch-lines and the cross-cuts be taken as in the figure.

The details of the argument follow the same course as in the previous case.

The modulus of periodicity for Q.^ is 2 I udz= 4 I ^idz= 4K, in the ordinary

notation.
1

The modulus of periodicity for (?, is 2 / 2idz = 2iK', as before.
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Hence, if w be a value of the integral for a point z in the first sheet, a more general

value for that point is ^o-\-inAK+n%iK'.

Let w' V>e a value of the integral for a point zf in the second sheet, where / is

algebraically equal to z—the point in the

first sheet at which the value of the integral

is w ; then

w'= 2/1 + ?n4A'+ n2iK' - w,

so that, if we invert the functional I'elation

and take z— sn w, we have

sn w= s= sn {to + 4?Ji/t + 2niK')

= sn {{4m+2)K+ 2niK' -w}.

/J
-, ^ , where u= {i\-z^){\- F^^)}^.
{z-c)\i

As in the last case, the surface is two-sheeted : the branch-points arc +1, + , but no

one of them need be excluded, nor need 2= 00. But the point s= c must be excluded in

both sheets ; for expanding the subject of integration for points in the first sheet in the

vicinity of 2 = c, we have

^4^{(i-c2)(i-For^-f-...,

and for points in the second sheet in the vicinity of s=6', we have

-j^ {(1 - c2) (1 - X-V)}~i - . .
.

,

in each case giving rise to a logarithmic infinity for z= c.

We take the small curves excluding z= c in both sheets as the boundaries of the

surface. Then, by Ex. 4 § 178, (or because one of these curves may be regarded as a

Fig. 77.

boundary of the surfixce in the last example, and the curve excluding the infinity in the

other sheet is the equivalent of a loop-cut which (§ 161) increases the connectivity by

unity), the connectivity is 4. The cross-cuts necessary to make the surface simply

connected are three. They may be taken as in the figure
; Q^ is drawn from the boundary

in one sheet to a branch-line and thence round 7 to the boundary in the other sheet : Q.,

beginning and ending at a point in ^j, and Q^ beginning and ending at a point in Q.^^.

The moduli of periodicity are :

—

for ^1, the quantity (i2i = )27r2 {(l-c2)(l-^"V)}'~^, obtained by taking a small curve

round c in the upper sheet

:

Q.^^ the quantity (Q^,= )2 / /^'V '
obtained by taking a circuit

and .
,
passing from one edge of <^._, to the other at F

:

round 1
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_l

^3, the qiiantity {Q^= )2 j
^ -—^^, obtained by taking a circuit round -1

and -2;, passing from one edge of f^., to the other at G:

so that, if any vahic of tlie integral at a point be ^o, the general value at the point is

w+ Wjfii

+

in^^Q,.,+ m^Q,^
,

where wii, ??i2) "^3 firo integers.

Conversely, :; is a triply-periodic function of w; but the function of ^o is not i;niform

(§ 108).

Ex. 8. As a last illustration for the present, consider

ivity is 3, the bra

00 . No one of the branch-points need be excluded, for the integral is finite round each

finity, \v(

The surface is two-sheeted ; its connectivity is 3, the branch-points being ±1, ± , but not

in

of them. To consider the integral at infinity, we substitute 2— -,, and then

dx

dx

k k'^
,

giving for the function at infinity an accidental singularity of the first order in each

sheet.

The point s=ao must therefore be excluded from each sheet: but the form of w, for

infinitely large values of s, shews that the modulus for the cross-cut, which passes from

one of the points (regarded as a boundary) to the other, is zero.

The figure in Ex. 6 can be used to determine the remaining moduli. The modulus

for $., is

_ A \-k'^x^

with the notation of Jacobian elliptic functions. The modulus for Q^ is

" io{{l-y^)(l-fy)}* ^'

on transforming by the relation F-x''"^k'hf-— \ : the last expression can at once be changed

into the form 2? (A'' — A"), with the same notation as before.

If then w be any value of the integral at a point on the surface, the general value

there is

w -f-4mA-l- 2?»:
(
K' - E'\

wliere m and n are integers.
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200. After these illustrations in connection with simple cases, we may

proceed with the consideration of the integral of the most general function

w' of position on a general Riemann surface, constructed in connection with

the algebraical equation

/ (W, Z) = Vf' + W'^-^i (^) + . . . + Wgn-, {Z) + On {z) = 0,

where the functions g{z) are rational, integral and algebraical. Subsidiary

explanations, which are merely generalised from those inserted in the

preceding particular discussions, will now be taken for granted.

Taking iv' in the form of § 193, we have

, 1 lH{z)w'^--+...+lin-,{z) 1
, . . _^ U{w,z)

W =- //o {z) H r-! = - K {z) + TT ,

n cj n ^
'

dj

dw dw

so that in taking the integral of tu' we shall have a term - I ho (z) dz, where

Ao {z) is a rational algebraical function. This kind of integral has been

discussed in Chapter II.; as it has no essential importance for the present

investigation, it will be omitted, so that, without loss of generality merely

for the present purpose*, we may assume ho{z)to vanish; and then tJie

numerator of w' is of degree not higher than ?2 — 2 in w.

The value of z is insufficient to specify a point on the surface : the values

of w and z must be given for this purpose, a requisite that was unnecessary

in the preceding examples because the point z was spoken of as being in the

upper or the lower of the two sheets of the various surfaces. Corresponding

to a value a of z, there will be n points : they may be taken in the form

(«i. «i), {ih, «:.), ..., (rt,i, ttn); where tti, ..., «„ are each algebraically equal to a,

and «! , . .
.

, a„ are the appropriately arranged roots of the equation

f{w, a) = 0.

U(w z)
The function lu' to be integrated is of the form

'—-, where U is of

dw

degree n — 2 in w, but though algebraical and rational it is not necessarily

integral in z.

An ordinary point of w', which is neither an infinity nor a branch-point,

is evidently an ordinary point of the integral.

The infinities of the subject of integration arc of prime importance.

They are

:

(i) the infinities of the numerator,

(ii) the zeros of the denominator.

The former are constituted by (a), the poles of the coefficients of powers of w

* See § 207, where h,y(z) is retained.

25—2
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in U {iv, z), and (/8), 2; = oo : this value is included, because the only infinities

of w, as determined by the fundamental equation, arise for infinite values of

z, and infinite values of w and of z may make the numerator U{w, z)

infinite.

So far as concerns the infinities of ^v' which arise when z= co (and there-

fore w = 00 ), it is not proposed to investigate the general conditions that the

integral should vanish there. The test is of course that the limit, for ^; = 00
,

of )rr— should vanish for each of the n values of w.

dw

But the establishment of the general conditions is hardly worth the

labour involved ; it can easily be made in special cases, and it will be

rendered unnecessary for the general case by subsequent investigations.

201. The simplest of the instances, less special than the examples

already discussed, are two.

The first, which is really that of most frequent occurrence and is of very

great functional importance, is that in which /" (tu, z) = has the form

w"~-Siz) = 0,

where 8 (z) is of order 2m — 1 or 2m and all its roots are simple : then

^ = 2w = 2^/8 iz). In order that the limit of l--r— may be zero when
dw '^

oj

dw

^ = GO , we see (bearing in mind that JJ, in the present case, is independent of

w) that the excess of the degree of the numerator of U over its denominator

may not be greater than m — 2. In particular, if U be an integral function

of z, a form of U which would leave jw'dz zero at ^r = 00 is

As regards the other infinities of Ul\/8{z), they are merely the roots of

8 {z) = or the}'^ are the branch-points, each of the first order, of the

equation
w''-8{z) = (d.

By the results of § 101, the integral vanishes round each of these points ; and

each of the points is a branch-point of the integral function. The integral is

finite everywhere on the surface : and the total number of such integrals,

essentially different from one another, is the number of arbitrary coefficients

in U, thai is, it is m—l, the same as the class of the Riemann's surface

associated with the equation.

202. The other important instance is that in which the fundamental

equation is, so to speak, a generalised etpiation of a plane curve, so that gg (z)

is an integral algebraical function of z of degree s : then it is easy to see that.
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at ^= CO , each branch w<=^z, so that ^ cc^"-' : hence U {w, z) can vary only

as 2;""', in order that the condition may be satisfied. If then U{w, z) be an

integral function of z, it is evident that it can at most take a form which

makes U= the generaHsed equation of a curve of degree n - 3; while, if it be

V (w z)—^—^

—

- , then V{tu, z), supposed integral in z, can at most take a form which
z — c

makes F= the generalised equation of a curve of degree n — 2.

Other forms are easily obtainable for accidental singularities of coefficients

of to in U (w, z) that are of other orders.

As regards the other possible infinities of the integral, let c be an acci-

dental singularity of a coefficient of some power of w in Uiw, z); it may be

assumed not to be a zero of r— . Denote the n points on the surface by

(ci, A-]), (co, k^, ..., {Cn, kn), where Ci, c,, ..., c„ are algebraically equal to c.

In the vicinity of each of these points let lu' be expanded: then, near {Cr,kr)

we have a set of terms of the type

-^m,r , -"-171—I, r
, ,

-^2, r , -'^:, >•^'m—i,r ,
-'-2, r , -'-\,r , n , \

(Z - C,.)"' (Z - CrT'-' (Z- C,.)- Z-Cr

where P(z—Cr) is a converging series of positive integral powers of z—Cr.

A corresponding expansion exists for every one of the n points.

The integral of w' will therefore have a logarithmic infinity at (c,., kr),

unless A^^r is zero; and it will have an algebraical infinity, unless all the

coefficients ^2, r. , ^m,r Jire zero.

The simplest cases are

(i) that in which the integral has a logarithmic infinity but no

algebraical infinity ; and

(ii) that in which the integral has no logarithmic infinity.

W (io z)
For the former, iv' is of the form — '

. , and therefore in the vicinity of Cr

A
we have w' = —-'' + P (z — c,-),

Z — Cr

W(k. c)
the value of ^i_ ,. being —^7^~^' '"^"^^ ^ is an integral function of Av, of

dkr

degree not higher than n — 2. Hence

^ . _ ^. W{kr,Cr)
^ -^1, r — —I -) -•

r=l ,- = 1 OJ

dkr

^ I W{kr,c)

dkr
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since c is the common algebraical value of the quantities Ci, Co, ..., Cn- Now
k^, k.., ..., kji are the roots of

/ (w, c) = 0,

an equation of degree n, while W is of degree not higher than n — 2 ; hence,

by a known theorem*,

« W(k,,c) ,

,-ri df
-"'

n

SO that S ^1, r — 0.

The validity of the result is not affected if some of the coefficients A vanish.

But it is evident that a single coefficient A cannot be the only non-vanishing

coefficient ; and that, if all but two vanish, those two are equal and opposite.

This result applies to all those accidental singularities of coefficients of

powers of w in the numerator of 'w' which, being of the first order, give rise

solely to logarithmic infinities in the integral of lu'. It is of great importance

in regard to moduli of periodicity of the integral.

(ii) The other simple case is that in which each of the coefficients

Air vanishes, so that the integral of w' has only an algebraical infinity at

the point c,., which is then an accidental singularity of order less by unity

than its order for w'.

In particular, if in the vicinity of c,., the form of w' be

the integral has an accidental singularity of the first order.

It is easy to prove that

n

S A,, r = 0,
»•= !

SO that a single coefficient A cannot be the only non-vanishing coefficient

;

but the result is of less importance than in the preceding case, for all the

moduli of periodicity of the integral at the cross-cuts for these points vanish.

And it must be remembered that in order to obtain the subject of integration

in this form, some terms have been removed in § 200, the integral of which

would give rise to infinities for either finite or infinite values of z.

It may happen that all the coefficients of powers of w in the numerator

of w' are integral functions of z. Then z= <X) is their only accidental

singularity ; this value has already been taken into account.

* Buruskle autl Panton, Theory of Equations, (3rd ecT.), p. 319.

I
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203. The remaining source of infinities of lu', as giving rise to possible

infinities of the integral, is constituted by the aggregate of the zeros of

^ = 0. Such points are the simultaneous roots of the equations

| = 0,/(»,.) = 0.

In addition to the assumption already made that f=0 is the equation of a

generalised curve of the 7ith. order, we shall make the further assumptions

that all the singular points on it are simple, that is, such that there are only

two tangents at the point, either distinct or coincident, and that all the

branch-points are simple.

The results of § 98 may now be used. The total number of the points

given as simultaneous roots is n (n — 1) : the form of the integral in the

immediate vicinity of each of the points must be investigated.

Let (c, 7) be one of these points on the Riemann's surface, and let

(c + ^, 7 + u) be any point in its immediate vicinity.

I. If —- do not vanish at the point, then (c, 7) is a branch-point

for the function w. We then have

f (w, z) = A'^ 4- B'v' + quantities of higher dimensions,

for points in the vicinity of (c, 7), so that uoc ^- when |^| is sufficiently small.

Then

4- = 2B'v + quantities of higher dimensions
ow ^ °

when 1^1 is sufficiently small. Hence, for such values, the subject of integra-

tion is a constant multiple of

U (7, c) + positive integral powers of v and ^

f + powers of f with index > ^

that is, of ^~^ when |^| is sufficiently small. The integral is therefore a

constant multiple of ^' when |f |

is sufficiently small; and its value is there-

fore zero round the point, which is a branch-point for the function repre-

sented by the integral.

TT Tf 9/"('?<^. •S^) • 1 1 • 1 / • 1 1

II. It ""^-^ vanish at the point, we have (with the iissumptions

of § 98),

/ (w, z) = A ^'- -f ^B^v 4 Gv- + terms of the third and higher degrees

;

and there arc two cases.

(i) If B- < AG, the point is not a branch-point, and we have

Gv + Bl;=^ {B- - A G) i + integral powers ^-, ^^ ...
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as the relation between v and ^ deduced from/= 0. Then

^ = 2 (B^ + Gv) + terms of second and higher degrees

= A,^ + higher powers of ^.

In the vicinity of (c, 7), the subject of integration is

U (7, c) + Dv + E^ + positive integral powers

X^ + higher powers of ^

Hence when it is integrated, the first term is —^;—^

—

- log ^, and the remain-
A,

ing terms are positive integral powers of ^: that is, such a point is a

logarithmic infinity for the integral, unless U (7, c) vanish.

If, then, we seek integrals which have not the point for a logarithmic

infinity and we begin with JJ as the most general function possible, we can

prevent the point from being a logarithmic infinity by choosing among the

arbitrary constants in f7 a relation such that

C^(7, c) = 0.

There are S such points (§ 98) ; and therefore S relations among the

constants in the coefficients of U must be chosen, in order to prevent the

integral

df
"^

dw

from having a logarithmic infinity at these points, which are then ordinary

points of the integral.

(ii) li B^ = A C, the point is a branch-point ; we have

B^+ Cv = hM^ + Ml;-- + Ni;^ + . .

.

as the relation between ^ and v deduced from/= 0. In that case,

^ = 2 {B^ + Gv) + terms of the second and higher degrees

ft ...= L^- + powers of ^ having indices > f

.

In the vicinity of (c, 7), the subject of integration is

U (7, c) + Dv + E^ + higher powers

Z^" + higher powers of ^

Hence when it is integrated, the first term is — 2 ~-~—- i^~^-, and it can be

proved that there is no logarithmic term ; the point is an infinity for the

integral, unless U (7, c) vanish.

If, however, among the arbitrary constants in U we choose a relation such

that

U (7, c) = 0,

f
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then the numerator of the subject of integration

= Bu + E^ + higher positive powers

= \'^ + fi'^' + higher powers of f,

on substituting from the relation between v and ^ derived from the funda-

mental equation. The subject of integration then is

that is,

the integral of which is

2jr^-+ positive powers.

The integral therefore vanishes at the point : and the point is a branch-point

for the integral. It therefore follows that we can prevent the point from

being an infinity for the function by choosing among the arbitrary constants

in ?7 a relation such that

U(y,c) = 0.

There are k such points (§ 98) : and therefore k relations among the

constants in the coefficients of U must be chosen in order to prevent the

integral from becoming infinite at these points. Each of the points is a

branch-point of the integral.

204. All the possible sources of infinite values of the subject of integra-

tion w', = \-

'

, have now been considered. A summary of the preceding

diu

results leads to the following conclusions relative to Jw'dz

:

(i) an ordinary point of w' is an ordinary point of the integral :

(ii) for infinite values of z, the integral vanishes if we assign proper

limitations to the form of U {lu, z)

:

(iii) accidental singularities of the coefficients of powers of w in

U(w, z) are infinities, either algebraical or logarithmic or both

algebraical and logarithmic, of the integral

:

(iv) if the coefficients of powers of w in U{^v, z) have no accidental

singularities except for z = qo , then the integral is finite for

infinite values of z (and of w) when U {lu, z) is the most general

rational integral algebraical function of lu and z of degree ?i — 3

;

but, if the coefficients of powers of w in U {iv, z) have an

accidental singularity of order /i, then the integral will be finite
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for infinite values of z (and of w) when U{w, z) is the most

general rational integral algebraical function of w and z, the

degree in iv being not greater than w — 2 and the dimensions

in w and z combined being not greater than 7i + /u, — 3 :

(v) those points, at which 'bfldvo vanishes and which are not branch-

points of the function, can be made ordinary points of the

integral, if we assign proper relations among the constants

occurring in JJ {w, z)

:

(vi) those points, at which df/dw vanishes and which are branch-

points of the function, can, if necessary, be made to furnish

zero values of the integral by assigning limitations to the

form of U {w, z) ; each such point is a branch-point of the

integral in any case.

These conclusions enable us to select the simplest and most important

classes of integrals of uniform functions of position on a Riemann's surface.

205. The first class consists of those integrals which do not acquire*

an infinite value at any point ; they are called integrals of the first kind'\'.

The integrals, considered in the preceding investigations, can give rise to

integrals of the first kind, if the numerator U {w, z) of the subject of integra-

tion satisfy various conditions. The function U{w, z) must be an integral

function of dimensions not higher than n — 3 in tu and z, in order that the

integral may be finite for infinite values of z and for all finite values of z

not specially connected with the equation f {w, z) = ; for certain points

specially connected with the fundamental equation, being 8 + k in number,

the value of U{w, z) must vanish, so that there must be h -\- k relations

among its coefficients. But when these conditions are satisfied, then the

integral function is everywhere finite, it being remembered that certain

limitations on the nature of /* {w, z) — have been made.

Usually these conditions do not determine U {w, z) uniquely save as to a

constant factor ; and therefore in the most general integral of the first kind a

number of independent arbitrary constants will occur, left undetermined by

the conditions to which U is subjected. Each of these constants multiplies an

integral which, everywhere finite, is different from the other integrals so

multiplied ; and therefore the number of diflferent integrals of the first kind

is equal to the number of arbitrary independent constants, left undetermined

in U. It is evident that any linear combination of these integrals, with

* They will be seen to be multiform functions even on the multiply connected Riemann's

surface, and they do not therefore give rise to any violation of the theorem of § 40.

t The German title is crstcr Gattung ; and similarly for the integrals of the second kind and

the third kind.
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constant coefficients, is also an integral of the first kind ; and therefore a

certain amount of modification of form among the integrals, after they have

been obtained, is possible.

The number of these integrals, linearly independent of one another, is

easily found. Because U is an integral algebraical function of w and z of

dimensions n — 3, it contains |(w— 1) {n — 2) terms in its most general form
;

but its coefficients satisfy 8 + /c relations, and these are all the relations that

they need satisfy. Hence the number of undetermined and independent

constants which it contains is

l(7l-l)(7i-2)-8-/C,

which, by § 182, is the class p of the Riemann's surface ; and therefore, for the

present case, the number of intecjrals, which twe finite evei'i/where un the surface

and are linearly independent of one another, is equal to the class of the

Riemanns surface.

Moreover, the integral of the first kind has the same branch-points as the

function lu. Though the integral is finite everywhere on the surface, yet its

derivative w' is not so : the infinities of w' are the branch- points.

The result has been obtained on the original suppositions of § 98, which

were, that all the singular points of the generalised curve y(w, z) = arc

simple, that is, only two tangents (distinct or coincident) to the curve can

be drawn at each such point, and that all the branch-points are simple.

Other special cases could be similarly investigated. But it is superfluous to

carry out the investigation for a series of cases, because the result just

obtained, and the result of § 201, are merely particular instances of a general

theorem which will be proved in Chapter XVIII., viz., that, associated with

a Riemanns surface of connectivity 2p + 1, there are p linearly independent

integrals of the first kind which are finite everywhere on the surface.

206. The functions, which thus arise out of the integral of an algebraical

function and are finite everywhere, are not uniform functions of position on

the unresolved surface. If the surface be resolved by 2p cross-cuts into one

that is simply connected, then the function is finite, continuous and uniform

everywhere in that resolved surface, which is limited by the cross-cuts as a

single boundary. But at any point on a cross-cut, the integral, at the two

points on opposite edges, has values that differ by any integral multiple of

the modulus of the function for that cross-cut (and possibly also by integral

multiples of the moduli of the function for the other cross-cuts).

Let the cross-cuts be taken as in § 181 ; and for an integral of the first

kind, say W, let the moduli of periodicity for the cross-cuts be

coi, o).,, ..., (Op, for tti, a.,, ..., a^,

and cop+i, w^+j, ..., co-.p, for hi, b.., ..., bp,
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respectively ; the moduli for the portions of crosy-cuts c,, C3, ..., Cp have been

proved to be zero.

Some of these moduli may vanish ; but it will be proved later (§ 231) that

all the moduli for the cross-cuts a, or all the moduli for the cross-cuts b, cannot

vanish unless the integral is a mere constant. In the general case, with which

we are concerned, we may assume that they do not vanish ; and so it follows

that, if W be a value of an integral of the first kind at any point on the

Riemanns surface, all its values at that jioint are of theform
tp

where the coejficients m are integers.

The foregoing functions, arising through integrals that are finite every-

where on the surface, will be found the most important from the point of

view of Abelian transcendents : but other classes arise, having infinities on

the surface, and it is important to indicate their general nature before passing

to the proof of the Existence-Theorem.

207. First, consider an integral which has algebraical, but not logarithmic,

infinities. Taking the subject of integration, as in the preceding case, to be

the most general possible, so that arbitrary coefficients enter, we can, by

assigning suitable relations among these coefficients, prevent any of the

points, given as zeros of ~ = 0, from being infinities of the integral. It

follows that then the only infinities of the integral will be the points that are

accidental singularities of coefficients of powers of w in the numerator of the

general expression for iv'. These singularities must each be of the second

order at least : and, in the expansion of w' in the vicinity of each of them,

there must be no term of index — 1, the index that leads, on integration, to a

logarithm.

Such integrals are called integrals of the second kind.

The simplest integral of the second kind has an infinity for only a single

point on the surface, and the infinity is of the first order only : the integral

is then called an elementary integral of the second kind. After what has

been proved in § 202 (ii), it is evident that an elementary integral of the

second kind cannot occur in connection with the equation f{iu, z) = 0, unless

the term Aq {z) of § 200 be retained in the expression for to.

Ex. 1. Adopting the subject of integration obtained in § 200, we have

dw

where U is of the character considered in the preceding sections, viz., it is of degree n-2
in w ; various forms of w' lead to various forms of Aq (z) and of U {iv, z).



207.] OF THE SECOND KIND 397

If -hf^{z)= - r,, and if c be not a singularity of the coefficient of any power of w

in U^ it is then evident that

lw'ck=-—-+
f \J ' dz;w

dw

and the integral on tlic right-hand side can by choice among the constants be intule an

integral of the first kind. The integral is not, however, an elementary integral of the

second kind, because s= c is an infinity in each sheet.

Ex. 2. A special integral of the second kind occurs, when we take an accidental

singularity, say z= c, of the coefficient of some power of ?(^ in ^^{w, z) and we neglect ^^(z);

so that, in effect, the subject of integration w' is limited to the form

U{w,z)
^

dw

U being of degree not higher than ?i - 2 in ?r. To the value 2= ^, there correspond n points

in the various sheets; if, in the immediate vicinity of any one of the points, ir be of the

form

in that vicinity the integral is of the form

For such an integral the sum of the coefficients A,, is zero: the simi)lest case ari.ses

when all but two, say A^ and A,^, of these vanish. The integral is then of the form

J-+ P^{z~c,)

in the vicinity of Cj , and of the form

in the vicinity of «?.,. But the integral is not an elementary integral of the second kind.

208. To find the general value of an integral of the second kind,

all the algebraically infinite points would be excluded from the Rieniann's

surface by small curves: and the surface would be resolved into one that is

simply connected. The cross-cuts necessary for this purpose would consist of

the set of 2p cross-cuts, necessary to resolve the surface as for an integral of

the first kind, and of the k additional cross-cuts in relation with the curves

excluding the algebraically infinite points.

Let the moduli for the former cross-cuts be

ei, eo, ..., €p, for the cuts (ii, cu, ..., a^,

e^u+i, epj^o, ..., €.2p for the cuts b^, b,, ..., bp, respectively:

the moduli for the cuts c are zero. It is evident from the form of the

integral in the vicinity of any infinite point that, as the integral has only an
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algebraical infinity, the modulus for each of tJte h cross-cuts, obtained hy a

curve from one edge to the other round the point, is zero. Hence if one

value of the integi-al of the second kind at a point on the siirfoce be E {z),

all its values at that point are included in the form

B(z)+ % nr^r,

where ??i, n.,, ..., n.^p are integers.

The importance of the elementary integral of the second kind, inde-

pendently of its simplicity, is that it is determined hy its infinity, save as to an

additive integral of the first kind.

Let Ey{z) and E.,{z) be two elementary integrals of the second kind,

having their single infinity common, and let a be the value of z at this point

;

then in its vicinity we have

E, {z) = -^' +P,{z- a), E, {z) =A^ ^ P, (z - a),
z — a '

z — a

and therefore A^E.2{z) — A.,E-^{z') is finite at z — a. This new function is

therefore finite over the whole Riemann's surface : hence it is an integral of

the first kind, the moduli of periodicity of which depend upon those of E^ (z)

and E^ (z).

Ex. It may similarly be proved that for the special case in Ex. 2, § 207, when the

integral of the second kind has two simple infinities for the same algebraical value of z in

different sheets, the integral is determinate save as to an additive integral of the first kind.

Let «i and ag be the two points for the algebraical value a oi z; and let F{z) and G{z)

be two integrals of the second kind above indicated having simple infinities at a^ and a^

and nowhere else.

Then in the vicinity of a^ we have

F{^ =::^+ P,{z-a,), G{z) =^ + Q,{z-a,),

so that BFiz) — AG{z) is finite in the vicinity of a^.

Again, in the vicinity of a.,, we have, by § 202,

Z — Ct^ Z — CI2

so that BF {z)- AO (z) is finite in the vicinity of a.^ also. Hence BF (z)- AG (z) is finite

over the whole surface, and it is therefore an integral of the first kind ; which proves the

statement.

It therefore appears that, if F(z) be any such integral, every other integral of the same

nature at those points is of the form F (2) + TT', where W is an integral of the first kind.

Now there are p linearly independent integrals of the first kind : it therefore follows that

there are p + l linearly independent integrals of the second kind, having simple infinities

with equal and opposite residues at two points, (and at only two points), determined by

one algebraical value of z.
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From the property that an elementary integral of the second kind is

determined by its infinity save as to an additive integral of the first kind, we

infer that there are p + 1 linearhj independent elementary integrals of the

second kind with the same single infinity on the Rienuinns surface.

This result can be established in connection with /(w, s) = as follows. The subject

of integration is

ow

where for simplicity it is assumed that a is neither a branch-point of the function

nor a singular point of the curve /(w, s) = 0, and in the present case U is of degree

M — 1 in IV. To ensure that the integral vanishes for 2= 00, the dimensions of U{^i\ z)

may not be greater than n-\. Hence U{iu, z), in its most general form, is an integral,

rational, algebraical function of w and z of degree 71 — 1 ; the total number of terms is

therefore ^n{n+l), which is also the total number of arbitrary constants.

In order that the integral may not be infinite at each of the 8 + k singularities of the

curve /(w, z)= 0, a relation U{y, c) = must be satisfied at each of them; hence, on this

score, there are 8+ k relations among the arbitrary constants.

Let the points on the surface given by the algebraical value a of s be (a^, oj), (a.,, a.^),

..., {(In, a,j). The integral is to be infinite at only one of them ; so that we must have •

U{a,, ar)= 0,

for r=2, 3, ..., n; and n—1 is the greatest number of such points for which U can vanish,

unless it vanish for all, and then there would be no algebraical infinity. Hence, on this

score, there are ?i — 1 relations among the arbitrary constants in C
In the vicinity of s= a, w= a, let

z=a+ (, w= n + v;

then we have = v / +( J^+ ...,

da ^ da '

where •„- is the value of ~- and ^- that of ;/, for 2= « and w= a. For suflficiently small
da 010 da az ''

values of lv| and \(\, we may take

For such points we have
da'^^da'

U{w, z)=U{a, a) + v
9^ +C 9^ + ---

-U(n a)4-^ ^if^U)-U{a,a)+^^ ^^+ .••,

da

and ^==^/+i V ^"/
I

dio da df d{a,a)

1
9J/, J7) ^ 1 K-^'gJ

U (a, a) 9 (a, a) df 9 (a, a)

for(a,,«,), and 9(/'J'') =
(a, a)

Then unless
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for (rt.,, a.,), (ag, ng), ..., («„, a„), thei'e will be terms in - in the expansion of the subject of

integration in the vicinity of the respective points, and consequently there will be

logarithmic infinities in the integral. Such infinities are to be excluded ; and therefore

their coefficients, being the residues, must vanish, so that, on this score, there appear to

be 71 relations among the arbitrary constants in U. But, as in § 210, the sum of the

residues for any point is zero : and therefore, when w - 1 of them vanish, the remaining

residue also vanishes. Hence, from this cause, there are only ?i - 1 relations among the

arbitrary constants in U.

The tale of independent arbitrary constants in U {'W, s), remaining after all the

conditions are satisfied, is

ln{n + l)-{8+ K)- {n - 1 ) - (« - 1)

=p+ l;

as each constant determines an integral, the inference is that there are p+ l linearly

independent elementary integrals of the second kind with a common infinity.

209. Next, consider integrals which have logarithmic infinities, inde-

pendently of or as well as algebraical infinities. They are called integrals of

the third kind. As in the case of integrals of the first kind and the second

kind, we take the subject of integration to be as general as possible so that it

contains arbitrary coefficients ; and we assign suitable relations among the

coefficients to prevent any of the points, given as zeros of df/chv, from becoming

infinities of the integral. It follows that the only infinities of the integral

are accidental singularities of coefficients of powers of w in the numerator

of the general expression for iv' ; and that, when w' is expanded for points in

the immediate vicinity of stich an expression, the term with index — 1 must

occur.

To find the general value of an integral of the third kind, we should

first exclude from the Riemann's surface all the infinite points, say

fc], to, ... , t^,

by small curves ; the surface would then be resolved into one that is simply

connected. The cross-cuts necessary for this purpose would consist of the

set of 2p cross-cuts, necessary to resolve the surface for an integral of the

first kind, and of the additional cross-cuts, /x in number and drawn from the

boundary (taken at some ordinary point of the integral) to the small curves

that surround the infinities of the function.

The moduli for the former set may be denoted by

CTj, OTo, ..., CT^j for the cuts ctj, a.^, ..., ap,

and -sTp+i, -57^+2, ••, ^2p for the cuts b^, b., ..., bp respectively;

they are zero for the cuts c. Taking the integral from one edge to the other

of any one of the remaining cross-cuts l^, L, ..., l^, (where Iq is the cross-cut

drawn frotn the curve surrounding l,j to the boundary), its value is given by
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the value of the integral round the small curve and therefore it is 27riXq,

where the expansion of the subject of integration in the immediate vicinity

of ^ = l(j is

+,^^,+-\ + P(^-h)-
{z-lqY Z-lq ^^

Then, if IT be any value of the integral of the third kind at a point on the

unresolved Riemann's surface, all its values at the point are included in the

form

n+ S wvsr,. + 27ri S >hj\,
r=l q=l

where the coefficients mj, ..., nup, n^, ..., n^ are integers.

210. It can be proved that the quantities Xq are subject to the relation

Let the surface be resolved by the complete system of 2p + fi cross-cuts : the

resolved surface is simply connected and has only a single boundary. The

subject of integration, w', is uniform and continuous over this resolved surface:

it has no infinities in the surface, for its infinities have been excluded ; hence

jw'dz = 0,

when the integral is taken round the complete boundary of the resolved

surface.

This boundary consists of the double edges of the cross-cuts a, b, c, Z,

and the small curves round the fx points I ; the two edges of the same cross-

cut being described in opposite directions in every instance.

Since the integral is zero and the function is finite everywhere along the

boundary, the parts contributed by the portions of the boundary may be con-

sidered separately.

First, for any cross-cut, say a^ : let be the point where it is crossed by b^,

and let the positive direction of description of the whole boundary be indicated

by the arrows (fig. 81, p. 438). Then, for the portion Ca...E, the part of the

CE
integral is I w'dz, or, if Ca...E be the negative edge (as in § 19G), the part of

J c

the integral may be denoted by

w'dz.
J c

The part of the integral for the portion F...aD, being the positive

rn rF

edge of the cross-cut, is lu'dz, which may be denoted by — w'dz. The
J F J D

course and the range for the latter part are the same as those for the

F. 26
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former, and w is the. same on the two edges of the cross-cut; hence the

sum of the two is

rE
= {w' — w') dz,

J c

which evidently vanishes*. Hence the part contributed to Jw'dz by the two

edges of the cross-cut cig is zero.

Similarly for each of the other cross-cuts a, and for each of the cross-cuts

b, c, L.

The part contributed to the integral taken along the small curve enclosing

Ig is 27ri\q, for q = l, 2, ..., /x: hence the sum of the parts contributed to the

integi'al by all these small curves is

27ri 2 \q.

All the other parts vanish, and the integral itself vanishes ; hence

27ri S X^ = 0,

5= 1

establishing the result enunciated.

Corollary. An integral of the third kind, that is, having logarithmic

infinities on a Rienianns surface, must have at least two logarithmic infinities.

If it had only one logarithmic infinity, the result just proved would

require that \i should vanish, and the infinity would then be purely

algebraical.

211. The simplest instance is that in which there are only two

logarithmic infinities ; their constants are connected by the equation

Xj + Xo = 0.

If, in addition, the infinities be purely logarithmic, so that there are no

algebraically infinite terms in the expansion of the integral in the vicinity

of either of the points, the integral is then called an elementary integral

of the third kind. If two points Cj and Co on the surface be the two infini-

ties, and if they be denoted by assigning the values Ci and c^to z\ and if

Xi = 1 = — Xo (as may be assumed, for the assumption only implies division

of the integral by a constant factor), the expansion of the subject of inte-

gration for points in the vicinity of Cj is

^_ + P,(.-o,),

* It vanishes from two independent causes, first through the factor iv'-tc', and secondly

because z^=z , the breadth of any cross-cut being infinitesimal.

The same result holds for each of the cross-cuts a and b.

For each of the cross-cuts c and L, the sum of the parts contributed by opposite edges vanishes

only on account of the factor iv' - w' ; in these cases the variable z is not the same for the upper

and lower limit of the integral.
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% the expanand for points in the vicinity of c. the expansion is

-1

Such an integral may be denoted by ITio : its modulus, consequent on

the logarithmic infinity, is ^iri.

Ex. 1. Prove that, if U^.^i ^-m ^n be three elementary integrals of the third kind

having Cj, C2; C21 c^; c^, Cj for their respective pairs of points of logarithmic discontinuity,

then 11,2 + 1123 + 1131 is either an integral of the first kind or a constant.

Clebsch and Gordan pass from this result to a limit in which the points c^ and Cg

coincide and obtain an expression for an elementary integral of the second kind in the

form of the derivative of Ilij with regard to c^. Klein, following Riemann, passes from an

elementary integral of the second kind to an elementary integi'al of the third kind by

Integrating the former with regard to its parametric point*.

Ex. 2. Reverting again to the integrals connected with the algebraical equation

f(iv, z) = 0, when it can be interpreted as the equation of a generalised curve, an integral of

the third kind arises when the subject of integration is

, V(w,z)

where V {w, z) is of degree ?i - 2 in lo. If V {w, z) be of degree in z not higher than n - 2,

the integral of w' is not infinite for infinite values of z; so that V{w, z) is a general integral

algebraical function of w of degree n — 2.

Corresponding to the algebraical value c of z, there arc n points on the surface, say

(c,, k\\ (c.j,, L^), ..., (c„, /•„); and the expansion of w' in the vicinity of (c^, k^.) is

the coefficients of the infinite terms being subject to the relation

because V(;w, z) is only of degree n-2 in w. The integral of iv' will have a logarithmic

infinity at each point, unless the corresponding coefficient vanish.

Not more than n - 2 of these coefficients can be made to vanish, imless they all vanish

;

and then the integral has no logarithmic infinity. Let n — 2 relations, say

V{k^, Cr)=0

for r= 2, 3, ..., ?2, be chosen ; and let the S+-k relations be satisfied which secure that the

integral is finite at the singularities of the curve /(w, «) = 0. Then the integral is an

elementary integral of the third kind, having (c'l, k^) and {c.^, k:^ for its points of

logarithmic discontinuity.

Ex. 3. Prove that there arejo+-l linearly independent elementary integrals of tlio

third kind, having the same logarithmic infinities on the surface.

* Clebsch und Gordan, (I.e., p. 3G1, note), pp. 28—33; Klein-Frickc, Vorhmnujcn iiher die

Theorie der clUjJtinchen ModidJ'unctionett, t. i, pp. 518—522; Riemann, p. 100.

20—
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Ex. 4. Shew thixt, in connection with the fundamental equation

ifi+ z'^= \

any integral of the first kind is a constant multiple nf

{dz

that an integral of the second kind, of the class considered in Ex. 2, § 207, is given by

and that an elementary integral of the third kind is given by

'\—w

I

P dz.

Ex. 5. An elementary (Jacobian) elliptic integral of the third kind occurs in Ex. 7,

p. 385 ; and a (Jacobian) elliptic integral of the second kind occurs in Ex. 8, p. 386.

Shew that an elementary (elliptic) integral of the second kind, associated with the

equation

and having its infinity at (Cj, yj), is

r 71 (^<^+ Yi)+(6V

-

\g^ (g - gj) ^^,

] {z-c^fio

and that an elementary (elliptic) integral of the third kind, associated with the same

equation and having its two infinities at (Cj, yj), (c^, y.^, is

1 {(^i±yi _ '^l±yi\ ^
-jV--Ci z-c^J w

A sufficient number of particular examples, and also of examples with

a limited generality, have been adduced to indicate some of the properties

of functions arising, in the first instance, as integrals of multiform functions

of a variable z (or as integrals of uniform functions of position on a

Niemann's surface). The succeeding investigation establishes, from the most

general point of view, the existence of such functions on a Riemann's

surface : they will no longer be regarded as defined by integrals of multi-

form functions.



CHAPTER XVII.

SCHWARZ'S PROOF OF THE ExISTENCE-ThEOREM.

212. The investigations in the preceding chapter were based on

the supposition that a fundamental equation was given, the appropriate

Riemann's surface being associated with it. The general expression of

uniform functions of position on the surface was constructed, and the

integrals of such functions were considered. These integrals in general

were multiform on the surface, the deviation from uniformity consisting

in the property that the difference between any two of the infinite number of

values could be expressed as a linear combination of integral multiples of

certain constants associated with the function. Infinities of the functions

defined by the integrals, and the classification of the functions according to

their infinities, were also considered.

But all these investigations were made either in connection with

very particular forms of the fundamental equation, or with a form of not

unlimited generality : and, for the latter case, assumptions were made,

justified by the analysis so far as it was carried, but not established generally.

In order to render the consideration of the propositions complete, it must

be made without any limitations upon the general form of fundamental

equation.

Moreover, the second question of § 192, viz., the existence of functions

(both uniform and multiform) of position on a surface given independently of

any algebraical equation, is as yet iniconsidered.

The two questions, in their generality, can be treated together. In the

former case, with the fundamental equation there is associated a Riemann's

surface, the branching of which is determined by that fundamental equation

;

in the latter case, the Riemann's surface with assigned branching is supposed
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given*. We shall take the surface as having one boundary and being other-

wise closed.; the connectivity is therefore an uneven integer, and it will be

denoted by 2^; + 1.

213. The problem can be limited initially, so as to prevent unnecessary

complications. All the functions to be discussed, whether they be algebraical

functions or integrals of algebraical functions, can be expressed in the form

u + iv, where u and v are two real functions of two independent real variables

X and y. It has already (§ 10) been proved that both u and v satisfy the

equation

dx^ dy- '

and that, if either m or -y be known, the other can be derived by a quadra-

ture at most, and is determinate save as to an additive arbitrary constant.

Since therefore lu is determined by u, save as to an additive constant, we

shall, in the first place, consider the properties of the real function u only.

The result is valid so long as v can be determined, that is, so long as the

function u has differential coefficients. It will appear, in the course of the

present chapter, that no conditions are attached to the derivatives of u along

the boundary of an area, so that the determination of v along such a boundary

seems open to question.

It has been (§ 36) proved, in a theorem due to Schwarz, that, if m; a

function of z be defined for a half-plane and if it have real finite continuous

values along any portion of the axis of x, it can be symmetrically continued

across that portion of the axis. The continuation is therefore possible for the

real part u of the function w ; and the values of u are the real finite continuous

values of w along that portion of the axis.

It will be seen, in Chapters XIX., XX. that, by changing the independent

variables, the axis of x can be changed into a circle or other analytical .line

(§ 221) ; so that a function u, defined for an interior and having real finite con-

tmuous values along any portion of the boundary, can be continued across that

portion of the boundary, which is therefore not the limit of existencef of u.

* The surface is supposed given ; we are not concerned with the quite distinct question as to

how far a Eiemann's surface is determinate by the assignment of its number of sheets, its

branch-points (and consequently of its connectivity), and of its branch-lines. This question is

discussed by Hurwitz, Math. Ann., t. xxxix, (1891), pp. 1—61. He shews that, if il denote the

ramification (§ 179) of the surface which, necessarily an even integer, is defined as the sum of

the orders of its branch-points, a two- sheeted sm-face is made uniquely determinate by assigned

branch-points ; the number of essentially distinct three-sheeted surfaces, made determinate by

assigned branch-points, is ^(3"~"^-l); and so on. It is easy to verify that the number of

distinct three-sheeted surfaces, with 4 assigned points as simple branch-points, is 4: an example

suggested to me by Mr Burnside.

t The continuation indicated will be carried out for the present case by means of the com-

bination of areas (§ 222), and without further reference to the transformation indicated or to

Schwarz's theorem on symmetrical continuation.
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The derivatives of u can then be obtained in the extended space and so v can

be determined for the boundary*.

And, what is more important, it will be found that, under conditions to be

assigned, the number of functions u that are determined is double the number

of functions w that are determined ; the complete set of functions u lead to all

the parts u and v of the functions w (§ 234, note).

214. The infinities of u at any point are given by the real parts of the

terms which indicate the infinities of w. Conversely, when the infinities of u

are assigned in functional form, those of lu can be deduced, the form of the

associated infinities of v first being constructed by quadratures.

The periods of w, being the moduli at the cross-cuts, lead to real constants

as differences of it at opposite edges of cross-cuts, or, if we choose, as constant

differences of values of u at points on definite curves, conveniently taken for

reference as lines of possible cross-cuts. Conversely, a real constant modulus

for u is the real part-|- of the corresponding modulus of w.

Hence a function, w, of position on a Riemann's surface is, except as to an

additive constant, determined by a real function u of x and y (where x + iy is

the independent variable for the surface), if u be subject to the conditions :

—

(i) it satisfies the equation V-«i = at all points on the surface where

its derivatives are not infinite :

(ii) if it be multiform, its values at any point on the surface differ by

linear combinations of integral multiples of real constants : otherwise, it is

uniform :

(iii) it may have specified infinities, of given form in the vicinity of

assigned points on the surface.

In addition to these general conditions imposed upon the function u, it is

convenient to admit as a further possible condition, for portions of the surface,

that the function u shall assume, along a closed curve, values which arc

always finite. But it must be understood that this condition is used only for

subsidiary purposes : it will be seen that it causes no limitation on the final

result, all that is essential in its limitations being merged in the three

dominant conditions.

The questions for discussion are therefore (i), the existence of functionsj

satisfying the above conditions in connection with a given Riemann's

* See Phragmeu, Acta Math., t. xiv, (1890), pp. 225—227, for some remarks upon this

question.

+ The imaginary parts of the moduli of lo are determinate with the imaginary part of w : see

remark at end of § 213, and the further reference there given.

X The functions u (and also v) are of great importance in mathematical physics for two-

dimensional phenomena in branches such as gravitational attraction, electricity, hydrodynamics

and heat. In all of them, the function represents a potential ; and, consequently, in the general

theory of functions, it is often called a potential function.
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surface, the connectivity of which is 2jj + 1 as dependent upon its branching

and the number of its sheets ; and (ii), assuming that the functions exist,

theii" determination by the assigned conditions.

215. There are many methods for the discussion of these questions. The

potential function, both for two and for three dimensions in space, first arose in

investigations coimected with mathematical physics : and, so far as concerns

such subjects, its theory was developed by Poisson, Green, Gauss, Stokes,

Thomson, Maxwell and others. Their investigations have reference to appli-

cations to mathematical physics, and they do not tend towards the solution of

the questions just propounded in relation to the general theory of functions.

Klein uses considerations drawn from mathematical and experimental

physics to establish the existence of potential functions under the assigned

conditions. The proof that will be adopted brings the stages of the investi-

gation into closer relations with the preceding and the succeeding parts oi the

subject than is possible if Klein's method be followed*.

To establish the existence of the functions under the assigned conditions,

Riemann-f- uses the so-called Dirichlet's Principle J ; but as Riemann's proof

of the principle is inadequate, his proof of the existence-theorem cannot be

considered complete.

There are two other principal, and independent, methods of importance,

each of which effectively establishes the existence of the functions, due to

Neumann and to Schwarz respectively ; each of them avowedly dispenses^

with the use of Dii'ichlet's Principle.

The courses of the methods have considerable similarity. Both begin

with the construction of the function for a circular area. Neumann uses

what is commonly called the method of the arithmetic mean, for gradual

approximation to the value of the potential function for a region bounded

by a convex curve : Schwarz uses the method of conformal representation,

to deduce from results previously obtained, the potential function for

regions bounded by analytical curves ; and both authors use certain

methods for combination of areas, for each of which the potential function

has been constructed ||.

* Klein's proof occurs in his tract, already quoted, Ueber Riemaun''s Theorie dcr algebraischcn

Functionen und ihrer Integrale, (Leipzig, Teubner, 1882), and it is modified in his memoir "Neue

Beitrage zur Eiemann'schen Functionentheorie," Math. Ann., t. xxi, (1883), pp. 141—218,

particularly pp. 160—162.

+ Ges. Werke, pp. 35—39, pp. 96—98.

X Eiemann enunciates it, (I.e.), pp. 34, 92.

§ Neumann, Vorlesungcn ilber Eicmann's Theorie dcr AbeVschen Integrale, (2nd ed., 1884),

p. 238; Schwarz, Ges. Werke, ii, p. 171.

II
Neumann's investigations are contained in various memoirs, Math. Ann., t. iii, (1871),

pp. 325—349; ib., t. xi, (1877), pp. 558—566; ib., t. xiii, (1878), pp. 255—300; ib., t. xvi,

(1880), pp. 409—431 ; and the methods are developed in detail and amplified in his treatise
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What follows in the present chapter is based upon Schwarz's investi-

gations : the next chapter is based upon the investigations of both Schwarz

and Neumann, and, of course, upon Riemann's memoirs.

The following summary of the general argument will serve to indicate the main line of

the proof of the establishment of potential functions satisfying assigned conditions.

I. A potential function u is uniquely determined by the conditions : that it, as

well as its derivatives ;s-, ;?-, ^^-;7, ^., (which satisfy the equation ^^u= 0). shall Ix;

ox oy ox^ Oy-

uniform, finite and continuous, for all points within the area of a circle ; and that, along

the circumference of the circle, the function shall assume assigned values that are always

finite, uniform and, except at a limited number of isolated points where there is a sudden

(finite) change of value, continuous. (§§ 216—220.)

II. By using the principle of conformal representation, areas bounded by curves other

than circles—say by analytical curves—are obtained, over which the i)otential function is

uniquely determined by general conditions within the area and assigned values along its

boundary. (§ 221.)

III. The method of combination of areas, dependent upon an alternating process,

leads to the result that a function exists for a given region, satisfying the general conditions

in that region and acquiring assigned finite values along the boundary, when the region

can be obtained by combinations of areas that can be conformally i-epresented upon the

area of a circle. (§ 222.)

IV. The theorem is still valid when the region (supposed simply connected) contiuns

a branch-point ; the winding-surface is transformed by a relation

into a single-sheeted surface, for which the theorem has already been established.

When the surface is multiply connected, we resolve it by cross-cuts into one that is

simply connected, before discussing the function. (§ 223.)

V. Real functions exist on a Riemann's surface, which are everywhere finite and

Vebcr das logarithmische und Newton'sche Potential (Leipzig, Teubner, 1877) and in his treatise

quoted in the preceding note. In this connection, as well as in relation to Schwarz's investi-

gations, and also in view of some independence of treatment, Harnack's treatise, Die Gruiidlugen

der Theorie dcs loQarlthmlschen Potentlales und dcr elndentUjen Potentlalfunctlon In der Ebene
(Leipzig, Teubner, 1887), and a memoir by Harnack, Math. Ann., t. xxxv, (1890), pp. 19—40,
may be consulted.

A modification of Neumann's proof, due to Klein, is given in the first volume (pp. 508—522)

of the treatise cited on p. 40S, note.

Schwarz's investigations are contained in various memoirs occurring in the second volume
of his Gesamniclte Werke, pp. 108—132, 133—143, 144—171, 175—210, 303—306 : their various

dates and places of publication are there stated. A simple and interesting general statement

of the gist of his results will be found in a critical notice of the two volumes of his collected

works, written by Henrici in Nature (Feb. 5, 12, 1891, pp. 321—323, 349—352). There is a
comprehensive memoir by Ascoli, based upon Schwarz's method, " Integration der Differential-

gleicbung V^ii^O in einer beliebigen Riemann'schen FlJiche," (Bill. t. kongl. Sveiiska Vet. Akad.
Handl., bd. xiii, 1887, Afd. 1, n. 2 ; 83 pp.) ; a thesis by Jules Riemanu, Sur le probleme de

Dirichlet, (Th6se, Gauthier-Villars, Paris, 1888), discusses a number of Schwarz's theorems

(see, however, Schwarz, Gca. Werke, t. ii, pp. 35G—358) ; and an independent memoir by Prym,
Crelle, t. Ixxiii, (1871), pp. 340—364, may be consulted.

The literature of this part of the subject is very wide in extent : many other references are

given by the authors already (luoted.
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uniquely determinate by arbitrarily assigned real moduli of periodicity at the ci'oss-cuts.

(§§ 224-227.)

VI. Functions exist, satisfying the conditions in (V) except that they may have at

isolated points on the surface, infinities of an assigned form. (§ 229.)

216. We shall, in the first place, treat of potential functioDs that have

no infinities, either algebraical or logarithmic, over some continuous area on

the surface limited by a simple closed boundary, or by a number of non-inter-

secting simple closed curves constituting the boundary ; for the present, the

area thus enclosed will be supposed to lie in one and the same sheet, so that

we may regard the area as lying in a simple plane.

At all points within the area and on its boundary, the function u is finite

and will be supposed uniform and continuous ; for all points within the area

(but not necessarily for points on the boundary), the derivatives

dit du dhi d'-u

dx' dy ' dx- ' dy-

are uniform, finite and continuous and they satisfy the equation V-u = 0.

These may be called the general conditions.

Two cases occur according as the character of the derivatives at points in

the area is or is not assigned for points on the boundary ; if the character be

assigned, there will then be what may be called boundary conditions. The

two cases therefore are :

(A) When a function u is required to satisfy the general conditions,

and its derivatives are required to satisfy the boundary conditions :

{B) When the only requirement is that the function shall satisfy the

general conditions.

Before proceeding to the establishment of what is the fundamental

proposition in Schwarz's method, it is convenient to prove three lemmas

and to deduce some inferences that will be useful.

Lemma I. If two functions Uj and u.. satisfy the general conditions for two

regions I\ and Tn respectively, which have a common portion T that is more than

a point or a line, and if Ui and u.2 be the same for the common portion T, then

they define a single function for tJie luJiole region composed of T^ and T.^.

This proposition can be made to depend upon the continuation of

analytical functions*, whether in a plane (§ 34) or, in view of a subsequent

transformation (§ 223), on a Riemann's surface.

The real function u^ defines a function u'l of the complex variable z, for any

point in the region T^ ; and for points within this region, the function Wj is

uniquely determined by means of its own value and the values of its deriva-

tives at any point within T^, obtained, if necessary, by a succession of elements

* For other proofs, see Schwarz, ii, pp. 201, 202 and references there given.



216.] FOR SCHWAKZ'S PROOF 411

in continuation. Hence the value of Wj and its derivatives at any point

within T defines a function existing over the whole of T^

.

Similarly the real function u^ defines a function w., within T.., and this

function is uniquely determined over the whole of T.^ by its value and the

value of its derivatives at any point within T.

Now the values of u-^ and «„ are the same at all points in T, and therefore

the values of Wi and ?t'.j are the same at all points in T, except possibly for an

additive (imaginary) constant, say ia, so that

Wi = Wo + ia.

Hence for all points in T, (supposed not to be a point, .so that we may have

derivatives in every direction (§ 8) : and not to be a line, so that we may
have derivatives in all directions from a point on the lino), the derivatives

of Wi agree with those of w., ; and therefore the quantities necessary to define

the continuation of Wj from T over 7\ agree with the quantities necessary to

define the continuation of W2 from T over T.,, except only that w^ and w.,

differ by an imaginary constant. Hence, having regard to the form of the

elements, w^ and Wo can be continued over the region composed of Ti and T.,,

and their values differ (possibly) by the imaginary constant. When we take

the real parts of the functions, we have i<i and u^, defining a single function

existing over the whole region occupied by the combination of 1\ and To.

The other two lemmas relate to integrals connected with potential

functions.

Lemma II. Let u be a function required to satisfy the general conditions,

and let its derivatives he required to satisfy the boundary conditions, for an

area 8 bounded by simple non-intersecting curves : then

'du

I
^ ds =
on

where the integral is extended round the wJiole boundary in the direction that is

positive with regard to the bounded area S ; and dn is an element of the normal

to a boundary-li)ie drawn toiuards the interior of the space enclosed by that

boundary-line regarded merely as a simple closed curve*.

Let P and Q be any two functions, which, as well as their first and second

derivatives with regard to x and to y, are uniform finite and continuous for

all points within 8 and on its boundary. Then, proceeding as in § IG and

taking account of the conditions to which P and Q are subject, we have

* The element dn of the normal is, by this delinition, measured inwards to, or outwards

from, the area S according as the particular boundary-line is described in the positive, or in the

negative, trigonometrical sense. Thus, if S be the space between two concentric circles, the

element dn at each circumference is drawn towards its centre ; the directions of integration are

as in § 2.
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7)- 7)-

where V- denotes .^^ + ^- , the double integrals extend over the area of S, and
da;- oy-

the single integral is taken round the whole boundary of S in the dii-ection

that is positive for the bounded area S.

Let ds be an element PT of arc of the boundary at a point {x, y), and dn be

an element TQ of the normal at T drawn to the

interior of the space included by the boundary-

line regarded as a simple closed curve ; and let i/r

be the inclination of the tangent at T. Then in

(i), as TQ is drawn to the interior of the area in- P p

eluded by the curve, the direction of integration ^-
'

being indicated by the arrow (so that S lies within the curve), we have

dx = ds cos y\r — dn sin -\/r, dy = ds sin yjr + dn cos -\jr

;

and therefore it follows that, for any function it!,

dR dR . , dR ,

^ - = — 7^ sin y + ;^— cos ylr.

dn ox oy

Now for variations along the boundary we have dn = 0, so that

dR , dR J dR -.

— i:r~dS = ^r— dU — ,^— dX.
dn dx ^ dy

And in (ii), as TQ is drawn to the interior of the area included by the curve,

the direction of integration being indicated by the arrow (so that >S lies

without the curve), we have

dx = (— ds) cos ylr + dn sin i/r, dy = (— ds) sin -v/r — dn cos T|r,

, , , dR dR . , dR ,

and therefore ^^ = w— sm ylr — ^— cos ylr,

dn dx oy

so that, as before, for variations along the boundary,

dR , dR , dR .— ^^ds=^^dy—^— dx.
dn dx dy

Hence, with the conventions as to the measurement of dii and ds, we have

both integrals being taken round the whole boundary of S in a direction that

is positive as regards S. Therefore

In the same way, we obtain the equation

and therefore j[{P'^"-Q - QV'P) dxdy = /"^^ |? - P ^^\ ds,
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where the double integral extends over the whole of *S', and the single

integral is taken round the whole boundary of S in the direction that is

positive for the bounded area S.

Now let w be a potential function defined as in the lemma ; then ?;

satisfies all the conditions imposed on P, as well as the condition V'-ii =

throughout the area and on the boundary. Lot Q = 1 ; so that V^Q = 0,

^ = 0. Each element of the left-hand side is zero, and there is no dis-
on

continuity in the values of P and Q ; the double integi-al therefore vanishes,

and we have

the result which was to be proved.

But if the derivatives of u are not required to satisfy the boundary

conditions, the foregoing equation may not be inferred ; we then have the

following proposition.

Lemma III. Let u he a function, wJiich is only required to satisfy the

general conditions for an area S ; and let u he any other function, which

is required to satisfy the general conditions for that area and may or nuiy

not he required to satisfy tJie houndary conditions. Let A he an area entirely

enclosed in 8 and such that no point of its whole houndary lies on any part of
the whole houndary of S ; then

l\

/(^^I-^'I3^'=^'

where the integral is taken round the whole houndary of A in a direction

which, is positive with I'egard to the hounded area A, and the element dn of
the normal to a houndary-line is drawn towards the interior of the space

enclosed hy that houndary-line, regarded merely as a simple closed curve.

The area A is one over which the functions u and u satisfy the general

conditions. The derivatives of these functions satisfy the boundary-conditions

for A, because they are uniform, finite and continuous for all points inside S,

and the boundary of A is limited to lie entirely within S. Hence

1

1

(uVhi' — ttV-u) dxdy = — jiu ^ u' ^ J
ds,

the integrals respectively referring to the area of A and its boundary in a

direction positive as regards A. But, for every point of the area, V-u = 0,W = ; and u and u' are finite. Hence the double integral vanishes, and
therefore

taken round the whole boundary of yl in the positive direction.
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One of the most effective modes of choosing a region A of the above

character is as follows. Let a simple curve Cj be drawn lying entirely within

the area S, so that it does not meet the boundary of S; and let another

simple curve Ca be drawn lying entirely within C^, so that it does not meet

C\ and that the space between Ci and C.2 lies in S. This space is an area of

the character of A, and it is such that for all internal points, as well as for

all points on the whole of its boundary (which is constituted by Ci and G^),

the conditions of the preceding lemma apply. The curve C, in the above

integration is described positively relative to the area which it includes : the

curve Ci is described, as in § 2, negatively relative to the area which it

includes. Hence, for such a space, the above equation is

du' , du\

on on)'^--/("^-'''3t')'^^ =
'''

if the integrals be now extended round the two curves in a direction that is

positive relative to the area enclosed by each, and if in each case the normal

element dn be drawn from the curve towards the interior.

217. We now proceed to prove that a function u, required to satisfy the

general conditions for an area included within a circle, is uniquely determined

by the series of values assigned to u along the circunference of the circle.

Let the circle S be of radius R and centre the origin. Take an internal

point Zq = re'^\ and its inverse V = r'e** (such that rr = R-) : so that Zq is

external to the circle. Then the curves determined by

z — z.

\Z — Zn
--X

for real values of X, are circles which do not meet one another. The boundary

of S is determined by X = 1, and X = gives the point Zq as a limiting circle :

and the whole area of S is obtained by making the real parameter \
change continuously from to 1.

Lemma III. may be applied. We choose, as the ring-space, the area

included between the two circles determined by \ and Xo, where

1 > \i > Xo > ;

and then we have

/ du' ,du\ , [f du' , du\ ,

V'dn-''dn)'^'^ = ]K'du-''dn)'^'-^'

where the integrals are taken round the two circumferences in the trigono-

metrically positive direction {dn being in each case a normal element drawn

towards the centre of its own circle), and the function u satisfies the general

and the boundary conditions for the ring-area considered. Moreover, the

area between the circles, determined by \ and Xo, is one for which u satisfies
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the general conditions, and its derivatives certainly satisfy the boundary

conditions : hence

h^ c?5i = 0, h— ds.. =: 0.
J on J dn

Now the function u' is at our disposal, subject to the general conditions

for the area between the two X-circles and the boundary conditions for each

of those circles. All these conditions are satisfied by taking u' as the real

part of log ( ^j , that is, in the present case,

u' = log
2: — 2.

Z—Zn

For all points on the outer circle u' is equal to the constant log
( p ^i )

' so

that

and similarly for all points on the inner circle u' is equal to the constant

log
( p ^-2 ) , so that

I u TT- ds., — 0.

J on

Again, for a point z on the outer circle, whose angular coordinate is yjr,

du'
the value of ^^r- for an inward drawn normal is (S 11)

dn "^ ^

(R' - rWy
.

\R (R" - f') [B? - 1Rr\ cos (-«/r - </>) + r-V}

'

and because the radius of that outer circle is \R(R- — r^)/(R^— r^-X^-), we
have

Denoting by/(A.i, -v/r) the vahie of « at this point yfr on the circle determined

by Xj, we have

rdn^'^--], f^^- -^^R

-

2RrX, cos iir
-^)^^^^^^'

Similarly for the inner circle, the normal element again being drawn towards

its centre, we have

rd^^''^ = -j, f^^- >^>R^mr^.cos(^-^ + .^ ^^^-

Combining these results, we have

/,«
-^^^^^

'

^^ W^^MrKcosi^'i ct>) + r^X^^
^^

-
/^

A^., t) jR^^2Rr%;c^-<b)+^X.^ ^^
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In the analysis which has established this equation, Xj and X. can have all

values between 1 and : the limiting value is excluded because then ^^

is not finite, and the limiting value 1 is excluded because no supposition has

been made as to the character of the derivatives of v at the circumference

of^.

The equation which has been obtained involves only the values of w

but not the values of its derivatives. Since the values of u are finite both

for \ = and A. = 1, and the integrals are finite, the exclusion of the limiting

values of X need not be applied to the equation, although the exclusion Avas

necessary during the proof, owing to the presence of quantities that have

since disappeared. Hence the equation is valid when we take Xi = 1, X> = 0.

When X.2 = 0, the corresponding circle collapses to the point Zo ' the value

of /(Xo, yjr) is then the value of u at Zq say w(r, <^); and the integral

connected with the second circle is iirii (r,
<f)).

When Xj = 1, the corresponding circle is the circle of radius R: the value

of /"(Xi, -v/r) is then the assigned value of u at the point yjr on the circum-

ference, say the function f{^). Substituting these values, we have

" ^^
'
^> =^r ^^'^^^ ii!^-2Ercos"(^-<^) + r^

'^^'

the integral being taken positively round the circumference of the circle S.

It therefore appears that the function u, subjected to the general

conditions for the area of the cu'cle, is uniquely determined by the values

assigned to it along the circumference of the circle.

The general conditions for u imply certain restrictions on the boundary

values. These values must be finite, continuous and uniform : and therefore

/(yjr), as a function of -v/r, must be finite, continuous, uniform and periodic in

-v/r of period 2??.

218. It is easy to verify that, when the boundary values fi"^) are not

otherwise restricted, all the conditions attaching to u are satisfied by the

function which the integral represents.

Since the real part of (Re'''^ + z)l{Re'^' - z) is the fraction

{R' - r-)l[R- - 2Rr cos {f - (f>) + r-],

it follows that u is the real part of the function F (z), defined by the equation

1 [Re'^^ + z

^(^^^li^.fWd^-
For all values of ^^ such that

l^'j
< R, the fraction can be expanded in a series

of positive integral powers of z, which converges unconditionally and uni-

formly ; and therefore F(z) is a uniform, continuous, analytical function,
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everywhere finite for such values of z. Hence all its derivatives are uniform,

continuous, analytical functions, finite for those values of z ; and these

properties are possessed by the real and the imaginary parts of such

derivatives. Now _ „_ ^ is the real part of i^—t^ztz^— \ and therefore,

for all integers m and n positive or zero, it is a uniform, finite and continuous

function for points such that \z\<R, that is, for points within the circle.

Moreover, since u is the real part of a function of z, and has its differential

coefficients uniform, finite and continuous, it satisfies the differential equation

Vhi = 0.

To infer the continuity of approach of u{v, cf)) to /(^) as 7^ is made equal

to R, we change the integral expression for tt (r, (j)) into

Srj_, R' - 2Rr COS e +^ ^^^ + 't'^'^^-

Moreover for all values of r < Z^ (but not for r = R), wc have

1 f2n-^ m-r- ,. 1
d6 = tan~^ -l-p ^ tan ^6

277 J -^ R-- 2Rr cos -f
?•'-'

tt

and therefore

I=u{r,<l>)-f{cj,)

1 r^"-* r ... . .. .. ,x. R'

~2lT

2tt-iJ}

= 1;

17 l^<' + *' - ^<«f Ji'-2i"eo"s^..-
^'-

Let denote the subject of integration in the last integral. Then, as r

is made to approach indefinitely near to R in value, B becomes infinitesimal

for all values of except those which are extremely small, say for values of 6

between — 8 and + S. Dividing the integral into the corresponding parts,

we have
1

/*"*
1 r^'^-* 1 fs

1 = ^ edd+— me + ~\ me.
Zir J _^ 27r Js 27r j _ 5

Let M be the greatest value of f(y{r) for points along the circle. Then the

first integral and the second integral are less than

i:^ 2M __^^!rJ'^ ^nd ^'^-^-'f'2M -R'-^^

27r (R-ry+2Rr(l-cosS) '''''' '
27r "

^''^ iR-ry+2Rr {1-cosB)

respectively ; by taking r indefinitely near to R in value, these quantities

can be made as small as we please. For the third integral, let k be the

greatest value of/(0 + ^) -/(0) for values of 6 betw^een 8 and — 8 : then the

third integral is less than

27r j _5 R' - 2Rr cos 6 + r- '

that is, it is less than — tan-^ U r>37 ^J
; -^o that, when r is made nearly

equal to R, the third integral is less than k.

F. 27
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If then k be infinitesimal, as is the case when f(<p) is everywhere finite

and continuous, the quantity /can be diminished indefinitely; hence «(?•, ^)

continuously changes into the function /X<^) as r is made equal to R. The

verification that the function, defined by the integral, does satisfy the general

conditions for the area of the circle and assumes the assigned values along

the circumference is thus complete.

Ex. Shew that, if J/" denote the maximum value (supposed positive) of/(\//') for points

along the circumference of the circle and if u (0) denote the value of the function at tlie

centre, then
4 r

I

u (r,
(f))

- ?/ (0) 1
< - ITsin-i „ ;

also that, if u (0) vanish, then
4 r

% (r, 4>)<- J/tan~^ —

.

(Schwarz.)

219. But in view of subsequent investigations, it is important to consider

the function represented by the integral when the periodic function- /(<^)

which occurs therein is not continuous, though still finite, for all points on

the circumference. The contemplated modification in the continuity is that

which is caused by a sudden change in value of /(</>) as (p passes through a

value a : we shall have

when e is ultimately zero. Then the following proposition holds

:

Let a function f{(fi) be periodic in Stt, finite everywhere along the circle,

and continuous save at an assigned point a luhere it undergoes a sudden increase

in value: a function u can he obtained, luhich satisfies the general conditions

for the circle except at such a point of discontinuity in the value off {(f)),
and

acquires the values of f{cf)) along the circumference.

Let p be a quantity < R : then along the circumference of a circle of radius

p, the general conditions are everywhere satisfied for the function u, so that, if

w (p, -\|r) be the value at any point of its circumference, the value of w at any

internal point is given by

1 /"2'' p2 - r-
u (r, (f)) = K— u (p, -dr) ^r

— r- dyjr.
^ ' ^^ 27rJo ^^ ^ p' - 2pr cos (yjr -

(f))
+ r- ^

Now p can be gradually increased towards R, because the general conditions

are satisfied ; but, when p is actually equal to R, the continuity of

u{p, yfr) is affected at the point a. We therefore divide the integral into

three parts, viz., to a — e, a — e to a + e, and a + e to 27r, when p is very

nearly equal to R. For the first and the third of these parts, p can, as in the

preceding investigation, be changed continuously into R without affecting

the value of the integral. If wo denote by p the integral

LJo ^''(^'^)i2^-2iircos~(^-<^) + r^^^'

where the range of integration does not include the part from a — e to a + e,
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and where the vakies/(a - e),/(a + e) arc assigned to u (R, a - e), w' {R, a + e),

respectively ; the sum of the integrals fur the first and the third intervals is

p + A, where A is a quantity that vanishes with R — p, because the subject of

integration is everywhere finite. For the second interval, the integral is

equal to q + A', where

'^ = Trr
/"/^^^ R^ -2Rr cos (ir-<l>) + r"-

^^'

and A' is a quantity vanishing with R — p because the subject of integration

is everywhere finite. So far as concerns q, let J/ be the greatest value of

l/Wh then

a quantity which, because M is finite (but only if ilf be finite), can be made

infinitesimal with e, provided r is never actually equal to R. If then, an

infinitesimal arc from a — e to a + e be drawn so as, except at its assigned

extremities, to lie within the area of the circle, the last proviso is satisfied

:

and the effect is practically to exclude the point a from the region of

variation of w as a point for which the function is not precisely defined.

With this convention, we therefore have

1 r^'^ R^ — r^
U (r, <b)-^ U (R, ^lr) ^^ -J.

—
,. , ,

d^^r=^ + ^' + q,
^ ^^ 27r j ^ ^ ^ R-- 2Rr cos (\jr -

(f>)
+ r- ^ ^

so that, by making p ultimately equal to R and e as small as we please, the

difference between u (r, 0) and the integral defined as above can be made zero.

Hence the integral is, as be/ore, equal to the function u (r, <^), provided that

the point a be excluded from the range of integration, the value /(a— e) just

before -^=0. and the value /(a+e) just after \\r= a being assigned to u'{R, yjr).

It therefore appears that discontinuities may occur in the boundary

values when the change is a finite change at a point, provided that all

the values assigned to the boundary function be finite.

Corollary. The boundary value may have any limited number of points

of discontinuity, provided tliat no value of the function be infinite and that at

all points other than those of discontinuity the periodic function be uniform,

finite and continuous : and the integral luill then represent a potential function

satisfying the general conditions.

The above analysis indicates why discontinuities, in the form of infinite

values at the boundary, must be excluded : for, in the vicinity of such a

point, the quantity M can have an infinite value and the corresponding

integral does not then necessarily vanish. Hence, for example, the real

part of \

is not a function that, under the assigned conditions, can be made a boundary

value for the function u.

27—2
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It is easy to construct a function with permissible discontinuities. TVe know (i; 3)

that the argument of a point experiences a sudden change by

ir when tlie path of the point passes through the origin. Let

a point P on a circle be considered relative to A : the inclina-

tion of AP to the normal, drawn inwards at J, is ^ - j(a — <^),

and of A Q to the same line is - ^ — h{a —
(f)') , so that there

is a sudden change by n in that inclination. Now, taking a fvuiction

g{ct>)=-^ tan-i [tan {| - i (a - <f>)} ,

and limiting the angle, defined by the inverse function, so that it lies between — hn
and +^77, as may be done in the above case and as is justifiable with an argument

determined invei'sely by its tangent, the function
ff (0) undergoes a sudden change A as cf>

increiises through the value a. Moreover, all the values of g (0) are finite : hence g ((/>) is

a function which can be made a boundary value for the function ?:. Let the function

thence determined be denoted by ?« .

By means of the functions it^, we can express the value of a function u whose boundary

value /(0) has a limited number of permissible discontinuities. Let the increases in value

he A^, ... , A,„ at the points a^, a.,, ... , a,„ respectively: then, if (/„(0) denote

-^'tan-i tan||-^(a„-(^)|
,

we have 5'„(a,i+e)-g'„(a,i-e) = J,„ when e is infinitesimal. Hence

has no discontinuity at a,j, that is, /{({>)— g,i {(f))
has no discontinuity at «„.

m
Hence also f(0)— 2 gn{<i>) bas no discontinuity at a^,..., Oyni '<^^^ therefore it is

n = l

maiform, finite, and continuous everywhere along the circle; and it is periodic in Stt.

By § 218, it determines a function t^ which satisfies the general conditions.

Each of the functions ^„ ((^) determines a function «„ satisfying the general conditions

:

hence, as u is determined by/(0), we have

n = l

which gives an expression for u in terms of the simpler functions ?/„ and of a function U
determined by simpler conditions as in § 218.

Ex. Shew that, if /(>//) = 1 from -^tt to +h7r and =0 from +577 to Stt, then u is the

real part of the function

1, 1 + iz
-r- log -. .

ITT ^ t+ Z

The general inference from the investigation therefore is, that a function

of two real variables x and y is uniquely determined for all points within a

circle by the following conditions :

(i) at all points within the circle, the function u and its derivatives

du du d-it d-u ^ 1 -p j2 -^ 1 ^- 1

-=c- , ;^ , ^^r-„5 ^=r-„ must be umlorm, hnite and continuous, and
ox oy OX' oy-

must satisfy the equation V-«t = :

(ii) if / ((^) denote a function, which is periodic in ^ of period 27r, is

finite everywhere as the point <p moves along the circumference,
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is continuous and uniform at all except a limited number of

isolated points on the circle, and at those excepted points

undergoes a sudden prescribed (finite) change of value, then

to ti is assigned the value /(<^) at all points on the circumference

except at the limited number of points of discontinuity of that

boundary function.

And an analytical expression has been obtained, the function represented by

which has been verified to satisfy the above conditions.

220. We now proceed to obtain some important results relating to a

function u, defined by the preceding conditions.

I. The value of u at the centre of the circle in the arithmetic mean of its

values along the circiiniference.

For, by taking 7' = 0, we have

the right-hand side being the arithmetic mean along the circumference.

II. If the function be a uniform constant along the circumference, it is

equal to that constant everywhere in the interior.

For, let G denote the uniform constant ; then

^*^^''^> =
2^Jo R^-2Rrco,{ir-<l>) + r^'^'^

= G
for all values of r less than M, that is, everywhere in the interior.

But if the function, though not varying continuously along the circum-

ference, should have different constant values in different finite parts, as, for

instance, in the example in § 219, then the inference can no longer be drawn.

III. If the function be uniform, finite and continuous everywhere in the

plane, it is a constant.

Since the function is everywhere uniform, finite and continuous, the

radius R of the circle of definition can be made infinitely largo : then, as

the limit of the fraction (/i- — r-')/{i^- — 2i2r cos (-v/r — (^) + r'-} is unity, we
have

1 r^'^

W(r, <^)=^l ?t(cc, i|r)f?A/r,

the integral being taken round a circle of infinite radius whose centre is the

origin. But, by (I) above, the right-hand integral is u (0), the value at the

centre of the circle ; so that

u (r,
(f))
= u (0),

and therefore u has the same value everywhere.

This is practically a verification of the proposition in § 40, that a uniform,

finite and continuous function 2U, which has no infinity anywhere, is a constant.



422 GENERAL PROPERTIES [220.

IV. A uniform, finite and continuous function u cannot have a maximum
value or a minimum value at any point in the interior of a region over which,

subject to the general conditions as to the differential coefficients, it satisfies the

diff'erential equation V-u = 0.

If there be any such point not on the boundary, it can be surrounded by

an infinitesimal circle for the interior of which, as well as for the circum-

ference of which, a satisfies both the general and the boundary conditions ; hence

?— cZs = 0,
on

the integral being taken round the circumference. But in the immediate

vicinity of such a point, ^ has everywhere the same sign, so that the

integral cannot vanish : hence there is no such point in the interior.

In the same way, it may be proved that there cannot be a line of

maximum value or a line of minimum value within the surface : and that

there cannot be an area of maximum value or an area of minimum value

within the surface.

V. It therefore follows that the maximum values for any region are to be

found on its boundary : and so also are the minimum values.

If M be the maximum value, and if m be the minimum value of the

function for points along the boundary, then the value of the function for an

interior point is < M and is > m and can therefore be represented in the form

Mp + m (1 — p), where p is a real positive proper fraction, varying from point

to point.

In particular, let a function have the value zero for a part of the

boundary and have the value unity for the rest : the value that it has for

points along a line in the interior is always positive and has an upper limit

q, a proper fraction. But q will vary from one line to another. If the region

be a circle and q be the proper fraction for a line in the circle, then the value

along that line of a function u, which is still zero over the former part of the

boundary but has a varying positive value < fx along the remainder, is

evidently ^ qjx. This fraction q may be called the fractional factor for the

line in the supposed distribution of boundary values.

VI. It may be noted that the second of these propositions can now
be deduced for any simply connected surface. For when a function is

constant along the boundary, its maximum value and its minimum value

are the same, say \: then its value at any point in the interior is

\p-\-\{l—p), that is, \, the same as at the boundary. Consequently if

two functions u^ and u^ satisfy the general conditions over any region, and

if they have the same value at all points along the boundary, then they

are the same for all points of the region. For their difference satisfies
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the general conditions : it is zero everywhere along the boundary : hence

it is zero over the whole of the bounded region.

If, then, a function u satisfy tJce general conditions for any region, it is

unique for assigned boundary values that are everyiuliere finite, uniform, and

continuous except at isolated points.

221. The explicit expression of u with boundary values, that are

arbitrary within the assigned limits, has been determined for the area

enclosed by a circle: the determination being partially dependent upon the

form assumed in § 217 for the subsidiary function u. The assumption of

other forms for u', leading to other curves dependent upon a parametric

constant, would lead by a similar process to the determination of u for the

area limited by such families of curves.

But without entering into the details of such alternative forms for u\ we

can determine the value of u, under corresponding conditions, for curves

derivable from the circle by the principle of conformal representation*.

Suppose that, by means of a relation

Z = ^{^) = ^{^ + i7j),

or, say x + iy = p (|, rj) + iq (^, rj),

where p and q are real functions of ^ and 77, the area contained within the

circle is transformed, point by point, into the area contained within another

curve which is the transformation of the circle : then the function ?( (x, y)

becomes, after substitution for x and y in terms of ^ and 77, a function, say U,

of f and 77.

Owing to the character of the geometrical transformation, p and q (and

their derivatives with regard to | and 77) are uniform, finite and continuous

within corresponding areas. Hence

U{^,ri) = u{x,y);

dU _dudp dudq dU _dudp dudq

d^ dx d^ dy 9| ' drj dx drj dydrj^

d'U d'U /d'u d''u\ (/dpV fdirr

so that the function U satisfies the general conditions for the new area

bounded by the new curve.

Moreover, u has assigned values along the circular boundary which is

transformed, point by point, into the new boundary ; hence U has those

assigned values at the corresponding points along the new boundary. Thus

the iunction U is uniquely determined for the new area by conditions which

are exactly similar to those that determine 11 for a circle : and therefore the

* The general idea of the principle, and some illustrations of it, as expounded in

Chapters XIX and XX, will be assumed known in the argument which follows : see especially

§§ 265, 266.
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potential function is uniquely determined for any area, which can he con-

formally represented on the area of a cii'cle, by the general conditions of

§ 216 "and the assignment of values that are finite and, except at a limited

number of isolated points where they may suffer sudden (finite) changes of

value, uniform and continuous at all points along the boundary of the area.

One or two examples of very special cases are given, merely by way of

illustration. The general theory of the transformation of a circle or an

infinite straight line into an analytical curve will be considered in Chapter

XX. But, meanwhile, it is sufficient to indicate that, by the principle of

conformal representation, we can pass from the circle to more general curves

as the boundary of an area within which tlie potential function is defined by

conditions similar to those for a circle : in particular that, by assuming the

result of §§ 265, 266, we can pass from the circle to an analytical curve as the

boundary of such an area.-

Ex. 1. A function u satisfying the general conditions for a circle of radius unity and

centre the origin, and having assigned values /(>|r) along the circumference, is determined at

any internal point by the equation

u (?•

^)=^/r^^^^r^2rcot(,^-0)+,^^^-

Now the circle and its interior are transformed by the equation

, 2

into a parabola and the excluded area (Ex. 7, § 257) : so that, if R, 6 be polar coordinates

of any point in that excluded area, we have

r con (^ = 'iR~' con \ 6 - 1, rsin^= -2i?'"^sin jd

Corresponding to the circle r=l, we have the parabola

Rco&^^6= \ ;

if e determine the point on the parabola, which corresponds to \//- on the circle, we have

cos\|/'= 2cos'-^|e- 1,

or ^= Q.

Hence the function U{R, 6) assumes the values /(9) along the boundary of the

parabola.

Also l-r2 = ^(i25cos^^-l),

4 1

1 - 2/- cos {^\r - 0) + r2=— [/i cos2 |e - 2/i^ cos |e cos |(e + ^) + 1]

;

and therefore we have the following result

:

A function which satisfies the general conditions for the area hounded by and lying on the

convex side of the parabola Rcos'^\Q = \ and is required to assume the vahic /(6) at points

along the parabola., is defined uniquely for a point {r, 6) external to the parabola by the

integral

de.
2r- cosiecos |(e + (9) +?-cos2 ^e

The function /(©) may suffer finite discontinuities in value at isolated points: elsewhere

it must be finite, continuous and uniform.
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Ex. 2. Obtain an expression for w at points within the area of the same parabola, by

using

2= tan2(j7rC^)

as the ecj[uation of transformation of areas (§ 257).

Ex. 3. When the equation

i+C

is used, then, if z—-x+ ii/ and (=X+iY, we have

If the point f describe the whole length of the axis of X from — qo to + oo , so that we

may take f=A'=tan^ with (j) increasing from -jtt to +W, we have j:=cos20,

y= sin2^; and z describes the whole circumference of a circle, centre the origin and

radius unity, in a trigonometrically positive direction beginning at the point (
- 1, 0). We

easily find

r cos 6 r sin d r'- 1

\-m 2Rcose l-2Riime+R'^ l +2Rsme+ Ii?'

where |=^cose, ;; = ^sine. Moreover, for variations along the circumference, we

have ^lr= 2(|)^, whence, substituting and denoting by F{x), =f{2tan~^ x), the value of

the potential at a point ou the axis of real quantities whose abscissa is x, we ultimately

find

, „ , 1 /"'" i2 sin e 7-r / N 7

^^^^' ^)=. j_« ^-2^i?cose+^^^"^^-

as the value of the potential-function u at a point {R, 0) in the upper half of the plane,

when it has assigned values F {x) at points along the axis of real variables.

222. The function u has now been determined, by means of the general

conditions within an area and the assigned boundary values, for each space

obtained by the method indicated in § 221. But the determination is

unique and distinct for each space thus derived ; and, if two such spaces

have a common part, there are distinct functions u. We now proceed to

shew that when two spaces, for each of which alone a function u can be

determined, have a common part which is not merely a point or a line,

then the function u is uniquely determined for the combined area hy the

assif/nment of finite, uniform and continuous values (or partially discontinuous

values, as in § 219) along the boundary of the combined area.

Let the spaces be T^ and T., having a

common part T, so that the whole space

can be taken in the form Ti-\-Tc, — T. Let

the part of the boundary of T^ without T..

be Lq, and the part within T., be X.,: and

similarly, for the boundary of T.^, let Zj de-

note the part within Tj and L^ the part

without it. Then the boundary of

T. + n-r '"'™-

is made up of Xo and L^ : the boundary of T is made up of Xj and Z...
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With an assignment of zero value along Lq and unit value along X,,

let the fractional factor (§ 220, V), for the line L^ in the region Tj be q^ ;

and with an assignment of zero value along L^ and unit value along Xj, let

the fractional factor along the line Zo in the region T. be q.,. Then q^ and q.2

are positive proper fractions.

Let any series of values be assigned along Zo and L^ subject to the

conditions of being uniform, finite everywhere, and discontinuous, if at all,

only at a limited number of isolated points ; these values are the boundary

values of the function u to be determined for the whole area, and will be

called the assigned values. Let the maximum of the values be M and the

minimum be m ; and denote M — m by /n, so that fi is jDositive.

Assume, for a boundary value along L.^, the minimum m of the assigned

values for the function along Zo and Z3. Let the function, which is uniquely

determined for the region T^ by the general conditions for the area and by

values along the boundary, constituted by the assigned values along Lq and

the assumed value m along L,, be denoted by Ui. The values assumed by u^

along the line Zj in this region are uniform, finite and continuous ; and they

may be denoted by m +2)fi, where p is &, positive proper fraction varying from

point to point along the line.

Let the function, which is uniquely determined for the region Tg by the

general conditions for the area and by values along the boundary, constituted

by the assigned values along Z3 and by the values of tii along Zj, be denoted

by U.2. Then the uniform, finite, continuous values which it assumes along

Z2 are of the form m + q/jc, where 5* is a positive proper fraction varying from

point to point along the line ; let the greatest of these values be m + Qfi,

where Q lies between and 1.

For the region T^ determine a function* ii^ by means of boundary values,

consisting of the assigned values along Z^ and the values of u.,, viz., m + Qfi,

along Z,. Then the function u^ — u^ satisfies the general conditions ; its

value along the part Zq of the boundary is zero, and its value along the

other part Zo of the boundary is < Qfi and is greater than zero. Hence 113— u^

is always positive within T^, and along L^ we have Us — ii^^qiQfi.

For the region T._, determine a function u^ by means of boundary values,

consisting of the assigned values along Z3 and the values of U3 along Zj.

Then the function u^ — Uo satisfies the general conditions ; its value is zero

along Li ; and its value along Z^ is that of u^ — u^ , that is, a positive quantity

which is not greater than qiQfi. Hence u^— lu is always positive within T.^,

and along Zo we have Ui — lu < q^qiQ/jL.

* All the siicceeding functions will be determined subject to the general conditions for

the respective areas ; the specific mention of the general conditions will be omitted.
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For the region T, determine a function n^ by means of boundary values,

consisting of the assigned values along Xo and the values of 1/4 along L.,.

Then the function u^ — u^ satisfies the general conditions ; its value is zero

along Zo; and its value along L^ is that oiui — u.,, that is, a positive ([uantity

which is not greater than qz/iQ/jb. Hence Wg — U3 is always positive within 2\

,

and along Ly we have u^ — 113 < q^qi'Qi^-

Proceeding in this manner for the regions alternately, we obtain functions

Man+i for the region T^, such that u.n+i has the assigned values along L^ and

the values of u.,n along Z^; and functions a.n for the region T„, such that u.,,^

has the assigned values along L3 and the values of ^^ii-i along L^. And the

functions are such that

W2n+i — Um-i > in Ty and ^ qi^q-2^~^ Q/u, along L^ ;
and

M271+2 — Mjw > in T., and ^ qi%^ Qfi along L.,.

Hence, both for functions with an uneven suffix and for functions with an

even suffix, there are limits to which the functions approach along L^ and L.

respectively ; let these limits be u' and 11".

Both of these limits are finite ; for along L^ , we have

11 = Uj + {1I3 — ih) + (us — Us) + ... ad inf

< m + qiQfJ. + qi'q-Q/J' + qiqHM + • •

^ m + --^

—

'—

,

1 - qiq2

so that this expression, which is finite, is an upper limit and m is a lower

limit for u. And, along L.,, we have

u" — u., + {Ui — u.,) + («g — i(^ + . . . ad inf.

^ m + Q/Lt + q^q^Qti + qi'qr Qh'-V •••

1 - qiq2

so that this expression, which is finite, is an upper limit and m is a lower

limit for u". Hence both u' and u" are finite.

Now in determining a' for T^ and regarding it as the limit of u-m+\> we

have its values along L., as the values of u.,n, that is, of u" in the limit ; and

in determining u" for T^ and regarding it as the limit of Waji+s, we have its

values along Zj as the values of u.<n+\, that is, of u in the limit. Hence over

the whole boundary of T, the region common to T^ and T., we have u' = u"
\

and therefore (by § 220, VI) we have it — u" over the whole area of the

common region T.

Lastly, let a function u be determined for the region T^, having the

assigned values along L^ and the values of u along L.,. Then the function

li — li' satisfies the general conditions ; it has zero values round the whole
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boundary of T^, and therefore (by § 220, VI) it is zero over the whole region

T^. Hence u' is the function for T^.

Similarly, determining a function a for T.,, having the assigned values

along Xj and the values of u" along Zj, we have u= u" everywhere in T.., so

that u" is the function for Ti.

The functions u' and u" satisfy the general conditions for I\ and T..

respectively; and these tw^o regions have a common portion T over which

u' and u" have been proved to be the same. Hence, by Lemma I. of § 216,

they determine one and the same function for the whole region combined of

Tj and To ; this function u satisfies the general conditions and, along the

boundary of the whole region, assumes values that are assigned arbitrarily

subject only to the general limitations of being everywhere finite and,

except for finite discontinuities at isolated points, uniform and continuous.

The proposition is therefore established.

This method of combination, dependent upon the alternating process

whereby a function determined separately for two given regions having a

common part is determined for the combination of the regions, is capable of

repeated application. Hence it follows that a function exists, subject to tlte

general conditions loithin a given region and acquiring assigned finite values

along the boundary of the region, when the region can be obtained by

combinations of areas that can be conformally represented upon the area of a

circle.

Note. Let A, B, C he three non-intersecting simple closed curves, such

that G lies within B and B within A. The area bounded by the curves A and

C can, by a similar method, be combined with the whole area enclosed by B
;

and we can make the same inference as above, as to the existence of a function

u for the whole area enclosed by A, when it exists for the areas that are

combined.

223. At the beo^inning" of the discussion it was assumed that the areas,

in which the existence of the function is to be proved, lie in a single sheet

(§ 216) or, in other words, that no branch-point occurs within the area.

It is now necessary to take the alternative possibility into consideration

:

a simple example will shew that the theorem just proved is valid for an area

containing a branch-point except in one unessential particular.

Let the area be a winding surface consisting of ni sheets : the region in

each sheet will be taken circular in form, and the centre c of the circles will

be the winding-point, of order m — 1. Such a surface is simply connected

(§ 178) ; and its boundary consists of the m successive circumferences which,

owing to the connection, form a single simple closed curve. Using the

substitution

z-c = RZ'\
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we have a new Z-surface which consists of a circle, centre the Z-ovig'in and

radius unity : it lies in one sheet in the Z-region and has no branch-points

;

its circumference is described once for a single description of the complete

boundary of the winding-surface. The correspondence between the two

regions is point-to-point: and therefore the assigned values along the bound-

ary of the winding-surface lead to assigned values along the ^-circumference.

Any function tu of z changes into a function W of Z: hence u changes

into a real function U satisfying the general conditions in the ^-region
;

and conversely.

But a function U, satisfying the general conditions over the area of a

plane circle and acquiring assigned finite values along the circumference, is

uniquely determinate ; and hence the function u. is uniquely determined on

the circular winding-surface by satisfying the general conditions over the area

and by assuming assigned values along its boundary.

It is thus obvious that the midtiplicity of sheets, connected through

branch-lines terminated at branch-points and (where necessary) on the single

boundary of the surface consisting of the sheets, does not affect the validity

of the result obtained earlier for the simpler one-sheeted area ; and therefore

the function ti, acquiring assigned values along the boundary of the simply

connected surface and satisfying the general conditions throughout the area

of the surface tuliich may consist of more than a single sheet is uniquely deter-

minate.

There is, as already remarked, one unessential particular in which

deviation from the theorem occurs when the region contains a branch-point.

At a branch-point a function may be finite*, but all its derivatives are not

necessarily finite ; and therefore at such a point a possible exception to the

general conditions arises as to the finiteness of value of the derivatives

and the consequent satisfying of the equation V-(< = : no exception, of

course, arises as regards the uniformity of the derivatives on the Riemann's

surface. The exception does not necessarily occur ; but, when it does occur,

it is only at isolated points, and its nature does not interfere with the validity

of the proposition. We shall therefore assume that, in speaking of the

general conditions through the area, the exception (if necessary) from the

general conditions, of finiteness of value of the derivatives at a branch-point, is

tacitly implied.

Hence we infer, by taking combinations of circles in a manner some-

what similar to the process adopted for successive circles of convergence

in the continuation of a function in | 34, that a function u exists, subject to the

general conditions ivithin any simply connected surface and acquiring assigned

finite values along the boundary of the surface.

* Infinities of the function itself at a branch-point will fall under the general head of infinities

of the function, dis-cussed afterwards (in § 229).
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224. The functions which have been discussed so far in the present

connection are functions which have no infinities and, except possibly at

points on the boundaries of the regions considered, no discontinuities : they

are uniform functions. And the regions have, hitherto, been supposed simply

connected parts of a Riemann's surface, or simply connected surfaces. When

the surface is multiply connected, we resolve it by a canonical system

(§ 181) of cross-cuts and proceed as follows.

We now proceed to introduce the cross-cut constants, and so to consider

the existence of functions which have the multiform character of the integrals

of uniform functions of position on the Riemann's surface. The functions

will still be considered to be uniform, finite and continuous except at the

cross-cuts : their derivatives will be supposed uniform, finite, and continuous

everywhere in the region, and subject to the equation V-w ^ : and boundary

values will be assigned of the same character as in the previous cases. As

moduli of periodicity are to be introduced, the unresolved surface is no longer

one of simple connection : we shall begin with a doubly connected surface.

Let such a surface T be resolved, in two different ways, into a simply

connected surface : say into Tj by a cross-cut Q^ , and into T^ by a cross-

cut Qo. Mark on T^ and on T. the directions of Q. and of Q^ respectively : the

Fig. 81.

notations of the boundaries are indicated in the figures, and T' is the

region between the lines of Q^ and Q...

It will be shewn that a function u exists, determined uniquely by the

following conditions:

(i) The first and the second derivatives are throughout T to be

uniform, finite and continuous, and to satisfy V-?^ = : but no conditions

for them are assigned at points on the boundary :

(ii) The (single) modulus of periodicity is to be K, which will be

taken as an arbitrary, real, positive constant : the value of any branch of u at

a point on the positive edge is therefore to be greater by K than its value at

the opposite point on the negative edge :

(iii) Some selected branch of n is to assume assigned values along
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a and h', typically represented by H, and assigned values along a and h,

typically represented by G. Tiiese boundary values are to be finite every-

where, though they may be discontinuous at a finite number of isolated points

on the boundary ; such discontinuity will arise through the modulus.

In Tj, for zero values along a, h, a, h' and for unit values along Qi~

and Q{^, let the fractional factor for the line Q., be qi : and similarly in Tn,

for zero values along a, b, a, h' and for unit values along Qa" and Q.j"*",

let the fractional factor for the line Qj be q», where q^ and q., are positive

proper fractions.

For the simply connected region* IT, determine a function u^, satisfying the

general conditions and having as its boundary values, H along a and h' , G
along a and h, arbitrarily assumed values represented by 6 (the maximum
value being M^ and the minimum value being m^) along Q{~ and values

6+K along Qi+ : the function so obtained is unique. Let the values

along the line Q., in T^ be denoted by w/.

For the region T., determine a function n.,, satisfying the general

conditions and having as its boundary values, H along a' and h', G — K
along a and h, -?// —K along Q.r and w/ along Qj"*" '• the function so ob-

tained is unique. Let its values along the line Q^ in T,, be denoted by

u^, the maximum value being M^ and the minimum value being iiu.

For the region T^ determine a function u^ , satisfying the general conditions

and having as its boundary values, H along a' and b', G along a and b, «/

along Q{~ and u./ +K along Qi+ : the function so obtained is unique. Let its

values along the line Q., in 1\ be denoted by u^. Then the function 11^—11^

satisfies the general conditions in T^ ; it is zero along a and b', a and b : it is

Wo' — 6 along Q~ and also along Q{^, and w/ — 0^ il/. — m^ and ^ m., — M^.

225. A difference of limits for ^3' — «/ arises according to the relative

values of M^ and mj, of Wo and M^ ; evidently 3L — m^ > m., — Jfj.

(i) If iiu — M^ be positive, then M. — riii is positive and equal, say, to

X ; the boundary values for u^ — u^ may range from to X, and we have

^3' - %' > < q{k along Q.,.

(ii) If ?»2 — ilf, be negative and equal to — e, then M., — m^ is either

positive or negative.

(a) If M.j, — m^ be negative, then the boundary values for ?<3 — ^/j

may range from to — e, that is, boundary values for Wj — u-i may range from to

e and we have «/ — u.^ >0 Kq^e along Q.^, which may be expressed in the form

\us-^ll\<ql€,

where e is the greatest modulus of values along the boundary.

* In the special case, when Tj is bounded by concentric circles and the cross-cut is made along

a diameter, the region can be represented conformally on the area of a circle : see a paper by the

author, Quart. Joiirn. Math., Vol. xxvi, (181)2), pp. 145—148.
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(b) If il/2 - Ml be positive, let its value be denoted by 7; : then the

boundary values for u^ — Ui may range from ?; to — e. The boundary values for

»a — "1 + e may range from to 77 + e, and it is a function satisfying all the

internal conditions : hence n.^ — u-^ + ^ ^ q^ {v + ^), ^^^d therefore

"3 - ^'i <qiV-{^-qi)e^ qiV-

Again, the boundary values of n^ — v.j + 77 may range from 97 + e to 0, and it is

a function satisfying all the internal conditions : hence u^ — u-^ + v "^qAv + ^)>

and therefore

Ml - n., < qi^ -{^-qi)v< qi€-

Hence at points where ii-j > u^, so that M3 - u^ is positive, we have U3 — ^-i ^ q^i]
;

and at points where u-j < u^ , so that tt^ — u-j is positive, we have Ui — Us ^ qie.

Every case can be included in the following result* : If /j, he the greatest

modulus of the values of u./ — 6 along the two edges of Q^ in T^, then

\uz -Ui\^qii^,

along Q.,, so that q^fx, is certainly the greatest modulus of u^ —Ux along Q.^.

226. Foi- the region To determine a function 7/4, satisfying the general

conditions and having as its boundary values, H along a' and h', G — K along

a and h, n^ — K along Q.^' and u-^ along Q^"*"
: the function so obtained is

unique. Let its values along the line Q^ be denoted by ?f/. Then the

function ii^ — u.^ satisfies the general conditions in T^ : it is zero along a and h',

a and 6 : it is uJ — u( along Qa" and also along Qo+, and along Q, we have

1^3' - w/| ^q^ii.

Hence, after the preceding explanations, we have along Qi in 2^2

Proceeding in this way for the regions alternately, we have for T^ a function

?<2»i+i> the boundary values of which are, H^ along a' and h' , G along a and h,

u.2n along Qi~ and Wo/ + K along Qi+ : and along Q.,

I

W'2W+1 "271-1 \<qi q-Z /* 5

and for T.,, a function ^271+2, the boundary values of which are, H along a' and

b', G — K along a and b, u^n+i — K along Q.r and Won+/ along Q^"*"
: and

along Qi

Thus both the function u.2,n+\ along Q., and the function lUn along Q^

approach limiting values ; let them be ti and u" respectively.

These limiting values are finite. For

U-m+i =U^ + (Us - U^) + (U, - U;) + . . . + (thn+i " Uon-i) ]

* Another method of proceeding, different from the method in the text, depends upon the

introduction of another fractional factor for Q^, having the same relation to minimum values

as gj to maximum values ; but it is more cumbersome, as it requires the continuous consideration

of the separate cases indicated.
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in the limit, when n is infinitely large, the sum of the moduli of the terms of

the series at points along Q..

< (i/i + K) + q^fi + (l^-q.^l + qi^qrfJ. + . ..

so that the series converges and the limit of a^n+D viz. u', is finite. Similarly

for u".

Now consider the functions in the portions T — T' and T' of the

region T.

For T—T' we have lUn, (that is, u" in the limit), with values //

along a and h', u' along QJ': and also /^J„+l, (that is, u' in the limit),

with values H along a and b' and ii" along Qi~ : thus n' and zi" have

the same values over the whole boundary of T—T' and, therefore, through-

out that portion we have «' = u".

For T' we have u^, (that is, u" in the limit), with values G— K along

a and 6 and w' — K along Q.," : and also lu^^i, (that is, w' in the limit), with

values G along a and 6 and u" + K along Q{^. Thus over the whole boundary

of T' we have ii — u" = K : and therefore within the portion T' we have

ic' = u" + K.

Lastly, for the whole region T we take « = ii,'. In the portion T—T' we

have V = ^i' = u", and in the portion T' we have ?< = u' = u" + K ; that is, the

/miction is such that in the region T^ the value changesfrom u" at Qi~ to u" + K
at Q{^, or the modulus of periodicity is K.

Hence the function is uniquely determined for a doubly connected surface

by the general conditions, by the assigned boundary values and by the

arbitrarily assumed real modulus of periodicity.

227. We now consider the determination of the function, when the

surface 8 is triply connected and has a single boundary.

Let 8 be resolved, in two different ways, into a doubly connected surface.

Let Qi be a cross-cut, which changes the surface into one of double

connectivity and gives two pieces of boundary : and let Qo be another

cross-cut, not meeting the direction of Qi anywhere but continuously

deformable into Q^, so that it also changes the surface into one of double

connectivity with two pieces of boundary. Then, in each of these doubly

connected surfaces, any number of functions can be uniquely determined

which satisfy the general conditions, each of which assumes assigned

boundary values, that is, along the boundary of ;S^ and the new boundary,

and possesses an arbitrarily assigned modulus of periodicity.

The combination of these functions, by an alternate process similar to

that for the preceding case, leads to a unique function which has an

assigned modulus of periodicity for the cross-cut Q^. The conditions

which determine it are : (i), the general conditions : (ii), the values along

F. 28
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the boundary of the given surface, (iii) the value of the modulus of

periodicity for the cross-cut, which resolves the surface into one of double

connectivity, and the modulus of periodicity for the cross-cut, which

resolves the latter into a simply connected surface, that is, by assigned

moduli of periodicity for the two cross-cuts necessary to resolve the

original surface S into one that is simply connected.

Proceeding in this synthetic fashion, we ultimately obtain the result

that a real function u exists for a surface of connectivity 2p + 1 with a single

boundary, uniquely determined by the following conditions :

—

(i) its derivatives within the surface are everywhere uniform, finite

and continuous, and they satisfy the equation V-u = ;

(ii) it assumes, along the boundary of the surface, assigned values

which are always finite but may be discontinuous at a limited

number of isolated points on the boundary

;

(iii) the function within the surface is everywhere finite and, except at

the positions of cross-cuts, is everywhere uniform and continuous

:

the discontinuities in value in passing from one edge to another

of the cross-cuts are arbitrarily assigned real quantities.

Now the surfaces under consideration are of odd connectivity : the func-

tion thus determinate is everpvhere finite, so that no points need to be

excluded from the range of variation of the independent variable ; the single

boundary of the closed surface can be made a point. The boundary value

is then a value assigned to the function at this point*; it may be depen-

dent upon a value assigned to w at some point, in order to obtain the

arbitrary additive imaginary constant in w subject to which it is dependent

upon u. Hence we infer that real functions exist on a Riemanns surface,

finite everyiuhere on the surface and uniquely determined hy their moduli of

periodicity at the cross-cuts, u'hich moduli are arbitrarily assigned real

quantities. It will be proved that the moduli cannot all be zero (§ 231).

228. The following important proposition may now be deduced :

—

Of the real functions, luhich satisfy the general conditions and are finite

everyiuhere on the Riemanns surface, and are determined hy arbitrarily

assigned niodidi of periodicity, there are 2p and no mo7'e that are linearly

independent of one another ; and every other such function can be expressed,

except as to an additive constant, as a linear combination of multiples of these

functions with constant coefiicients.

Taking into account only real functions, which satisfy the general

conditions and are everywhere finite, we can obtain an infinite number of

functions by assigning arbitrary moduli of periodicity.

* Or, if we please, the constant value along the circumference of a small circle round the

point ; in the absence of the conditions of uniformity and continuity, the proposition VI. of

§ 220 does not apply to this case.
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When one function u^ has been obtained, with Wj^j, eoj^a,..., (o^^yj as its

arbitrarily assigned moduli, another function u., can be obtained with

^2,1! (^2,2> •••
, <^2,2p

as its arbitrarily assigned moduli of periodicity, which are not the moduli of

kiU-i, where k^ is a constant. A third function U3 can then be obtained, with

<W3,i> f^3,-2, ••-, f^3,2p ^s its arbitrarily assigned moduli of periodicity, which are

not the moduli of kiUj + k^u.,, where ki and k^ are constants ; and so on, provided

that the number of functions obtained, say q, is less than 2p. When q < 2p,

another function can be obtained whose moduli of periodicity are different

from those of ^ k^Ur. But when q = 2p, so that 2p definite functions,
r=l

linearly independent of one another, have been obtained, it is possible to

determine constants k^, k., ..., k^p, so that

2p

r=l

(for m = 1, 2, . .. , 2p), where Hi, CI.,, ..., Hop arc arbitrary constants.

Let U be the potential function, which satisfies the general conditions

and is finite everywhere on the surface and is determined by the arbitrarily

assigned constants Oj, H^, ..., flo^ ; then the function .

2p

U— % kr'Ur
r=l

has all its moduli of periodicity zero, it is everywhere finite and, because its

moduli are zero, it is uniform and continuous everywhere on the surface. It

is therefore, by § 220, a constant ; and therefore

2p

U = t krUy + A
,

proving the proposition.

229. The only remaining condition of § 214 to be considered is the

possible possession, by the function u, of infinities of assigned forms, at

assigned positions on the surface.

Let the infinity at a point on the surfixce, where z is equal to c,., be

represented by the real part of </> {z, c,), whore

</>(-'^^)=(7Z7^ + (7=:^ + + ^-+i?.iog(.-a

and let this real part bo denoted* by '^X<^{z, c,) ; then u — '^\<^{z, c,) has no

infinity at z = Cr- Proceeding in the same manner with the other assigned

infinities at all the assigned points, we have a function

U=u-^ dmz,Cr),
r=l

* The form of 9!) (z, c^) implies that the series giving the infinite tei-nis has negative integral

exponents ; the case, in which the exponents are proper fractions so that the point is a brancli-

point, is covered by the transformation of § 223 when the modified form of
(f>

exphcitly satisfies

the tacit impUcation as to form.

28—2
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which has no infinities on the surface. Its derivatives everywhere (save at

branch-points) are finite, uniform and continuous and satisfy the ec^uation

V'-u =0. If T be a typical representation of the assigned boundary values

of u and <I> be the corresponding typical representation of the assigned

boundary values of S Oi^ (z, Cr), then T - <J' is a typical representation of

the boundary values of U.

The moduli of periodicity of U may arise through two sources: (i)

arbitrarily assigned real moduli of periodicity at the 2^j cross-cuts of the

canonical system (§ 181), that are necessary to resolve the original surface into

one that is simply connected : (ii) the various moduli dl {"l-iriBr), arising from

the infinities Cr in the surface, the occurrence of which infinities renders these

additional moduli necessary for the various additional cross-cuts that must be

made before the surface can be resolved. Then U has all these moduli as its

moduli of periodicity : it is finite everywhere on the surface and, except for its

moduli of periodicity, it is uniform and continuous on the surface ; hence it is

a function uniquely determinate, which is a constant if all the moduli be zero.

It therefore follows that the determination of u is unique, that is, that a

real function u on the Riemann's surface is determined by the general conditions

at all points on the surface except infinities, hy the assignment of specified forms

of infinities at isolated points, and by the possession of arbitrarily assigned

moduli of jjeriodicity at the cross-cuts luhich must be made to resolve the

surface into one that is simply connected. And, when all the moduli are zero,

the real function u is uniform.

Now w, =u + iv, is determined by u save as to an arbitrary additive

constant. Hence, summarising the preceding results, we infer the existence

of the following classes of functions on the surface :

—

(A) Functions which are finite everywhere on the surface and, except

at the lines of the cross-cuts which suffice to resolve the surface

into one that is simply connected, uniform and continuous;

and which have, at these cross-cuts, moduli of periodicity,

the real parts of which are arbitrarily assigned constants :

—

(B) Functions which have a limited number of assigned singularities

(either algebraical, or logarithmic, or both) at assigned isolated

points, and which otherwise have the characteristics of the

functions defined in (A).

The existence of the various kinds of functions, considered in the preceding

chapter in connection A\ith a special form of Riemann's surface, will now be

established for any given surface.



CHAPTER XVIII.

Applications of the Existence-Theorem.

230. We proceed to make some applications of the existence-theorem as

established in the preceding chapter in connection with any Riemann's surface,

that is supposed given geometrically in an arbitrary way ; and we shall first

consider it in relation with the functions usually known as Abelian trans-

cendents.

The existence of various classes of functions of position has been established.

Let functions which, satisfying the general conditions, are finite everywhere on

the Riemann's surface and have assigned moduli of periodicity at the 2^^

cross-cuts, be called functions of the first kind, in analogy with the nomen-

clature of §§ 205—211 ; let functions which, satisfying the general conditions,

have assigned algebraical infinities on the Riemann's surface and have

assigned moduli of periodicity at the 2/) cross-cuts, be called functions of

the second kirid ; and let functions which, satisfying the general conditions,

have assigned logarithmic and algebraical infinities* and have assigned moduli

of periodicity at the 2p cross-cuts as well as the proper moduli in connection

with the logarithmic infinities, be called functions of the third kind. These

classes of functions evidently contain the integrals of the respective kinds

which arise through algebraical functions.

First, let P and Q be two functions of x and ?/, the derivatives of which

are finite, uniform and continuous at all points (except possibly branch-points)

on the given Riemann's surface and satisfy the equation V-u = 0. Let the

functions themselves be finite and, except at cross-cuts, uniform and

continuous on the surface: and let their moduli of periodicity be A^,...,

Ap, Bi, ..., Bp] A/, ..., Ap, Bi, ..., Bp', for the cross-cuts a^, ..., ap, bi, ..., bp

respectively, the moduli for the cross-cuts c being zero. (If F and Q should

have infinities on the surface, as will be the case in later applications, so that

in their vicinity portions of the surface are excluded, thereby requiring other

cross-cuts for the resolution of the surface into one that is simply connected,

other moduli will be required ; but, in the first instance, P and Q have

merely the 2p assigned moduli.)

When the surface is resolved by the 2p cross-cuts into one that is simply

* The logarithmic infinities must be at least two in number, by § 210.
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connected, the functions P and Q are uniform, finite and continuous over

that resolved surface. Proceeding as in § 16 and § 21G, we have

where the double integrals extend over the whole area of the resolved

surface, and the single integrals extend positively round

the whole boundary. This boundary is composed of a

single curve, composed of both edges of each of the

cross-cuts ; and the positive directions of the description

are indicated in the figure, at a point of intersection of

two cross-cuts.

As explained in ^ 196, the negative eds^e of the cross-
. • Fiff 82

cut cir is GE and the positive edge is DF ; the negative

edge of the cross-cut hr is EF and the positive edge is CD. Then we have

Pd — Pp — Pc — Pe = Br, Pp — Pe = Pd — Pc = -^r 5

and similarly for the function Q.

Consider the integral JPdQ, taken along the two edges of the cross-cut

a,. : let P_ and P+ denote the functions along the negative and the positive

edges respectively, so that P+ — P_ = ^,.. The value of the integral for the

two edges is

I P+dQ, taken in the direction F...D
J F

[^ ...
+ I P-dQ, taken in the direction C...E

J c

= (P+ — P_) dQ, taken in the direction F...I>
J F

= Ar ^dQ = Ar (Qj) - Qp) = ArP;.
J F

Similarly, when the value of the integral for the two edges of the cross-cut br

is taken, we have

I P+c2Q, taken in the direction Z)... (7

J D
rF

+
I

P-dQ, taken in the direction E...F
J E
re

= (P+ — P_) dQ, taken in the direction D...G
J D

= B, rdQ = B,{Qc-Qi>) = - BrAr'.
J I)
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And the value of the integral for the combination of the two edges of any

cross-cut c is zero.

Hence summing for the whole boundary of the resolved surface, we have

and therefore

J r=l

subject to the assigned conditions.

This theorem is of considerable importance : and the conditions, subject

to which it is valid, permit F and Q (or either of them) to be real or complex

potential functions of a; and y or to be a function of z.

231. As a first application, let P and Q be real potential functions such

that P + iQ is a function of z, say w, evidently a function of the first kind.

Let its moduli for the cross-cuts be

(Og+ivn at cig, for s = l, 2, ...,p\

and o)s + ivs at bg, for .9=1, 2, ...,p.

Since P + iQ is a function of oo + iy, we have, by §§ 7, 8,

dx dy ' dy dx'

The double integral then becomes

//{(ir-(in--
which cannot be negative, because P is real ; it is a quantity that is positive

except only when P (and therefore w) is a constant everywhere. In the

present case

so that ^ ((Oyv/ — co/vr) is always positive. Hence :

r = l

If a function lu, everywhere finite on a Riemanns surface, have Wg + ivg at

ag (for s=l, 2, ..., p) and w/ +ivs' at bg (for s = 1, 2, ..., p) as its moduli,

the cross-cuts a and b being the 2p cross-cuts necessary to resolve the surface

into one tJiat is simply connected, then

p
2 {(ii,.Vr' - (Or'Vr)
r=l

is always positive, unless w is a constant : and then it is zero.

This proposition has the following corollaries.

Corollary I. A function of z of the first hind cannot have its moduli of
periodicity for a^, ..., ap all zero.
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For if all these moduli were to vanish, then each of the quantities &>,. and

each of the quantities v,. would be zero : the sum 2 («,.u/ — (o/v,.) would
r=i

then vanish, which cannot occur unless w be a constant.

Corollary II. A function of z of the first kind cannot have its moduli of

periodicitij for b^, ..., hp all zero ; it cannot have its moduli of periodicity all

purely real, or all purely imaginary, or some zero and all the rest either

purely real or jyurely imaginary.

The different cases can be proved as in the preceding Corollary.

Note. One important inference can at once be derived, relative to

functions of the first kind that have only two moduli of periodicity,

111 and n^.

Neither of the moduli may vanish; for if one, say flj, were to vanish,

then w/Ha would be a function having one modulus zero and the other unity.

The ratio of the moduli may not be real. If it were real, then w/Hi would

be a function having one modulus unity and the other real. Both of these

inferences are contrary to Corollary II. ; and therefore the ratio of the two

moduli is a complex constant, the real part of which may vanish but not the

imaginary part.

The association of this result with the doubly-periodic functions is

immediate.

Ex. Shew that, if two functions of the first kind have the same moduh of periodicity,

their difierence is a constant: and that, if IF be a vakie, at any point of the surface,

of a function of the first kind with moduli wi, wa, ... , «2P) ^^ ^he functions of the first

kind, which have those moduh, are inchided in the form

r=l

where the coefficients m are integers and 4 is a constant.

232. As a second application, let P be a function of z and Q also a

function of z ; evidently, with the restriction of the proposition, P and Q
must be functions of the first kind, when no part of the surface is excluded

from the range of variation of z. Then

.dP ^dP .dQ^dQ
dec dy ' dx dy

'

so that at every point on the surface we have

apaQ_8Qap^^
dx dy dx dy

Consequently the double integral
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and therefore, if a function of the first kind have moduli A^, ..., Ap, B^, ..., B^,

and if any other function of the first kind have modidi Al, ..., Ap, B^, ..., Bp

at the cross-cuts a and b respectively, then

I (ArBr'-BrA;)=0.
r=l

233. Next, let Q be a function of z of the first kind, as in the preceding

case ; but now let P be a function of z of the second kind, so that all its

infinities are algebraical. The points where the function is infinite must be

excluded from the surface : a corresponding number of cross-cuts will be

necessary for the resolution of the surface into one that is simply connected.

The modulus of periodicity of P for each of these cross-cuts is zero, (as in Ex. 8

of § 199, which is an instance of a function of this kind), no additional

modulus being necessary with an algebraical infinity.

Then over the resolved surface, thus modified, the functions P (z) and

Q (z) are everywhere uniform, finite and continuous : and therefore, as

before

the double integral extending over the whole of the resolved surface and the

single integral extending round its whole boundary. But, at all points in

the resolved surface, we have

dPdQ_dQdP^^
dx dy dx dy '

and therefore, as before, the double integral vanishes. Hence JPdQ, taken

round the whole boundary, vanishes.

The boundary is made up of the double edges of all the cross-cuts a, b,

and those, say I, which are introduced through the infinities, and of the small

curves round the infinities.

As in § 280, the value of the integral for the two edges of a,, is A,.B/;

and its value for the two edges of 6,. is —BrA/. The value of the integral

for the two edges of any cross-cut I is zero, because the subject of integration

is the same along the edges which are described in opposite directions.

To find the value round one of the small curves, say that which encloses

an infinity represented analytically by a value Cg of z, we take, in the imme-
diate vicinity of Cg,

F(z)=-^+p(z-c,),

where p(z - Cg) is a converging series of positive integral powers of z — c«. In

that vicinity, let

Q = Q, + (z- c,) QJ + higher powers of ^ - c«,
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SO that Qs' is dQIdz for 2 = Cs; thus

dQ = (Qg' + positive powers of z — c^.) dz.

Hence along the small curve

dz
PdQ = HsQs' +q(2- Cs) dz,

Z Cg

where q(z — Cs) is a converging series of positive integral powers of z — Cg.

The value of the integral round the curve is 2'7riHgQg.

Summing these various parts of the integral and remembering that the

whole integral is zero, we have

i (ArB,' - BrAr') + ^TritHgQg' = 0,
r=l

there being as many terms in the last summation as there are simple

infinities of P.

The equation

I {ArB; - B,A;) + 2'rri X Hg (^) =

is the relation which subsists between the moduli A', B' of a function Q(z) of

the first kind and the moduli A, B of a function P (z) of the second kind,

all the infinities of which are simple.

The simplest illustration is furnished by the integrals that were considered in Ex. 6

and Ex. 8 of § 199.

Let P be the function of Ex. 8, usually denoted by E(z), being the elliptic integral

of the second kind; it is infinite for z= co in each sheet. In the upper sheet we have,

for large values of 1^1,

P=E {z) = kz ( 1 + positive integral jjowers of -
j

;

and for the same in the lower, we have

P= ^(2)= -^-;
( 1+positivo integral powers of -j.

Let Q be the function of Ex. 6, usually denoted by F {z\ being the elliptic integral

of the first kind, finite everywhere. We easily find, for large values of |2| in the upper

sheet, that

dQ=dF (2) = -p, [
1 + positive integral powers of -

j
dz,

and, for large values of \z\ in the lower, that

dQ= dF{z)= -j-T, (1+positive integral powers of ~jdz.

Then for large values of \z\ in the upper sheet, we have

Po^^= —-M-(- positive integral powers of -j

dz'= —^ (1 + positive integral powers of s').
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where z^ = 1 ; and we may consider the Ricmann's surface spherical. Hence the value

round the excluding curve in the upper sheet is -27ri.

Similarly the value round the excluding curve in the lower sheet is - 27ri.

Now ylj and B^^ the moduli of /*, are 4^ and 'ii{K' -E') respectively; -4/ and B^, the

moduli of Q, are 4A" and 2iK' respectively. Hence

^E. liK' - 4A'. 2i (A'' - E) - 4n-i= 0,

leading to the Legendrian equation

A'A" + A^'A' - A'A'= I TT.

234. Before proceeding to the relations affecting the moduli of periodicity

of functions of the third kind, we shall make some inferences from the

preceding propositions.

It has been proved that functions of the first kind, special examples of

which arose as integrals of algebraic functions, exist on a Riemann's surface.

They are everywhere finite and, except for additive multiples of the moduli,

they are uniform and continuous ; and when, in addition to these properties,

the real parts of their moduli of periodicity are arbitrarily assigned, the

functions are uniquely determinate. Hence the number of such functions is

unlimited: they are, however, subject to the following proposition:

—

The number of linearly independent functions of the first kind, that eodst on

a given Riemann's surface, is equal to p ; where 2p + l is the connectivity of

the surface. And every fmction of the first kind on that surface is of the

p
form C+ S CqWq, where G is a constant, the coefiicients Ci, ..., c^ ai^e constants,

q = l

and Wi, ..., Wp are p linearly independent functions.

Let q series of linearly independent real quantities, each series containing

2p non-vanishing constants, be arbitrarily assigned as the real parts of the

moduli of periodicity of functions of the first kind, which are thence uniquely

determined. Let the functions be iUi,w.., ,..,Wq\ and let the real parts of

their moduli be (&)i,i,'&)i,2, ••., «i,2p), («2,i, «'.',2, •••, ««>2,2p), •••, (w?,!, <^q,^, •••,o)q,2p)-

The modulus of w,. at the cross-cut (7,„ has its real part denoted by (Or^m-

when the modulus is divided into real and imaginary parts, let it be

®r,m "T 1&) r, m*

If any set of q arbitrary complex constants be denoted by c,, ..., c^, where

Cg is of the form as + t/^^., then, at the cross-cut C^, the real part of the

</, . <?,

modulus of 2 c,.w,. is the real part of S c^ (&>,-,»« + i(^');m), that is, it is equal to

aif«>i,?n + . .
. + <^q(Oq,m ~ ^i<^'i,m — ... — /C?/^ q,mi

holding for ??i= 1, 2, ..., 2p and therefore giving 2.p expressions in all.

Now let a series of real arbitrary quantities A^, A.,, ..., A»p be assigned as

the real parts of the moduli of periodicity of a function of the first kind.
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which is uniquely determined by them ; and consider the equations

^1 = OtiWi^i + OoCDa,! + . . . + ClqOig^i — /5i&)'i_i — /3o<o'o,i — ... — ^qCo'q^i ^

First, let q<p: the 2g constants a and ^ can be determined so as to make

the right-hand sides respectively equal to 2q arbitrarily assigned constants A.

The right-hand sides of the remaining equations are then determinate con-

stants ; and therefore the remaining equations will not be satisfied when the

remaining constants A are arbitrarily assigned.

The function determined by the moduli A has some of its moduli different

from those of the function Sew, when q<p; hence, when q functions u\, ...

..., Wq, where q <p, have been obtained, we can obtain another function, and

so on ; until q—p-

But, when q=p, then the foregoing 2p equations determine the quantities

a and ^, whatever be the quantities A. Let W be the function of the first

kind, determined by the constants A as the arbitrarily assigned real parts of

its moduli of periodicity : then
p

TF — 2 CgWs

,

s=l

where the coefficients c are constants, has the real parts of all its moduli

of periodicity zero: it is therefore, by Cor. II. § 231, a constant, so that

If = CiWi + ...-}- CpWp + C,

where C is a constant. Therefore the number of linearly independent

functions of the first kind is p ; and every function of the first kind is of

the form
p

0-1-2 CgWs.
s=l

It has been assumed in what precedes that the determinant of the quanti-

ties to and 0)' does not vanish. This possibility is not excluded merely by the

arbitrary choice of the quantities co ; because the quantities a are determined

for w, and w is dependent on v. If, however, the determinant should vanish,

then, by taking the quantities a and ^ proportional to the minors of co and co'

respectively in the determinant, all the quantities

p

can be made to vanish. These quantities are the real parts of the moduli of

p
,

periodicity of 2 CgiUg which, because they all vanish, is a constant, that is, the
s = \

quantities Wg are not linearly independent of one another—an inference

contrary to their construction. Hence the determinant of the quantities co does

not vanish.
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Note. It may be remarked, in passing, that each function w, being of the

first kind, gives rise to two real potential functions, which are everywhere

finite and have moduli of periodicity at the cross-cuts : one of the functions

being the real part of w, the other arising from its imaginary part.

Hence from the ji linearly independent functions of the first kind, there are

altogether 2p linearly independent real potential functions. This number is

the same as the total number of real potential functions considered in § 228

:

hence each of them can be expressed as a linear function of the members of

that former system, save possibly as to an additive constant. Conversely, it

follows that linear combinations of the members of that former system can be

taken in pairs, so as to furnish p (and not more than p) linearly independent

functions of z of the first kind.

235. The functions so far obtained are very general : it is convenient to

have a set of functions of the first kind in normal forms. The foregoing

analysis indicates that linear combinations of constant multiples of the

functions, being themselves functions of the first kind, are conveniently

considered from the point of view of their moduli of periodicity : and the

simpler the aggregate of these moduli is, the simpler will be the functions

determined by them. Some conditions have been shewn (§ 231) to attach

to the aggregate of the moduli for any one function of the first kind, and a

condition (§ 232) for the moduli of different functions; these are the con-

ditions that limit the choice of linear combinations.

Let CiWi + . . . + CpWp be a linear combination of the functions lu^, ..., lUp

which have w,.^,..., corp {^' = ^, •,p) as the moduli of periodicity for the

cross-cuts (ij, ..., cip. Then A, where A is the determinant

A^ UJip

cannot vanish : for otherwise by taking constants C] , . .
.

, c^ proportional to the

first minors, we should obtain a function 2 cw^, having all its moduli for the

cross-cuts rti, ..., dp zero and therefore, by § 281, merely a constant, so that

w,, ..., tVp would not be linearly independent. Hence A does not vanish.

Next, we can choose constants c so that the moduli of periodicity

p
vanish for the function S CsWg at all the cross-cuts a, except at one, say ft^,

s=l

and that there it has any assigned value, say iri. For, solving the

equations,

= Cift)g,i-|-C2&).,,2-t- ... -f- CpCOg^p, (for s ^ ?'= 1, 2, ...,p);

TTl = C,&),.,j + CMr,-. + ... -I- Cp03,.^p,
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the determinant of the right-hand side does not vanish, and the constants c,

say Cr,i,Cr,2, '•-, Cr,pi ^re determinate. The function Cr^iU'i + c^^otu.. + . . . + Cr,pWp,

say Wr, then has its moduli zero for «!,..., (ir-i? «r+i, ..., «p : it has the

modulus TTi for a^.; it has moduli, say B^^i, ..., B^^p at h^, ..., bp respectively.

And the function is determinate save as to an additive constant.

This combination can be effected for each of the values l,...,p of r :

and thus p new functions will be obtained. These p functiojis are linearly

independent : for, if there were a relation of the form

Ci TT, + Oa TTo + +GpWp = constant,

;'

the modulus of the function S C,.Tr,. at the cross-cut Og should be zero

because the function is a constant ; and it is Cgiri, so that all the coefficients

C would be zero.

The functions ^¥, thus obtained, have the moduli :

—
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Let B,n,n = Pm,n+'io'm,n, (sO that Pm,n = Pn,vi, Cind (T,,,,11= 0-n,m) ' t^eu, if

c^, ..., Cjjbe any real quantities, tlie expression

PiiCi^ + 2pi2CiCo + /3,..,C.- + . . . + ppifif,

is negative, unless the quantities c vanish together.

The function c^W^ + c.,W.. -^ . . . ¥ CpWp-\-C is a function of the first kind

with moduli (say) 03r-\-iv,. at a,., where r = 1, ... , p, and moduli &>/ + iv^ at hg,

where s = l, ..., ^). Then, by § 231, the sum 2 ((y,.u/ — &)/u,.) is positive,

except when the function is a constant, that is, except when c, , ..., Cp all

vanish. But
ft),. 4- ivr = Crnri,

so that (Or = 0, V,. = TTCr ', and

«/ -f ivs = Ci-Bi,s + CoB.,^., + ... + CpBp^g,

so that &)/ = Ci/3i,g + c-2p-2,s + . • . + CpPp,s-

p

Hence the sum l£ — c,.7r {c^pi^r + Co/3o_ ^ + . . . + Cppp^r)
r=l

is positive and therefore the sum 2 2 prsCrCs is negative. This (with the
r=l«=l

property p,nn = pnm) is the required result.

These properties of the periods, all due to Riemann, are useful in the

construction of the Theta-Functions.

For the ordinary Jacobian elliptic functions in vvhich p = l, there is only one

integral which is everywhere finite : its periods are 4<K, 2iK'. To express it

in the normal form, we take cF (z), choosing c so that the period at a, is

purely imaginary and =7ri; hence c= rjr, and the normal integral is

TriFjz)

ttK'
The other period of this function is — - y^, , which, when k is real and less than

zVv

unity, is a negative quantity
; it is the value of /a,, and satisfies the condition

that pnCi" is negative for all real quantities c.

236. It has been proved that functions exist on a Riemann's surface,

having assigned algebraical infinities and assigned real parts of its moduli

of periodicity, but otherwise uniform, finite and continuous. The simplest

instance of these functions of the second kind occurs when the infinity is an

accidental singularity of the first order.

Let the single infinity on the surface be represented hy 2 = c: let E^ (z)

be the function having ^^ = c as its algebraical infinity, and having the real

parts of its moduli of periodicity assigned. If E^' (z) be any other function

with that single infinity and the real parts of its moduli the same, then
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Ee{z) — Ee {z) is a function all the real parts of whose moduli are zero; it

does not have c for an infinity and therefore it is everywhere finite : by § 231, it

is a constant. Hence an elementary function of the second kind is determined,

save as to an additive constant, by its infinity and the real parts of its moduli.

Again, it can be proved, as for the special case in § 208, that an elementary

function of the second kind is determined, save as to an additive function of

the first kind, by its infinity alone : hence, if E (z) be any elementary function,

having its infinity represented by z = c, we have

E{z) = E,{z) + \,W,+ ... +\j,W^, + A,

where \i, .... Xp, A are constants, the values of which depend on the special

function chosen. Let Ec{z) have iriC^, ..., iriCp for its moduli at the cross-

cuts a^, ..., ap respectively : and let the function E {z) be chosen so as to have

all its moduli at Oj, ..... ap equal to zero : then \r= — Cr and E {z) is given by

E,{z)-G,W,-...~CpWp + A.

The special function of the second kind, which has all its moduli at the cross-

cuts tti, ..., ap equal to zero, is called the normal function of the second kind.

It is customary to take unity as the coefficient of the infinite term, that is,

the residue of the normal function.

This normal function is determined, save as to an additive constant, by its

infinity alone. For ifE [z) and E' (z) be two such normal functions, the function

E{z)-Eiz)

is finite everywhere; its moduli are zero at a-^, ..., ap] hence (§ 231) it is a

constant.

Normal functions of the second kind will be used later (§ 241) in the

construction of functions with any number of simple infinities on the surface.

Let the moduli of this normal function E {z) of the second kind be B^, ...,

Bp for the cross-cuts b^, ..., bp. Then applying the proposition of § 233 and

considering the integral JEdWr, we have ^i = . . . = ^4^ = ; also

A^' = ... =A'y^-^ = A'r+i = ... = Ap^O,

and A/ = irf. The relation therefore is

-^'- + 2-('^l„
=0.

where, in the immediate vicinity of ^^ = c,

E{z)= -~ + p(z-c),

p being a converging series of positive powers. Thus

'dW,
5. = 2, , .

dz /c=(

dW
or, as -~ is an algebraical function (§ 241) on the surface, the periods of a
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normal function of the second kind at the cross-cuts b are algebraical functions

of its single infinity.

In the case of the Jacobian elliptic integrals, the integral of the second kind has at

2= 00 an infinity of the first order in each sheet (Ex. 8, § 199). The moduli of this integral,

denoted by E{z), are 4^ and 2i{K' -E') for a^ and h^ respectively; hence the normal

integral of the second kind is

E{z)-^F{z),

F{z) being the (one) integral of the first kind. This is the functiiMi Z{z)\ its modulus is

zero for f<i, and for b^ it is

2i{K'-E')-^2iK\

which is -p (/r/i '
- ^'^ - ^/r '), that is, it is --^.

237. The other simple class of function which exists on a Riemann's

surface with assigned infinities and assigned real parts of its moduli is that

which is represented by the elementary integral of the third kind. It has

two points of logarithmic infinity on the surface*, say Pj and P,; let these

be represented by the values Ci and c. of z. On division by a proper constant,

the function, which may be denoted by TIj.,, takes the forms

- log (z-c^)+ 2h {z - Ci), + log {z - Co) +p.2(z- Co),

in the immediate vicinities of Pj and of Pj respectively, where jJj and p.> are

converging series of positive integral powers.

The points Pi and Po can be taken as boundaries of the surface, as in

Ex. 7 in § 199. A cross-cut from Po to Pj is then necessary for the resolution

of the surface: and the period for the cross-cut is 27ri, being the increase of the

function in passing from the negative to the positive edge of the cross-cut.

Then with this assignment of infinities and with the real parts of the

moduli at the cross-cuts «],..., ap, bi, ..., bp arbitrarily assigned, functions TT,,

exist on the Riemann's surface.

As in the case of the function of the second kind, it is easy to prove that

a function Ilia of the third kind is determined, save as to an additive constant,

by its two infinities and the assignment of its moduli : and that it is deter-

mined, save as to an additive function of the first kind, by its infinities alone.

Among the infinitude of elementary functions of the third kind, having

the same logarithmic infinities, a normal form can be chosen in the same

manner as for the functions of the second kind. Let ITio be an elementary

function of the third kind, having Pj and P. for its logarithmic infinities : let

its moduli of periodicity be ^iri for the cross-cut PiP.; -niC^, ...,'iriGp for

a„ ..., ap respectively; and other quantities for 6i, ..., bp respectively. Then

vT,,=.U,,-C,W,-...-GpWp

* The representation of a single point on the Riemann's .surface by means solely of the value of

z at the point will henceforward be adopted, without further explanation, in instances when it can-

not give rise to ambiguity. Otherwise, the representation in full detail of statement will be adopted.

F. 29
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is an elementary function of the third kind, having zero as its modulus of

periodicity at each of the cross-cuts a^, ..., a^. This function is the normal

form of the elementary function of the tJiird kind.

If -BTi/ and -scTio be two normal elementary functions of the third kind with

the same logarithmic infinities and the same period 27rt at the cross-cut

P,P„ then

is a function without infinities on the surface ; its modulus for PjPo is zero,

and its modulus for each of the cross-cuts «i , . .
.

, o^ is zero ; and therefore it

is a constant. Hence a nor'mal elementary function of the third kind is, save

as to an additive constant, determined by its infinities alone.

Ex. The sum of three normal elementary functions of the third kind, having as

their logarithmic infinities the respective pairs that can be selected from three points,

is a constant.

238. A relation among the moduli of an elementary function of the third

kind can be constructed in the same way as, in § 233, for the function of the

second kind.

Let the surface be resolved by the '2,p cross-cuts a^, ..,, a^, 6i, ..., hp and by

the cross-cut PiP^, joining the excluded infinities of an elementary function

ITio of the third kind. Let w be any function of the first kind ; then over the

resolved surface, we have

9ni2 diu dUi.2 dw

dx dy dy dx

everywhere zero ; and therefore jH^, diu round the whole boundary of the

resolved surface is zero, as in § 233.

Let the moduli of Ilj._, be A^,..., Ap, B^,..., Bp, and those of lu be

A^', ... , Ap, B^, ... , Bp for the 2^j cross-cuts a and h respectively.

The whole boundary is made up of the two edges of the cross-cuts a, the

two edges of the cross-cuts h, the two edges of the cross-cut P^P.. and the

small curves round Pj and Pj.

The sum of the parts contributed to jHy.div by the edges of all the cross-

cuts a and h is, as in preceding instances,

I {Asb:-a:b,).
s=l

The direction of integration along PjPo that is positive relative to the area

in the resolved surface is indicated by the arrows ; the

portion oi jlly.dw along the two edges of the cut is A >^ f^

=
j

(U,,^ - n,,*) dw = 27ri rdw = 27ri {w (c.) - w (c,)}

Fig. 83.
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Lastly, the portion of the integral for the infinitesimal curve round Pj is zero,

by I. of § 24, because the limit of {z - d) Uy, -, for z^ Ci vanishes, Pj being

assumed not to be a branch-point; and similarly for the portion of the

integral contributed by the infinitesimal curve round P..

As the integral /Ilia diu vanishes, we therefore have

J (AsB; - A:B,) -f 27ri \w (c) - w (c,)] = 0,

which is the relation required.

The most important instance is that in which ITin is the normal elementary

function of the third kind (and then A^, A.., ..., A^, all vanish), and w is a

normal function of the first kind, say W^ (and then

a; = iri, a^ = a:=... = A'r_, = A'r+, = . . . = ^/ = 0).

Hence, if B,. be the modulus at 6,. of the normal elementary integral -utio, we

have

Br=2[Wr{c.;)-Wr{c,)],

so that the moduli of the normal elementary function of the third kind can be

expressed in terms of normal functions, of the first kind, of its logarithmic

discontinuities.

The important property of functions of the third kind, known as the

interchange of ar-gimient and ijarameter, can be deduced by a similar process.

Let ITio be an elementary function with logarithmic discontinuities at

Ci and C2, with ^iri as its modulus for the cross-cut CiC™, and with

A-i, ... , Ap, i>j, . ., , Bp

as its moduli for the cross-cuts rti, ..., ap, bi, ..., bp-, and let 1134 be another

elementary function with logarithmic discontiiuiities at C3 and c^, with 27rr as

its modulus for the cross-cut C3C4, and with A/, ..., Ap', B^, ..., Bp' us its

moduli for the cross-cuts a^, ..., ap, b^, ...,bp.

Then when the infinities arc excluded and the ^^^k. -L,^
"2.—

surface is resolved so that both 17,., and IT:., H g

are uniform finite and continuous throughout

O +M

the whole surface, we have '^^ + ^ u ^3
^Hio 91134 _ dU^ dU,o ^ ^ Fig 84_

dx dy dx dy '

everywhere in the resolved surface ; and therefore, as in the preceding

instances, JII^2dlil2^ round the whole boundary vanishes.

The whole boundary is made up of the double edges of the cross-cuts a

and the cross-cuts b, and of the configuration of cross-cuts and small curves

round the points. The modulus of both n^o and of n^i for the cut AG is

29—2
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zero ; the modulus of TTjo for the cut C3C4 is zero, and that of Ha., for the cut

CjCo is zero.

The part contributed to JTl^^dTl^ by the aggregate of the edges of the

p

cross-cuts a and 6 is S (AsBJ — AsBs), as in preceding cases.
s=l

The part contributed by the small curve round Ci is zero, because the

dU
limit, for z = Ci, of (z — Cj) TIjo , - is zero ; similarly the part contributed by

the small curve round c. is zero.

The part contributed by the two edges of the cross-cut CjCo is

r u,fdu^ + r u,:du^
J f, J Ci

= 27ri r dU^ = 27ri [U.^ (c) - n34 (cj}.

The part contributed by the two edges of the cross-cut ^0 is

the subject of integration does not change in crossing from one edge to the

other, and therefore this part is zero.

For points on the small curve round C3, we have

dz
dUsi = +1^(^- C3) d^:

Z — Cs

where p is a converging series of integral powers of z — C3: and therefore for

points on that curve

U,,dU^=-^^^^dz + q{z-c,)dz,

where q{z — C3) is a converging series of positive integral powers of ^ — c^.

Hence the part contributed to jYly,dTl^ by the small curve round c^ in the

direction of the arrow, which is the negative direction for integration relative

to C3, is 27711112(03).

Again, for points on the small curve round C4, we have

dz
dli^ = VpAz - C4) dz

;

z — c^

proceeding as for C3, we find the part contributed to jYiy:,dIlii by the small

curve round c^, which is negatively described, to be — 27rini., (C4).

Lastly, the sum of the parts contributed by the two edges of the cross-cut

C3C4 is

|''ni,rfn34^+J''n,,rfn^r
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But though Uj^ has a modulus for the cross-cut C3C4, its derivative has not a

modulus for that cross-cut: we have dIl,n^/dz = dU.^~/clz, and therefore the

last part contributed to /ITio dJJsi vanishes.

The integral along the whole boundary vanishes ; and therefore

I (AsB; - a;Bs) + ^iri {n« (c,) - n,. (c,)} + 27rm,, (c,) - ^iri u,, (c,) = o,

a relation between the moduli of two elementary functions of the third kind.

The most important case is that in which both of the functions are normal

elementary functions. We have A-^, ..., A^, zero for tn-j.,, and Ai ,..., Aj' zero

for BT34 ; and the relation then is

OT34 (Co) - -53-34 (Ci) = -57i, (C4) - CTjo (Cs),

which is often expressed in the form

d'STsi =
I

d'UTi.,

J c, J e,

the paths of integration in the unresolved surface being the directions of

cross-cuts necessary to complete the resolution for the respective cases.

Hence the normal eleinentary integral of the third kind is unaltered in value

by the interchange of its limits and its logarithmic infinities.

239. From the simple examples, discussed in § 199 and elsewhere, it has

appeared that when a function w is defined as the integral of some function

of z, the integral being uniform except in regard to moduli of periodicity, a

process of inversion is sometimes possible whereby z becomes a function of w,

either uniform or multiform. But in all the cases, in which z thus proves to be

a uniform function, the number of periods possessed by w is not greater than

two ; and it follows, from §110, that, when w possesses more than two periods,

z can no longer be regarded as a function of w. In fact, lu then loses its

property of being uniform by dependence upon a single variable.

A question therefore arises as to the form, if any, of functional inversion,

when lu has more than two independent periods and when there are more
functions w than one.

Taking the most general case of a Riemann's surface of class p, let

Wi, lu.^, ..., lUp denote the ^j functions of the first kind. Let there be q inde-

pendent variables z^,..., Zq, where q is not, of initial necessity, equal to jj

;

and, by means of any q of the functions of the first kind, say lu^, ..., lUq, form

q new functions, evidently also of the first kind and defined by the etpiations

Vr = l(Jr (Z,) + Wr (z.^ + . . . + Wr (Zg),

where ?' = 1, 2. ..., q. We make the evident limitation that q is not greater

than 2h which is justifiable from the point of view of functional inversion.

Then the functions Vr are multiform on the surface with constant moduli of

periodicity; they have the same periods as w,., say &)^_,, (Or,2, •••, (Or,c>p-

The various values of lu,. (z,„) differ by multiples of the periods : so that, if
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i^ri^m) be the value for an exactly specified ^-j^-path (as in § 110), the value

for any other 2^,;i-path is

This being true for each of the integers ??i = 1, 2, ... , q, it follows that, if

?%= 2 ?i„,,s, (s = l, 2, ..., 1p),
m = \

'1

and if Vr be the value of S '^t'r (^„,) for the exactly specified paths for z^, •,Zq,
m=l

then the general value of v^. for any other set of paths for the variables is

V,- + Vl^^CO,.,! + m«(jOr^2 + . . . + 1linp(Or^22J,

holding for ?•= 1, 2, .,., q. The integers iim^s, and therefore the integers ?%,

are evidently the same for all the functions v.

The reason which, in the earlier case (| 110), prevented the function w from

being determinate as a function of z alone was, that integers could be deter-

mined so as to make the additive part of w, dependent upon the periods, an

infinitesimal quantity. It is necessary to secure that this possibility be

excluded.

Let &)a,^ = aA,^+ i/Sa,^, where the quantities a and ^ are real: then we

have to prevent the possibility of the additive portions for all the functions v

being infinitesimal. In order to reduce the additive part to an infinitesimal

value for each of the functions v, it would be necessary to determine integers

?Hi, 711-2, ..., iiUjj so that the 2^ quantities

??ii «)-,! + ^'^2 «-r,2 + . . . + nUp 0Lr«2\

for 7' = 1, ...,q all become infinitesimal.

If q be less than p, the '2p integers can be so determined. In that case,

the general possibility of functional inversion between the q functions v and

the q variables z would require that the quantities z are so dependent upon

the quantities v that infinitesimal changes in the latter, carried out in an

infinite variety of ways and capable of indefinite repetition, would leave the

quantities z unchanged. The position, save that we have q variables instead

of only one, is similar to that in § 110: we do not regard the functions v as

having determinate values for assigned values of z-^, ..., Zq, but the values of

Wi, ..., Vq are determinate, only when the paths by which the independent

variables acquire their values are specified. And, as before, the inversion is

not possible.

If q be not less than p, so that it must in the present circumstances be

equal to p, then the 2p integers cannot be determined so that the 1p quanti-

ties all become infinitesimal. They can be determined so as to make any

2^ — 1 of the quantities become infinitesimal ; but the remaining quantity is
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finite as, indeed, should be expected, because the determinant of the constants

a and /3 is different from zero*.

If then there be^; variables ^i, ..., Zj^,, and^j functions Vi, ..., Vj, defined by

the equations

for r = 1, 2, ..., jj, then the values of the functions v for assigned values of the

variables z, whatever be the paths by which the variables attain these values,

are of the form

for r = 1, 2, ..., p ; and it has been proved that the 2.p integers m cannot be

determined so that all the additive parts, dependent upon the periods, become

infinitesimal. Hence the functions "^1,..., Vp are, except as to additive

multiples of the periods (the numerical coefficients in these multiples being

the same for all the functions), uniform functions of the variables z^, ..., Zp\

and they are finite for all values of the variables. Conversely, we may regard

the quantities z as functions of the ({uantities v^, ..., Vp, which have 2p sets of

simultaneous periods w^g, (^-2,5, ••i <*>p,s for 6'=1, 2,..., 2/): that is, the

variables z are 2p-ply periodic functions oi p variables Vi, ..., Vp. This result

is commonly called the ijiversion-jirubleni for the Abelian transcendents.

In effecting the inversion of the equations

dvi = lu^' (zi) dzi + Wi (z..) dz.2+ ... + w/ (Zp) dzp)

dvp = Wp (zi) dzi +Wp(z^) dz..+ ... +Wp (Zp) dzp]

the actual form, which is adopted, expresses all symmetric functions of the

quantities z^, ..., ZpdiB uniform functions of the variables, so that, if z^, z.^,...,

Zp be the roots of the equation

<f>
(Z) = ZP + F,Zp-' + P,Zp-' + . . . + P^ = 0,

then-j- Pi,..., Pp are uniform multiply-periodic functions of the variables

Wj, ..., Vp. Consequently, all rational symmetric functions of z^,..., Zp are

uniform multiply periodic functions oi Vi, ..., Vp.

Frequent reference has been made to the functions determined by the equation

w^-Ii{z)=w^ - {z-ao) (z-a{)...{z - a2p) = 0.

It has been proved that an integral of the form /
—— dz is an integral of the first

kind, provided U{z) be an integral algebraical function of degree not higher than p-\, and

that the otherwise arbitrary character of U {£) makes it possible to secure the necessary

p integrals by allowing the suitable choice of the coefficients. Weierstrass takes the

equations, which lead to the inversion, in the following formf:

—

* The 2j; potential-functious, arising from the p functions xc, would otherwise not be linearly

independent.

t For further considerations see Clebsch und Gordan, Tlieorie der AhcVschcn Functioncn,

Section vi.

X Equivalent to that given in CreUe, t. lii, (185G), pp. 285 et seq. ; it is slightly different from

the form adopted by him in Crelle, t. xlvii, (1854), p. 289.
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The constants a are diftercnt from one another and can have any vakies : and it is

convenient to take
r (.r) = {x

-

aj) {x

-

«3) ...{x- agp - 1),

Q (•') = (•«'• - «o) G*'^ - c^a)- •
•('^' - «2P - -i) {-^ - (^-ii)^

so that P (x) Q(x) = Ji{x). If the coefficients a be real, it is assumed that

0^0> «1 > «2 > • • • > ^2P •

The equations which give the new variables are

P{z,)dz, P{z,)dz, P(z,)dz,
aui= , — + , + H y^^-=

(,^1 - «3) 'sjR (Z,) {Z, - «3) Vii (^2) (--,. - «3) V/^"(-^„)

^,,^_
P(^i)dh ^„ i^(^2)^^2

I I

Pj^pjdz^

(^i-«2P-i)V^(zi) {z^-a.ip-i)s/R{z^) {?p-<^-2p-i)^lR{z,)

and when integration takes place, the arbitrary constants are defined by the equations

u^, U2,..., Up= (with periods for moduli),

when Zi, z^,..., Zp—a^, %v > '^2P-i respectively.

The p variables z are the roots of an algebraical equation of degree p, the coefficients in

which are (multiply-periodic) uniform functions of the variables u. The functions, arising

out of the equations in this form, are discussed* in Weierstrass's two memoirs, just

quoted.

Note 1. The results thus far established in this chapter are the basis of the theory of

Abelian functions. The development of that theory is beyond the range of the present

treatise.

So far as concerns the general theory, recourse must be had to the fundamental

memoirs of Abel, Jacobi, Hermite, Kiemann and Klein, and to treatises, in addition to

those by Neumann and by Clebsch and Gordan already cited, by Prym, Krazer, Konigs-

berger and Briot.

Moreover, as our propositions have for the most part dealt with functions of only

a single variable, it is imjjortant in connection with the Abelian functions to take account

of Weierstrass's memoir f on functions of several variables.

Note 2. We have discussed only very limited forms of integrals on the Riemann's

surface : and any professedly complete discussion would include the theorem that \w'dz,

where w' is a general function of position on the surface, can be expressed as the sum of

some or all of the following parts :

—

(i) algebraical and logarithmic functions;

(ii) Abelian transcendents of the three kinds;

(iii) derivatives of these transcendents with regard to parameters;

but such a discussion is omitted as appertaining to the investigations relative to Abelian

transcendents.

For the particular case in which the integral \w'dz is an algebraical function of 2, see

Briot et Bouquet, The'orie des fonctions eUiptiques, (2™" ed.), pp. 218—221 ; Stickclberger,

Crelle, t. Ixxxii, (1877), pp. 45, 46 ; and Humbert, Acta Math., t. x, (1887), pp. 281—298,

by whom further references are given.

* Some of the results ai'e obtained, somewhat differently, in a memoir by the author, Pliil.

Trails., (1883), pp. 323—3G8.

t First published iu 1886; Ahhamllungm am dcr Functiuncnlehn', pp. 105—IG-l.
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240. There are functions belonging to class (B) in § 229, other than

those already considered. In particular, there are functions with assigned

infinities on the surface and with the real parts of all their moduli of

periodicity for the canonical system of cross-cuts equal to zero. But it

does not therefore follow that all the moduli of periodicity vanish ; in order

that their imaginary parts may vanish, so as to make the moduli of

periodicity zero, certain conditions would require to be satisfied.

We shall limit the ensuing discussion to some sets of these functions

with zero moduli, and shall assign the conditions necessary to secure that

the moduli shall be zero. We shall assume that all their infinities are

algebraical ; the functions arc then uniform everywhere on the surfiice,

and, except at a limited number of isolated points where they have only

algebraical infinities, are finite and continuous. They are, in fact, algebraical

functions of z.

Two classes of these functions are evidently simpler than any others.

The first class consists of those which have a limited number, say m, of

isolated accidental singularities each of the first order and which arc not

infinite at any of the branch-points ; the other class consists of those which

have no infinities except at the branch-points. These two classes will be

briefly discussed in order.

Let w be a uniform function having accidental singularities, each of the

first order, at the points Ci, ..., c,n and no other infinities ; and let the normal

function of the second kind, having c^ for its sole infinity, be Zy. Then

where /3i, ..., /3,„ are constants at our disposal, is a function, having infinities

of the same class and at the same points as w has ; the function is otherwise

finite everywhere on the surface and therefore, by properly choosing the

constants yS, we have the function

finite everywhere on the surface, so that it is a function of the first kind.

Now because its modulus vanishes at each of the cross-cuts a in the

resolved surface, it is a constant, so that

dW
The modulus of w is to vanish at each of the cross-cuts b,.. Let <b,(z) = ^r^ ,^

(12

so that
<f),.

(z) is an algebraical function on the surface : then assigning the

condition that the modulus of w at the cross-cut br shall vanish, we have

/3,(/), (cO + ^,<l>r (Co) + ...+ /3„,<^,. (c,„) = 0,

an equation which must hold for all the values r=l,...,p.

When the quantities c represent quite arbitrary points, there must be

at least jj -f 1 of them ; otherwise, as the equations are independent of one

another, they can be satisfied only by zero values of the constants ^, a result
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which renders the uniform function evanescent. If di > p, the equations

determine 2? of the coefficients /S linearly in terms of the remaining m—p:
when these values are substituted, the resulting expression for tv contains

m—p + 1 constants, viz., the remaining ??i —p constants ^, and the constant

/Sq. The coefficient of each of the m—p constants /3 is a function of ^, which

has p 4- 1 accidental singularities of the first order, p of which are common
to all the functions, so that lu then is an arbitrary linear combination of

constant multiples of m — p functions, each of which possesses p + 1

accidental singularities and can be expressed in the form

K{z) =

</>i(Ci), (/)i(c,), , ^i{Ci), (/>i(c^+,-)

(f>p{Cl), (kp{C-2), , <t>p{Cp), (f>p{Cp+r)

When the quantities c are not completely arbitrary, but are such that

relations among them can be satisfied so as no longer to permit the preceding

forms to be definite, we proceed as follows.

The most general way in which the preceding forms cease to be definite

is by the dependence of some of the equations

/3i</)r (Ci) + I3,(f)r (C.,) + . . . + A«</>r {C,n) =

on the remainder. Let q of them, say those given by r—1,..., q, be de-

pendent on the remaining p — q, so that q> < p: then the conditions of

dependence can be expressed by equations of the form

for r =1,2, ..., q and ?i = 1, 2, . .
.

, m.

The functions of the first kind W, through which the functions
(f>

are

derived, are a complete set of normal functions : when any number of them

is replaced by the same number of independent linear combinations of some

or all, the first derivatives are still algebraical functions. We therefore

replace the functions W^, W.,..., Wq by Wi, w.,..., Wq, where

10, = Wr - A,^rWq+, - A,^rWq+, - ... -Ap_q^,Wj,

for r = 1, 2, ... , g, so that, for all values of z,

<^r{z) ^ (f>r{z) - A,^r(liq+l{z) - A,^r(i>q+2iz) ~ ••• " Ap_q^,(j)p{z).

Hence the functions <I>i , <D».j , . .
.

, <t>q vanish at each of the points Cj, c., ..., c,„.

The original system of p equations in (f)i,..., (pq, ^g+i,..., (f)p,
when

made a system of equations in $i, ..., ^q, (f)q+i, ..., (ppis equivalent to

/3i^, (Ci) + ;8,4>, (C) + . . . + ^m^r (c,„) = 0)

/3a (jis (ci) + /3,cf), (c) + . . . + /3,„,<^,. (c,„,) = OJ

for r= 1, ..., q and s= q+l, ..., p. The first q of these are evanescent ; and

therefore their form is the same as if we had initially assumed that each of
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the functions <^^, ... , ^q vanished for each of the points ^ = c,, ..., c,„, the two

assumptions being in essence equivalent to one another on account of the

property of linear combination characteristic of functions of the first kind.

Suppose, then, that q of the functions 0, derived through functions

of the first kind, vanish at each of the points Cj, ..., Cm.', the number of

surviving equations of the form

/Si</), (Ci) + ^4r {Cd + • • • + /3m</)r (Cm) =

is p — q, and they involve m arbitrary constants /9. Hence they determine

p — q of these constants, linearly and homogeneously, in terms of the other

m-p + q. When account is taken of the additive constant /3o, then* the

function tu contains '))i—p + q+l arbitrary constants; and it is a linear

combination of arbitrary multiples of m — p + q functions, each having p — q+^
accidental singidarities of the first order, p — q of which are common to all

the functions in the condjination.

The functions under consideration, being linear combinations of normal

functions Z of the second kind, have no infinities except at the accidental

singularities ; the branch-points of the surface are not infinities. And it

appears, from the theorem just proved, that there are functions having

only j9 — (/ + 1 accidental singularities, each of the first order, so that the total

number is less than p + l. A question therefore arises as to what is the

inferior limit to the number of accidental singularities that can be possessed

by a function which is uniform on the Riemann's surface and, except at these

accidental singularities, is everywhere finite and continuous on the surface.

Let it be denoted by /a ; then the p equations

for r = 1, 2, .,., j^j, must determine //,— 1 of the constants /3 in terms of the

remaining constant /8, say, B\ and the function thence inferred contains two

constants, viz., the surviving constant /3 and the additive constant, its form

being

A+B Z„ Z„ , Z^
|.

01 (Ci)' <^i(c.), , «/>i(c^)

02 (Ci), 0.(C.,), , </).,(0

</>F-i(Ci), 0^-1 (Co), , 0^_i(c^)

Among the points c,, c.,, ..., c^, the relations

i (})^+r{Ci), (/)^+,- ((.-,), , (f)^+,.{C^) =0

</>i(Ci), 01 (Co),
, 01 (c^)

0;,_l(Ci), 0^-1 (C.,),
, 0^_, (C^)

* This is usually known as Riemann-Rocb'.s Theorem. It is due partly to Riemaun and

partly to Roch ; see references in § 242.
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for r—0, I, ..., J}
— fi, must be satisfied, that h,p—fi+ 1 relations must be

satisfied*.

Since there are fi points c among which jj — /* + 1 relations are satisfied it

follows that the number of surviving arbitrary constants c is, in general, equal

to fjb
— {p — /ub + 1), that is, to 2yu. — j9 — 1. These occur as arbitrary constants

in the inferred function, independently of the two constants A and B : so that

the number of arbitrary constants, in the function with /j, accidental singu-

larities, is 2/i — jj — 1 + 2, that is, 2/j, — p + 1.

Again, the number of infinities of a uniform function of position on a

Riemann's surface is equal to the number of its zeros (§ 194), and also to the

number of points where it assumes an assigned value ; and all these pro-

perties are possessed by any function, with which tu is connected by any

lineo-linear relation. If a be one such function, then another is

au + b

u — d

where a, b, d are arbitrary constants ; and therefore w contains at least

three arbitrary constants, when it is taken in the most general form that

possesses the assigned properties.

But it has been shewn that the number of independent arbitrary con-

stants in the general form of wis 2/jb — p + 1. This number has just been

proved to be at least three, and therefore

2fi-p + 1^3,

or yu ^ 1 4- |jJ.

Thus the integer equal to, or next greater than, 1 + hp is the smallest number

of isolated accidental singularities that an algebraical function can have on a

Riemanns surface, on the supposition that it has no infinities at the branch-

pointsf.

241. The other simple class of uniform functions on a Riemann's

surface consists of those which have no infinities except at the branch-

points of the surface.

They will not be considered in any detail : we shall only briefly advert

to those which consist of the first derivatives of functions of the first kind.

This set is characterised by the theorem :

—

These functions (f){z) are infinite only at branch-points of the surface, and

* This result implies that the relations are independent of one another, which is the case

in (general : but it is conceivable that special relations might exist among the branch-points, which

would affect all these numbers.

t This result applies only to a completely general surface of class p. And, for special forms

of surface of class p, a lower limit for fjL can be obtained ; thus, in the case of a two-sheeted

surface, the limit is 2. (See Klein-Fricke, i, p. 556.)
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tlie total numhei' of infinities is 2/; — 2 + 2n. For, let lo (z) be the most

general integral of the first kind, and let

dwjz)

Near an ordinary point a on the surface we have

w{z) = w (a) + {z — a)P{z— a),

where P is a converging series that may, in general, be assumed not to vanish

for z — a; hence

<f>{z) = P(z-a) + {z- a) P' (z - a)
;

that is,
(f)

(z) is finite at an ordinary point.

Near z=<X) (supposed not to be a branch-point) we have, if k be the

value of lu there,

where P {-) may, in general, be assumed not to vanish for £•= x ; so that

and therefore </> (z) has a zero of the second order at 2^ = oo .

Near a branch-point 7, where m sheets of the surface are connected, we
have i_ i_

lu {z) -w(y) = {z- 7)"' P{{z- 7)"^},

where P may, in general, be assumed not to vanish for z = <y: hence

(j) (z) = (z-y)
m-l p-i 11

^PUz- 7)"^}"^ + ^P'[(z- ^)m|

so that (p (z) is infinite at z = 7, and the infinity is of order m—1.

Hence the total number of infinities is S(/?i — 1), where m is the number
of sheets connected at a branch-point and the summation extends over all

the 7' branch-points. But 2p + l = 'Z (m — 1) — 2n + 3, and therefore the

number of infinities is 2p — 2 + 2n.

We can now prove that the nuniber of zeros of <f)
(z) in the finite part

of the surface is 2p — 2, of which p — I can be arhitrarily assigned.

The total number of zeros is 2;) — 2 -|- 2/?, being equal to the number of

infinities because ^{z) is an algebraical function. But </>(2') has been proved

to have a zero of the second order when z= cc and this occurs in each of the

n sheets, so that 2n (and no more) of the infinities of ^ {z) are given by

2 = GO . There thus remain 2p — 2 zeros, distributed in the finite part of the

surface.

Moreover, the most genci-al function </> {z) of the present kind is of the

form

</, {z) = 04, (z) + C,cf>, (z)+... + C,cf>,, (z),
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where (f>i{2), ..., <j>p{z) are derived through the normal functions of the first

kind. The p — 1 ratios of the constants G can be chosen so as to make <^ {z)

vanish for jj — 1 arbitrarily assigned points. Hence, except as to a constant

factor, an algebraical function arising as the derivative of an integral of the

first kind is determined, save as to a constant factor, by the assignment ofp — 1

of its zeros in the finite part of the plane.

Note*. It may happen that the assumptions as to the forms of the

series in the vicinity of a particular point a, of ao , and of 7 are not justified.

If (a) vanish, we may regard a as one of the 2j:) — 2 zeros.

\^ z— CO on one sheet be a zero of ^ {z) of order higher than two, say

2+5, we may consider that s of the 1p — 2 zeros are removed from the finite

part of the surface to coincide with z=^ cc .

If P [{z — 7)'"} vanish for 2 = 7, the order of the infinity for ^ {z) is

reduced from m — 1 to, say, in—s — l ; we may then consider that s of the

2p — 2 zeros coincide with the branch-point.

242. The existence of functions that are uniform on the surface and,

except at points where they have assigned algebraical infinities, are finite

and continuous, has now been proved ; we proceed, as in | 99, to shew how
algebraical functions imply the existence of a fundamental equation, now to

be associated with the given surface.

The assigned algebraical infinities may be either at the branch-points, or

at ordinary points which are singularities onl}^ of the branch associated with

the sheet in which the ordinary points lie, or both at branch-points and

at ordinary points.

Let the surface have ?; sheets; on the surface let the points d, Co, ..., c,„

be ordinary infinities of orders q^, q., ..., q,„ respectively—we shall restrict

ourselves to the more special case in which q^, q.,..., q^ are finite integers,

thus excluding (merely for the present purpose) the case of isolated essential

singularities; and let the branch-points a^, a.,, ... be of orders 'p^, p.,, ... as

infinities-j- and of orders rj — 1, ?„ — 1, ... as winding-points.

Let Wi, W.2, ..., Wn be the n values of the function for one and the same

algebraical value of z ; and consider the function {w — lu-^) {w — w.,) . . . (w — tUn).

The coefficients of w are symmetrical functions of the values w^, ..., Wn of the

assigned function.

An ordinary point for all the branches w is an ordinary point for each of

the coefficients.

* See Klein-Fricke, vol. i, p. 545.

t A branch-point a is said to be an infinity of order p and a winding-point of order r-1,

when the affected branches in its vicinity can be expressed in the form {z -a) ^ P {{z - a)'*}, where
P is finite when z = a.
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An ordinary singularity of order q for any branch, which can occur only

for one branch, is an ordinary singularity of the same order for each of the

symmetric functions ; and therefore, merely on the score of all the ordinary

singularities, each of these symmetric functions can be expressed as a mero-

morphic function the denominator of which is the same rational integral
m

algebraical function of degree 2 q^ in z.

s = \

In the vicinity of the branch-point a^ , there are ?', branches obtained from

(z-ay'r.Pliz-ay^},
1

(where P is finite when z = a^), by assigning to {z — a^Y' its r^ various values.

Then, as in § 99, the point a^ is no longer a branch-point of any of the

symmetric functions ; and for some of the symmetric functions the point

rti is an accidental singularity of order p^, but for no one of them is it a

singularity of higher order. Hence, merely on the score of the infinities at

branch-points, each of the symmetric functions can be expressed as a mero-

morphic function the denominator of which is the same rational algebraical

meromorphic function of degree S^Jj in z.

No other points on the surface need be taken into account. If, then, P {z)

be the denominator of the coefficients arising through the isolated algebraical
m

singularities, so that P {z) is of degree S qs in z, and if Q{z) be the de-
s = l

nominator of the coefficients arising through the infinities at the branch-

points, then

P {z) Q (z) (w — U\) {W — W„) ...{W — Wn)

is a rational integral uniform algebraical function of w and z : say f{w, z),

m
which is evidently of degree n in w and of degree 2 qs + %p in z.

s=l

Its only roots are w= w^, ..., lu^ ; that is, the function w on the Riemann's

surface is determined as the root of the equation f{iv, z)==0\ and therefore

the equation f{w, z) = is a fundamental Cfpiation, to be associated with

the surface.

Ex. 1. Shew that a fundamental equation for a three-sheeted surface, having e'""^' (for

m= 0, 1, ... , 5) for branch-points each of the first order, is

and tliat a fundamental equation for a four-sheeted surface having the same branch-points

each of the same order is

-(^"-(e-f 3-^2^2) w2-4<yi2->^2i02= 3-|-^222-|9v^4.-+. (Thoma;.)

Every algebraical function on the surface requires its own fundamental

equation ; but, as the branch-points arc the same for any surface, no

fundamental equation can be regarded as unique. Having now obtained

one fundamental equation for algebraical functions on the surface, all the

investigations in chap. XVI. may be applied.
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The preceding sketch, in ^§ 240—242, of algebraical functions is intended only as an

iutroduction ; the developments are closely connected with the theory of Abelian functions

and of curves. The propositions actually given are based upon

Riemann, Theorie der AheVschen Function, Ges. Werke, pp. 100—102;

Roch, Crelle, t. Ixiv, (1865), pp. 372—376;

Klein's Vorlesungen iiher die Theorie der elliptischen Modxdfunctionen., (Fricke), vol. i,

pp. 540—549

;

for further information reference should be made to the following sources :

—

Brill und Noether, Math. Ann., t. vii, (1874), pp. 269—310

;

Lindemann, Untersuchnngen ilbcr den Riemann-RocKschen Satz, (Leipzig, Teubner,

1879), 40 pp.

;

Brill, Math. Ann., t. xxxi, (1888), pp. 374—409; ib., t. xxxvi, (1890), pp. 321—360.

E.V. 2. Prove that the algebraical equation which subsists (§ 118) between two

functions u and v of a variable z, doublj'-periodic in the same periods, is of class either

zero or unity ; that it is of class unity, if only one incongruent value of z correspond to

given values of u and v ; and that it is of class zero, if more than one incongi'uent value of

2 correspond to given values of u and v. (Humbert, Glinther.)

Ex. 3. If between two uniform analytical functions P and Q, which have an isolated

point for their essential singularity, there exist an algebraical relation, then, when either

is regarded as the independent variable, the connectivity of the Riemann's surface for the

representation of the other is not greater than three. (Picard.)

243. We now pass to the consideration of another class of functions

associated with a Riemann's surface.

The classes of pseudo-periodic functions, which have been discussed,

originally occurred in connection with the functions that are doubly-periodic

functions of the first kind ; and it may, therefore, be expected that, in a

discussion of functions which are multiply-periodic, similar pseudo-periodic

functions will occur.

These functions, in particular such as are the generalisation of doubly-

periodic functions of the second kind, have been considered in great detail by

Appell* ; they may be called factorial functions f.
But the essential difference between the former classes of functions and

the present class is that now the argument of the function is a variable of

position on the Riemann's surface and not, as before, an integral of the first

kind. It is only in subsequent developments of the theory of these functions

that the corresponding modification of argument takes place ; and a factorial

function then becomes a pseudo-periodic function of those integrals of the

first kind.

* " Sur les int6grales des fonctions a miiltiplicateurs... " (Mem. Cour.), Ada Math., t. xiii,

(1890), 174 pp. This volume is prefaced by an interesting report, due to Hermite, on Appell's

memoir.

They are also discussed in Neumann's AheVschen Functionen, pp. 273—278 ; in Briot's Theorie

des fonctions Aheliennes; in a memoir by Appell, Liouville, 3"^ Ser., t. ix, pp. .5—24 ; and they

occur in a memoir by Prym, Crelle, t. Ixx, (1869), pp. 354—362.

t Fotictions a niultiplicatctirs, by Appell.
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We consider a Riemann's surface of connectivity 2p + 1, reduced to simple

connectivity by 2p cross-cuts taken, as in § 181, to be a^, bi, Co + tto. ^a. •••,

Cp + cip, hp. The functions already considered are such that their values

at points on opposite edges of a cross-cut differ by additive constants,

which are integral linear combinations of the cross-cut constants, necessarily

zero for the portions c in the case of all the functions ; the values of the

constants for the cuts a and the cuts h depend upon the character of the

functions and are simultaneously zero only when the function is a uniform

function of position on the Riemann's surface, that is, is a rational function of

w and z when the surface is associated with the fundamental equation

F{w, z) = 0.

A factorial function is defined as a uniform function of position on the

resolved Riemann's surface, finite at the branch-points no one of which is at

infinity ; all its infinities are accidental singularities, so that it has no

logarithmic infinities : and at two (practically coincident) points on opposite

edges of a cross-cut the quotient of its values is independent of the point,

being a factor (or multiplier) that is the same along the cut for all parts which

can be reached without crossing another cut.

Then /or any por-tion c the factor is unity, for any cut a it is the same along

its whole length, and for any cut b it is the same along its luhole length.

In order to consider the effect of passage over another cross-cut on the con-

stant factor, we take the figures of §§ 196,

230. Where a^. and b^ intersect, we have

F{z,) = mrF{z,), F{z,) = m/Fi^z,)
;

F{z,) = n;F(z,), F(z,) = n,F(z,)
;

where m^, w/; w^, n/ are the constants

for the portions of the cuts a^ and b,..

From these equations it follows that

F(z,) = nrmr'F{z.^,

and also =nr'm.rF{z.^,

so that nrtUy' = n,.'m,..

Again, where Cr+i cuts br, we have

F{z:) = n;F{z,X F(z:) = n,F{z,),

so that, as F (zr') = F {z^') when the points are infinitely close together, we

have

F(z,;) = '^F(z,X

Fig. 85.

or the multiplier Ir for Cr+i is Ir+i —

whence

F.

mr
— — ti

n
r+l-

30
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Now fli is met only by bi and by no cut c : so that vi^ = nii'. Hence ^i = 71/

,

and therefore lo = 1. Hence m. = m/ ; n^ = n^' and therefore ^3 = 1; and so on,

so that

the results necessary to establish the proposition.

We shall therefore take the factor along a^ to be iiir, and the factor along

hr to be iir, for 7' = 1, ...,p: and, by reference to § 196, the function at the

positive edge is equal to the function at the negative edge multiplied by the

factor of the cut.

244. Before passing on to obtain expressions for factorial functions in

terms of functions already known, we may shew that all factorial functions

with assigned factors are of the form

^ {z) R {w, z),

where ^ (z) is a factorial function with the assigned factors and li (w, z) is a

function of lu and z, uniform on the Riemann's surface. For if ^ {z) and

4> {z) be factorial functions with the same factors, then ^'' {z) -^ <X> {z) has its

factors unity at all the cross-cuts, so that it is a uniform function of position

on the surface and is therefore* of the form R{iu,z). It is therefore sufficient

at present to obtain some one factorial function with assigned factors

mi, ..., nip, rij, ..., iip.

Let iUi{z), w^iz), ..,, Wp{z) be the p normal functions of the first kind

connected with a Niemann's surface, with their periods as given in § 235.

Let TTj {z), instead of vr-^.. of § 287, denote an elementary normal function

of the third kind, having logarithmic infinities at «! and ^^ such that, in the

vicinities of these points, the respective expressions for ttj {z) are

- log {z - aO + P (2 - tti),

and + log {z -^,) + Q{z- ^,) ;

then the period of ttj (z) for the cross-cut a^ is zero, and the period for the

cross-cut br is

for ?' = 1, 2, ..., J).
It therefore follows that ^1(2^), where

<I>^(2) = 6-1(2),

is uniform on the resolved Riemann's surface : it has a single zero (of the first

order) at ySi and a single accidental singularity (of the first order) at a^
;

its

factor for the cross-cut a^ is unity and its factor for the cross-cut b,. is

* It may be pointed out that this result is an illustration of the remark, at the beginning of

§ 243, that the factorial functions have a uniform function of position on the surface for their

argument and not the integrals of the first kind, of which that variable of position is a multiply-

periodic function.
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The function <I>i (z) may therefore be regarded as an element for the repre-

sentation of a factorial function.

Let O (z) be a factorial function on the Riemann's surface with given

multipliers m and n ; and let it have a number q of zeros ^i, /3.., ..., ^^, each

of the first order, and the same number q of simple accidental singularities

ai, as, •••, ciq, each of the first order, and no others. Then ^'(z)/<t>{z) has 2q

accidental singularities ; in the vicinity of the q points y8, it is of the form

1 ^ , ^.
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for ? = 1, 2, ..., p; and then the hitter equations give

Q 1 ^
S {w, (^,0 - lUr (a,)] = ilog n,. - ^-^ ^ (Bk, log 7?ijt),

s=l ^'^^k = l

for ?' = 1, 2, ..., ^.

Apparently, \r is determinate save as to an additive integer, say Mr ; and

the value of ^log?i,. is determinate save as to an additive quantity, say Nyiri,

where Nr is an integer. The left-hand side of the derived set of equations

being definite, these integers N.,. and My must be subject to the equations

'rriNr= i M.Bkr
k = l

for r— 1, 2, ..., p ; and therefore, equating the real parts (§ 235), we have

I M,p,r = 0,
k=l

SO that I I MkM,pk,. = 0,
A- = l »• = !

which, by § 235, can be satisfied only if all the integers M,. vanish and there-

fore also the integers iV,..

Hence when the foregoing equations connecting the quantities a, 13, log n,

log m are satisfied, as they must be, for one set of values of log n and log w,

that set may be taken as the definite set of values ; and the only way in

which variation can enter is through the multiplicity in value of the functions

Wi, ..., lUp, which may be supposed definitely assigned.

The expression for the function ^{z) is therefore

1 \ p
2 TTs(z] + -. 2 {M)*(2)logm*}

Ae'='
'*'=^

;

the q zeros /3 and the q simple poles a being subject to the equations

Q \ P
S [Wr i^s) - Wr (tts)] = ilog W^. - ^r—. t {B^r log mu).

Corollary I. The function <|) {z) is a rational function of position on

the surface, that is, of lu and z, if all the factors n and m be unity. Such a

function has been proved (§ 194) to have as many infinities as zeros; and

therefore integers N-^, ..., iV/, 1//, ..., Mj^ exist such that, between the zeros and

the infinities of a rational algebraical function of w and z, the p equations

p
X {tUr (^s) - iVy (a,)} = TriN; - 2 M^'B^r,
s=l k=l

for r—1, 2, ..., p, subsist*.

The function <l> (z) then corresponds to a rational algebraical function,

when regarded as a product of simple factors, in the same way as the expres-

sion (§ 241) in terms of normal elementary functions of the second kind

corresponds to the function, when regarded as a sum of simple fractions.

* Neumann, p. 275.
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Corollary II. Every factorial function has as many zeros as it has

infinities.

For if a special function ^(^), with the given factors and possessing q zeros

and q infinities, be formed, every other function with those factors is included

in the form
F(z) = ^(2)RUv,z),

where R (w, z) is a rational algebraical function of lo and z. But R {w, z) has

as many zeros as it has infinities ; and therefore the property holds oi F{z).

Further, it is easy to see that the equations of relation between the zeros,

the infinities and the multipliers are satisfied for F {z). For among the zeros

and the infinities of <I> {z), the relations

? \ p
S [tU, {I3s) - tOr (a.)} = i log ??r - o • S (5fc, log Wfc)

.s = l -TT* k = l

are satisfied ; and among the zeros and the infinities of R (lu, z) the relations

S W,{^:)-lUr{0i:)=iriN;- I {BkrM^)
s= \ lc= \

are satisfied, where NJ and the coefficients M' are integers. Hence, among

the zeros and the infinities of F {z), the relations

1 ''

S [wr (zero) - lu,. (^ )1 = i(log ??,. + N; 2-Tri) - ^ . 1 [Bjc, (log /«& + ^Mkiri)]

are satisfied, giving the same multipliers n,. and m,. as for the special function

Corollary III. It is possible to have factorial functions without zeros

and therefore luithout infinities : hut the multipliers cannot he arhitrarily

assigned.

Such a function is evidently given by

derived from ^{z) by dropping from the exponential the terms dependent

upon the functions ir^z). The relations between the factors are easily

obtained.

245. The effect of the p relations

1 1 I'

2 [wr (yS,) - iVr (a,)} = I log rir-^ . S {Bkr log m^)

subsisting between the factors, the zeros and the infinities of the ftictorial

function, varies according to the magnitude of q.

If q be equal to or be greater than 2), it is evident that all the infinities a

and q—p of the zeros yS can be assumed at will and that the above relations

determine the p remaining zeros. The function therefore involves 2</ - p
arbitrary elements, in addition to the unessential constant A.
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In particular, when q is equal to p, the infinities a can be chosen at will

and the zeros /3 are then determined by the relations. It therefore appears

that a factorial function, whicJi Jias only p infinities, is determined by its

infinities and its cross-cut factors.

When q is greater than p, say =p + r, then the q infinities and r zeros

may be chosen at will. By assigning various sets of r zeros with a given set

of infinities, various functions <t>i {z), <!>., {z), . . . will be obtained all having the

same infinities and the same cross-cut factors. Let s such functions have

been obtained ; consider the function

^ {Z) = IJL,^, (Z) + fl,(t), {z)+...+ fXs^s (2)

it will evidently have the assigned infinities and the assigned cross-cut

factors. Then s — 1 ratios of the quantities
fj,

can be chosen so as to cause

<I> (z) to acquire s—1 arbitrary zeros. The greatest number of arbitrary

zeros that can be assigned to a function is r, which is therefore the gi'eatest

value of s — 1. Hence it follows that r+1 linearly independent factorial

functions ^i{z),..., ^,.+1(2) exist havinr/ assigned cross-cut factors and p+r
assigned infinities ; and every otlier factorial function witJi those infinities and

cross-cut factors can he expressed in the form

^l,^, {z) + fi.^., {z)^...+ /z,+i(&,+i {z),

where /^i, ..., /Lt,.+i are constants wJiose ratios can he used to assign r arbitrary

zeros to the function.

These factorial functions are used by Appall to construct new classes of functions in a

manner similar to that in which Riemann constructs the Abehan transcendents. Their

properties are developed on the basis of algebraical functions ; but as only the introduction

to the theory can be given here, recourse must be had to Appell's interesting memoir,

already cited.

246. Various examples of functions defined by differential equations of

the first order have occurred, all the equations being of the form

where i'' is a rational, integral, algebraical function of lu and -j— . This is a
dz

special form of the more general equation

of the fir.st order : the theorem, that such an equation determines a function,

and the discussion of the characteristics of the function so determined, belong

to the theory of differential equations. In this place we shall consider* the

special form of differential equation, not in its generality but only in the

limited instances in which the function, determined hy it, is a uniform function

of z.

* The following investigation has boen placed here and not earlier, in order to avoid inter-

rupting the development of the preceding theory.
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Let the equation be of the inth degi-ee in , , supposed irreducible;

when arranged in powers of the derivative, it takes the form

Because tu is a uniform function of z, it has, qua function of z, no branch-

points ; and j has, qua function of z, no branch-points. Hence infinities of

w are infinities of -, and vice versa : and therefore -j— cannot become infinite
az dz

for a finite vahie of w. It follows that the coefficients /i {lo), f.,{w), ... of the

various powers of the derivative are integral functions of w ; they are known,

by the character of the equation, to be rational and algebraical.

Moreover all the general properties possessed by w are possessed by its

reciprocal 11= — . When u is made the dependent variable, we have

(duV'' (duY-^ ..^/1\ fduy-' ,./l\

as the equation determining u. Now -^ cannot become infinite except for

infinite values of u, for u is a uniform function of z ; hence the coefficients of

du
powers of -j- must be rational integral algebraical functions of u. This con-

dition can be satisfied only if/s(w) be of degree in w not higher than 25.

Hence, denoting — by TT and -3- by U, we have the theorem :

—

I. Tlie differential equation

F{W,w)= W'^ + W^-'f, (w) -[- Tf"^--/s (w) -f . . . =

cannot determine w as a uniform function of z, unless the coefficients

/lO^X /^(H fiw\...

are rational integral algebraical functions of w of degrees not higher than

2, 4, 6, ... respectively : and when this condition is satisfied, it is satisfied also

for the equation

U>" - U"'-^ u'f 1^] + W^'-' u'f, 1^] - . . . = 0,

tuhich determines u, the reciprocal of lu.

247. The equation, in the first instance, determines W as a function

of w ; and values of lu may be ordinary points or may be branch-points

for W, qua function of w. In the vicinity of such points, it is necessary

to secure that w, as depending upon z, shall be uniform.
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First, consider finite values for w: let w = <y. For points in the

immediate vicinity of that value, the values of W are not infinite : they

may be

(i) distinct from one another, and no one of them zero at the

point ; or

(ii) distinct from one another and at least one of them zero at the

point; or

(iii) not distinct from one another, so that it; = 7 is then a branch-

point of the function.

(i) Let any value F, a constant different from zero, be the value of

W for iu='y. Then in the vicinity we have

and therefore Tdz =
., ,

^ . r— 7 r;—
l+\{tv — y)+ijL{tu — jy+...

= [1+ 2V (w - 7) + 3/ (w - 7)2 + ...} diu,

where X', /u-', . . . are constants. Hence if Zo be the value of z when w = 7,

we have
r{z-Zo) = w-ry + \'(to- 7)- + fl' {w -yf + ...,

and the inversion of this equation gives

w - y = T (z - Zo) + P (z - z,),

that is, w is then a uniform function of z in the vicinity of Zq. No new

condition, attaching to the original equation, arises.

(ii) Since the values are distinct from one another, and at least one

of them is zero for w = 7, we must have

-^ = a {w - y^ [l + b (lu - y) + c (w - yf + ...]

for at least one of the values of W, n being an integer. Now as 7 is not a

branch-point, it follows from § 97 that n is equal either to 1 or to 2.

First, if n be unity, we have

{1 + b' (w — 7) + c' (w — 7)- + ...}= a dz,
w — 7

so that log {w-y) + F{w-y) = az,

the constant of integration being absorbed in P (w — 7). Thus

(tu - 7) e-P(«'-v) = e«^,

and therefore, inverting the functional relation,

that is, w is a uniform function in the vicinity of its own value 7, but it can

acquire this value only for logarithmically infinite values of z. No new-

condition, attaching to the original equation, arises.
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le 2, so that

= a(w — 7)- {l+h(tu — 'y) + c (vj - 7)'- +...},

Secondly, if n be 2, so that

dw
dz

then, proceeding as before, we have

1 — h loe: (w - 7) + Q iiu — 7) = az.
w; — 7

If 6 be different from zero, then, as on pp. 474, 475, it can be proved that w
is not uniform in the vicinity of 2^ = x . Hence h must be zero, so that

iu-y = >S' (—
J

,

' az \azj

giving ^u as a uniform function of z in the vicinity of its own value 7. In

this case w can acquire the value 7 only for algebraically infinite values of z.

The new condition, attaching to the original equation, will be included in a

subsequent case (III., § 248).

(iii) If 'm; = 7 be a branch-point, then two cases arise according as W
is not, or is, zero : it cannot be infinite, because 7 is not infinite.

If W be not zero, we have the value of W in the form

1 2

W = a {1 + b {w - y)P -]- c{iv - y)P + ...},

where j;? is a positive integer. The integral of this equation is of the form

1 -?

(w-y){l + h' {w - y)P + c {w - yY +...]= a{z - a),

and this makes w uniform in the vicinity of z = a, only if powers of w — y
with non-integral indices be absent from the last equation and therefore

also from the former. When the fractional powers are absent from the

former, the implication is that w = y is really not a branch-point for W,
qua function of w, but only that more than one of its values are equal to

a ; then iv is a uniform function of z, and therefore W is a uniform function

of w, and vice versa.

If however W be zero at the branch-point, then its value in the

vicinity takes the form

q q+l q+2

W=a{w-y)P + h(7U-y) P + c (w - y) ^ +...;

and, as W cannot be infinite for a finite value of w, the fraction q/j) is

positive. It may be less than 1, equal to 1, or greater than 1. Hence :

—

II. If any finite value 7 of w be a branch-point of W regarded as a

function of w, then, in order tJiat w vuii/ be uuifurni, all the values of W
affected by the point must be zero for w = 7.
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248. If q;p < 1, the integration of the equation leads to a relation of the

form

5_a = rt'(?y-7) ^ +6'(w-7) p +

in which all the indices are positive. The inversion of this relation

makes iv uniform in the vicinity of z = a., only ii
i)
— q be unity, that is,

if the zero of W as a function of w he of degree 1 — -
, when the degree is

less than unity ; and the value of z is finite.

If q/p = 1, then we have

W =a{^u-y)i-h (w - j)^^p + c (lu -yf p+ ...

1
1

'I

and therefore a dz = ^ ^^
•{ 1 + a' {w - y)" + h' (lu - y)P + ...}

w — y
1 -2

so that az = log (lu -y) + a" {w - yf + h" {w - y)P + . . ..

uz

Let w — y= vP, Z=eP
; then this equation becomes

p log Z =2) log V + a"v + h"v- + . .
.

,

that is, Z = ?;e^«+M«H... ^ ^p (^)

;

whence, by inversion, we have a relation of the form

v = zq{Z),

az

SO that tu — y = e"^Q (eP),

shewing that w is uniform for values in the vicinity of w — y: it is simply-

periodic in that vicinity, the period being — , and it can acquii-e the value

y only for (logarithmically) infinite values of z.

If q/p > l,\et q—2) + 7i, where n and p are prime to one another ; then we

have

W^a(w-y) P + h(w-y) p +...,

so that

adz={(w-yy^~P + b'(w-y) ^ + c'{iu-y) P+...]dw,

n n-1

or z=a{w-y) P + ^(2U -y) p + ...

1 1

+ 8{w-y) P + e log (w -y) + F {{w - y)p].

Hence lu can acquire its value y only for (algebraically) infinite values of z.

As a first condition for uniformity, the coefficient e must vanish, that is, in

. dz .

'

the expansion of -^ in powers of (lu — y)P, there must be no term involving

(w — y)~^. For let

z = Z->\ w-y = vP,
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SO that V" = Z''{a + I3v+ ...+ Sv''-^ + ev" log v + v''P (v)].

Then, if V = iiZ,

we have w" = Q (uZ) + eu"^Z"^ (log u + log Z),

where Q is a series of integral powers of uZ converging for sufficiently small

values of \uZ\.

Since z is infinitely large for sufficiently small values of [lo — yl, we have

Z infinitcsinially small. When Z = 0, the value of Z" \og Z in zero; but for

values of Z that are not zero, the (juantity has an intinite number of different

values of the form
Z" (Log Z + 2m7ri),

and there will then be an infinite number of distinct equations determining

w, one corresponding to each of the values of m. Hence u (and therefore v,

and therefore also w — y), in that case, has an infinite number of distinct

branches in the vicinity of Z = ; then w is not uniform in the vicinity of

Z = 0. As a first condition for uniformity, we must therefore have e = 0.

We take e = : then the equation between z and v, where w — y — v^\ is

z = v~'"' {a + /3y + yv- + ...],

the inversion of which can give v (and therefore can give w — y) as a uniform

function of z, only if??, = 1. When ?i= 1, we have w — y uniform ; and lu can

obtain its value y only for algebraically infinite values of z.

Combining these results, we have the theorem

:

III. IJ for a finite value y of w, ivliich is a branch-point of W, the

equation in W has a zero for p branches, then, in order that w may be uniform,

the degree of that zero is of one of the forms 1 ,1, and I + ; and if it be

of the form* 1 + -^
, the term in (w — 7)"' must be absentfrom tJie expression of

dz . .

-J- m powers oj w — y.

249. Only finite values of lu have been considered. For the consideration

of infinite values of w, we pass to the equation in w : and only zero values of

u need be taken into account. If w be uniform, u also is uniform and vice

versa ; hence :

—

IV. In order that t/te function w may be uniform wlten its value tends to

become infinitely large, the conditions in II. and III. must apply to the equation

in u for the value u = 0.

The branch-points of W, regarded as a function of w, as well as points

where the roots though ecjual are distinct as in II., are (in addition possibly

to u = 0) the common roots of the equations

f(W,«) = o.
'^Yw"^

= o.

* The case p — 1 occurs in (ii), § 247 : it will now be included in III.
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If, then, the conditions in II. and III. he satisfied for all these points, and if

the conditions in IV. he satisfied for u = 0, that is, for infinite values of iv, then

the integral of the equation

is a uniform function of z.

250. The classes of uniform functions of z can be obtained as follows.

The function, inverse to w, is given by the equation

dw '

and therefore ^~
I w '

Let the Riemann's surface for the algebraical equation

f{W,io) = 0,

regarded as an equation between a dependent variable W and an independent

variable w capable of assuming all values, be constructed ; and let its con-

r rl

nectivity be 2P + 1. Then \^ is the integral of a uniform function of

position on the surface ; and if Wq be a value at any point, then all other

values at that point differ from iv^ by integral multiples of

(i) the moduli of the integral at the 2P cross-cuts,

(ii) the moduli of the integral at such other cross-cuts as may be necess-

ary on account of the expression of the subject of integration

as a function of w.

Hence the argument of w, a uniform function of z, is of the form z -f Smfl,

where the coefficients in are integers and the quantities fi are constant.

It has already been proved that uniform functions of z with more than

two linearly independent periods cannot exist ; hence there are at the utmost

two moduli, and therefore, taking account of the results of §§ 235—242, it

follows that the uniform function of z is either

(i) a douhly-periodic function of z ; or

(ii) a simply-peHodic function of z ; or

(iii) a rational function of z.

Further*, the class of the Riemanns surface for the equation f{W, iv) =0 is

either unity or zero ; for in what precedes, the value of P is not gi-eater than

unity, when the limitations as to the possible number of periods are assigned.

It is now ea.sy to assign the criteria determining the class of functions to

* This result is due to Hermite, and is stated by him in a letter to Cayley, Lond. Math. Soc,

t. iv, (1873), pp. MS—345. The limitation of the class to zero or unity is not, in itself, sufficient

to ensure that iv is a uniform function of z.
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which w belongs, when it is known to be a uniform function of z satisf3'ing the

differential equation.

(i) Let w be a uniform doubly-periodic function. Take any parallelogram

of periods in the finite part of the plane : all values of z within the parallelo-

gram are finite, and all possible values of w are ac(]uired within the parallelo-

gram.

Let 7 be a finite value of w for a point z = c\ then, since the function is

uniform, we have

w--f = {z- c)'" P{z- c),

where w is an integer and P{z — c) does not vanish for z = c: and, b}' inversion,

we also have
1 1

Z-C = (tU - ry)'^ Q {(W - y)""},

where Q is finite but does not vanish for w = y. I

Now ^^ = {z- c)'»-^ [mP {z-c) + {z- c) P' (z - c)]

= (w-y) "> Q, {{w - y)"'],

where Q, does not vanish for w = y.

If m = 1, then y is an ordinary point for -^ .

If m > 1, then 7 is a zero branch-point for W, of index-degree equal to

1-1.
m

If, in the vicinity of z = b, w be infinitely large of order q, then z = h is a

zero of u of order q, so that we have

u = {z- by P, (z - b)
;

as in the first of these cases, it follows that

du 1--
r» / -V

where P., does not vanish for u = 0.

Hence it follows that if, for finite or for infinite values of w, all the branch-

points for W be zeros and each of them have its degree less than unity, the

index of the degree being of the form 1— , where /) is the number of

branches of W affected, then the uniform function w is doubly-periodic.

(ii) Let IV be a uniform simply- periodic function, of period 6> ; then it is

known (§ 118) that w can be expressed in the form

Take any strip in the 2^-plane as for a simply-periodic function, bounded by
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lines whose inclination to the axis of real quantity is Itt + arg. &>, as in | 111 :

in this strip the function acquires all its values. The variable Z is finite in

the strip except at the infinite limits ; at one infinite limit we have z — kiw,

where k is positive and infinitely great, and then Z=e~^''^—0, and at the

other we can take z = — kiw and then Z= e-"^ = oo ; so that Z = and oo at

the infinite limits.

Let 7 be a finite value of tu for a finite point z = c and let (7 = e "
: then

we have
^U-r^=f{Z)-f{G)

= {Z-Cyg{Z-C),

where g{Z —G) does not vanish for Z=C and (/ is a positive integer.

When q — ^-, we have

where G does not vanish for w = 'y; and then

"^f =:—Z[g{Z-G) + {Z-G)g'(Z-G)}
clz (O

where H does not vanish for w = y; the point w = <y is an ordinary

. ^ „ dw
point lor -, .

When g > 1, we have
1 1

Z-G = {w-ry)~^ G[{w-ryyi},

where G does not vanish for tu = <y; and then

p=^'^J^Z{Z-Gy-^qgiZ-G) + (Z-G)g'(Z-G)}
az a>

1 1

= {tu-yi~"h{(w-j)i},

where h does not vanish for w = y. Such a point is a branch-zero for q branches

of W, and its index-degree is 1
.

If the value of w be infinite for the finite point z = c, then we have

u^{Z-G)'Jg{Z-G).

CLlt

If q = I, the point is an ordinary point for ^ ; if ry > 1, it is a branch-zero

for Q branches of -^ and its index-degree is 1—

.

^ dz ^
q

When 2: = GO , then Z=0 or Z=cc. The value of the function w for

infinite values of z is either finite or infinite.

Let w be a finite quantity 7, for infinitely large values of z. When Z is

very small, we have
w-y = Z'if{Z),
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where ^ is a positive integer and /docs not vanish for Z — 0; and then

1 1

Z=(w-y)^g[{iv-y)^],

where g does not vanish for w = y. Then

= Zih{Z),

where h does not vanish when Z = {); and therefore

^={^u-y)P,{{w-yy'],

or the point ?w = 7 is a branch-zero of q branches of -,— and its iudex-degi'ee
(ajZ

is unity. And when Z is very large, we have

lU
-7=^-'/,(i).

where g is a positive integer and /i is finite and not zero for Z = 00 . As

before, it is easy to see that

^^={ro-y)P.^[{rv-y%

or the point vj — y is a branch-zero of q branches of , and its index-degree

is unity.

If, however, the value of w be infinite for infinitely large values of z, then

we have

u = Z'iMZ)

when Z is very small, and u = Z~if^_ i-^\

when Z is very large. As before, the point w = is then, in each case, a

branch- zero of q branches -^ , and its index-degree is unity.

Hence it follows that if all the branch-points of W be zeros, if one of them

have its degree equal to unity, and if all the other branch-zeros are of index-

degree less than unity, the index of the degree being of the form 1
,

where jy is the number of branches of W affected, then the uniform function

w determined by the equation /(Tr, w) = is simply-periodic.

(iii) Let ^u be a rational function of z; then it can be expressed

in the form

where /i and/o are rational, integral functions o^ z.
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Finite values of w can arise from values of z in the vicinity of (a) a zero of

y*! {z), say ^^ = c, or (6) an infinity ofjC {z)- For the former, we have, if 7 denote

the value of z,

lu-r^^^z- cY^F{z - c),

where F does not vanish for z = c: and then, inverting the functional

relation,
1

^ — c = (w — 7)'" P (w — 7),

where m is a positive integer which may be 1 or greater than 1.

Now ^^ = (^ - cY'-' [mFiz -c) + (z-c) F' (z - c)],
dz

so that, if m = l, we have ~J'~^ ('^^ ~ 'y)'

Avhere Q does not vanish when w = 7 ; and, if 7?i > 1, we have

where Qi does not vanish when w = y. Hence iu = y is either an ordinary

point for W or a branch-point at which m branches vanish, the index-

desree of the zero being 1 .

For an infinity of /, (z) we must have z = x ; and therefore, for

infinitely large values of z, we have

w — y = z~^ F

where F does not vanish when z = 'X) . Proceeding as before, we have

where ^1 does not vanish when w = y. If X = 1, w = 7 is an ordinary point,

a case which has been considered; if \>l, w = y is a branch-point for

W, at which \ branches vanish, and the index-degree of the zero is 1 + -

.

Infinite values of w can arise from values of z that are infinitely

largo—in connection with /j {z)—or from values of z that are zeros of the

denominator. For the former, we have

u=z-^f(^

where X is a positive integer and F does not vanish for 2; = 00 ; and then

proceeding as before, we have

du i + . „, r.

dz
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SO that, if X = l, u = is an ordinary point, a case of which account has

already been taken; and if X>1, ii = (that is, w=X)) is a branch-point

for U at which A, branches vanish, and the index-degree of the zero is 1 + r •

A,

Moreover, as w is a rational function, we do not have both w = 7 and u =

for infinite values of z, unless (possibly) ^ = ao is an essential singularity of

the function.

It thus appears that, when w is a rational algebraical function, there is

only one value of w which, being a branch-point for W, gives m branches

vanishing, the index of the degree of the zero being 1 + — ; all other branch-

points of W give zeros that are of degree-index less than unity, each being of

the form 1— , where n is the number of branches that vanish at the point,
n ^

251. The following is a summary of the results that have been ob-

tained :

—

I. In order that an irreducible differential equation of the first order

may have a uniform function for its integral, it must be of the form

F{w,w)= (^£y

+

(*f
)"""/,

(•») +...+/.. («.) = 0.

where /i (w), /, (w), ...,/,„ (w) are rational, integral, algebraical functions of w
of degrees not higher than 2, 4, 6, ..., 27/i respectively: and this condition as

to degree is then satisfied for the equation

G{U,u) = f(--,U,-)

^^r-(sr-/.c>-±-/..(D--
II. If any finite value of w be a branch-point of W when regarded

as a function of w determined by the equation F{W, iu) = 0, then all the

affected values of W must be zero for that value of w ; and likewise for the

value w = in connection with the equation

G(U,ti) = 0.

III. If for a value of w, which is a branch-point of W when regarded as

a function of w, there be a multiple root of F(W, w) = which is zero for n
branches, the index-degree for each of those branches is of one of the forms

1
, 1, 1+-; and likewise for the value u = in connection with then n

equation G{U,u) = 0.

IV. The class of the equation F{W,w) = 0, and therefore the class of

the Riemann's surface associated with the equation, is either zero or unity.

F. 31
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V. If all the multiple zero-roots of W, for finite values or for an

infinite value of tu, be of index-degree less than unity, each of them being of

the form 1 — -
, then w is a uniform doubly-periodic function of z.

VI. If, for some value of w, there be a single set of m multiple zero-

roots of index-degree equal to unity, and if, for finite values or for an

infinite value of w, all the other sets of multiple zero-roots have their

respective index-degrees less than unity and of the form 1
, then w is

a uniform singly-periodic function of z.
,

VII. If, for some value of to, there be a single set of in multiple zero-

roots the index-degree of which is equal to 1-1— , and if, for other values

of w, all the other sets of multiple zero-roots have their respective index-

degrees less than unity and of the forms 1
, then w is a rational

algebraical function of z.

In all other cases the equation, supposed irreducible, cannot have a

uniform function of z for its integral. If the equation have a uniform

function of z for its integral, and the preceding conditions in V., VI. or VII.,

be not satisfied, the equation is reducible*, that is, it can be replaced by

rational equations of lower degree to which the criteria apply.

Note. The preceding method may be considered as essentially due to Briot and

Bouquet.

There is another method of proceeding, which leads to the same result. It is based

upon Hermite's theorem (§ 250), proved independently ; and its development will be found

in memoirs by Fuchsf and Eafiyf. A reference to the memoirs which have been quoted

shews that the equation F'{ W,to) = 0, when it is satisfied by a uniform function oi z, can be

associated with the theory of unicursal cm'ves and of bicursal curves.

[d^)
=/('")'

252. The preceding general results will now be applied to the particular

equation

/dwY

V'

where y is a rational, integral, algebraical function of degree not greater

than 2s,

Let / (w) = \' {w - ay {w - by ...,

* This investigatiou is based upon two memoirs by Briot et Bouquet, Journ. de VEc. Poly-

tecliniquc, t. xxi, Call, xxxvi, (1856), pp. 134—198, 199—254 ; and upon their Traite des foiictions

elHptiques, pp. 341—350, 376—392. A memoir by Cayley, Pi-oc. Lond. Math. Soc, vol. xviii,

(1887), pp. 314—324, may also be consulted.

t Comptes Rendus, t. xciii, (1881), pp. 1063—1065; Sitzungsher. d. Akad. d. Wiss. zu Berlin,

1884, (ii), pp. 709, 710.

+ Annales de VEc. Norm., 2'"^ Ser., t. xii, (1883), pp. 105—190; ib., 3'"« Ser., t. ii, (1885),

pp. 99—112.
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where \, a, b, ... are constants and I, m, ... are integers, and

I + m + ... ^2s.

du
The eu nation in a[= - ) and ^ is

\ w) dz

(- 1)^ i^^ = XUi"-''^-'''-- (1 - any (1 - buy\ .

.

;

thus the values of -^^ and -r- are respectively
dz dz L J

-y- ='K(w — ay (w — b)^ ...,

--^=\u'' « « " {\-auy{\-buy ....

Because the integral of the equation must be uniform, each of the indices

z .... -, — .... must be oi one ot the lorms 1
, 1, or 1+-;

s s s s p p
and J) may be 1, but the point is then not a branch-point. Then the

smallest value of ^ is 2 and the least index is therefore ^ ; hence, as

I m ^ _

s s

there cannot be more than /our distinct (that is, non-repeated) factors va. f{iu).

Hence

(a) if one of the indices , —,..., be greater than 1, each of the

other indices must be less than 1, unless it be 2 when all

the others are zero

;

(6) if one of the indices -, —,..., be equal to 1, then either each of
s s

the other indices must be less than 1, or one other is equal to

1, and then there is no remaining index
;

(c) if each of the indices -, —,..., be less than 1, then 2 — ...
s s s s

may be less than 1, or equal to 1, or greater than 1.

These cases, associated with the possible numbers of factors, will be taken

in order.

I. Let there be a single factor ; the equation is

and therefore / — -—
j
= \Hi^~^ (1 — any.

Now ", not being 2, is either 1
, 1, 1 -f - ; and these forms cover

s ° s s

also the possible forms of 2—

.

31—2

c
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If / = s — 1, then one index (for w = a) is equal to 1
, and the other

(for a = 0) is equal to 1 + -
: the function w is rational and algebraical in z,

and z is infinite only when w= oo: hence the integral w is a rational, integral,

algebraical function of z.

If l — s + 1, the reasoning is similar; and the integral is a rational,

algebraical, meromorphic function of z.

If l = s, the indices are each equal to unity: the integral is a simply-

periodic function of z. The equation is reducible.

If I = 2s, the equation is reducible ; the integral is algebraical.

The equations in the respective cases are

^dwY
(f)=V(»-«>'- (A.).

(!")'= v(»-flr' (A.),

fdw
"f^^Xito-a) (S.P.),

^ = X, {w-a)' (A.),

where (A.) implies that the uniform integral is an algebraical function of z,

and (S. P.) implies that it is a simply-periodic function; the letters (D. P.)

will be used to imply that the uniform integral is a doubly-periodic function.

II. Let there be two distinct factors ; then the equation is

i^^^=x^{^u-ay{iu-byn^

First, let one of the indices in the expression for -y— be greater than 1, say -
.

It is not necessarily in its lowest terms ; when reduced to its lowest terms, let

s p

Then — must be less than 1 ; when reduced to its lowest terms, let
s

tn _ 1

7" ^^'

which is the necessary form. And 2— ... must be less than 1, and it
-^ s~ s

must be expressible in the form 1 : hence

pj \ a/ T
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and therefore 1 + - = - + -
,par

where p and a are each greater than unity. If t> 1, the right-hand side is

manifestly less than the left; and therefore we must have t = 1, /a = cr ; and

the common value of p and a is s. The integral is then a rational algebraical

function of z.

Secondly, let one of the indices in the expression for -y- be equal to 1 , say

Tth 1
I = s. Then — is cither 1 or of the form 1— .

s a

If — = 1, the exponent of u in the expression for -^ is zero : the equa-

tion is

{^) = \^{w-ar{xu-h)\

which is reducible ; it has a simply-periodic function for its integi-al.

iTL 1 rr 77 1
If — = 1 , the exponent of u in the expression for ^- is -

. This must
s a ^ az a

be of the form 1
, so that

P
1 1 .-+- = 1;
o- p

hence, as a- and p are each greater than 1, each must be 2. The equation is

which is reducible ; and the integral is a simply-periodic function.

Thirdly, let each of the indices in the expression for ,— be less than 1 ; as

thev are not necessarily in their lowest term.«, let - = 1
,
— = 1 — . Then

•^ -^

s p s a

the index of ii, in the expression for ^ is - + ; because p and cr are each

greater than 1, this index cannot be greater than 1.

If - + - = 1, the only possible values are p = 2, cr = 2 ; the equation ispa

which is reducible ; the integral is a simply-periodic function of z.

If - + - be less than 1, then, as it is the index of u in the expression forpa
^- , it must be of the form 1

, where r is e^reater than 1 : thus
dz T ^

111,
par
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and then all the indices in the expressions for —,— and -7- are less than 1,^ dz dz

Heuce for such equations as exist, the integrals will be doubly-periodic

functions.

In this equation the interchange of p and a- gives no essentially new

arrangement. We must have t > 1 : the solutions for values of t greater

than 1 are :

—

(a) T = 2 ; then -+-=-, so that p — Z, o- = 6; p = 4, o- = 4,
^ ^

p a z

112
(I)) T = 3 ; then - + - = o , so that p = 2, (t = 6; p = 3, o- = 3.
^ ^ p (T 6

113
(c) T = 4 ; then - + - = t . so that p = 2, cr = 4,
^ ^

p cr 4

(^d) T = 5 gives no solution.

(e) T = 6 ; then - + - = -, so that p = 2, o- = 8.
^ ^

p cr o

And no higher value of r gives solutions.

Hence the whole system of equations, satisfied by a uniform function

of z and having two distinct factors in f{w), is :

—

(^^\ = \^(iu-ay-'{iu-by+' (A.),

(^^^-] ^X(iu-a) (w-b) (S.P.),

f^J = X'{w-ay {2u-b) (S.P.),

f^J = X"-(,o-a) (iv-b) (S.P.),

dfj^^'^'^""^'
^'""^^^ (i>-n(ix

(tzJ = ^" ^''' " ''^' ^''~^^' ^^- ^'^' ^'^^'

f'^J^X^w-ay (iv-by (D.P.), (4),

f^'J
= X^ (^v - ay (to -by (D. P.), (5),

(^jy
= ^''0^-«)^ (^o-bY (D.P.),(6).
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III. Let there be three distinct factors : then the equation is

fp^Y = X« (w - ay {w - by (lu - cy\

and therefore

If one of the indices in the expression for -y- be greater than 1, say -=!+-,

then — , - must be of the form 1— , 1— , where o- and t arc each greater
s s a r ^

than 1.

The index of u in the expression for -y- is then -H 1, a quantity

which is necessarily negative, for p is finite ; and the index should either

be zero or be c

greater than 1.

1 V Tfh IX

be zero or be of a form 1
. Hence no one of the indices , ~ , - can be

/i s s s

Secondly, let one of the indices in the expression for -^ be equal to 1, say

l = s. Then since in + n^s, only one of the indices is unity ; and therefore

— , - are of the form 1
,

1
, where p and a are each greater than 1.

The index of « in the expression for -r is then H 1, and it cannot be
dz P o-

negative ; hence the only possible values are p = 2 = a, and they make the

index zero. There is thus one index equal to 1, and the others are less than

1 : the integral of the equation is a simply-periodic function of z.

Thirdly, let all the indices in the expression for -y- be less than 1 : then

they are of the foi-ms 1 ,1 — -,1— , where p, a, t arc greater than 1
;

and the index of u in the expression for -,- is - + - -\ 1. Because the
dz p or T

smallest value of p, cr, r is 2, this last index is not greater than ^ ; hence it

must be 1
, wlicre, because this (quantity is the index of u, /j, is equal to 1

or to 2. In either case, all the indices are less than 1 ; and therefore the

integrals of the corresponding equations are donbly-]H'ri()dif functions of ^.

par I

1 1 1 .3

so that - H h - = ^ , the only possible solution is
p cr T 2 -^ ^

p, a, T .> o 9
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If - H 1- - = 1, the only possible solutions are
p <T T

p, cr, T = 2, 3, 6
;

2,4,4;

3, 8, 3.

Hence the whole system of equations, satisfied by a uniform function of z and

having three distinct factors va.f{iv), is :

—

dz j
=\^{w-ay{iu-h) (w-c) (S. P.),

(^J)'
= r- {lu -a) {w-h) i^u-c) (D. P.), (7),

('^Y = \<^{w- a)' {w-hy{iu-cy (D. P.), (8),

(ST ^ ^' ^'' -aY{w-hy{iv-cy (D. p.), (9),

^£) = ^' ^'" - "^' ^'' -^y(^o-cy (D. p.), (10).

IV. Let there be four distinct factors ; then the equation is

Since -
, ,

-
,
- are each of a form 1— , and their sum is not greater than

s s s s p

1 1 1 -1 1 1 ,
• • • , I 7n n p 1

2, it IS easy to see that the only possible solution is given by - = — = - = - = -;So S S ^

each index is less than 1, and the integral is a doubly-periodic function.

Hence the single equation, satisfied by a uniform function of z and having

four distinct factors in/(w), is

i^l
= ^' (w - a) (w -h){w-c)(w-d) (D. P.), (1 1).

Those of the complete system of equations, which have their integrals either rational

algebraic functions or simply-periodic functions of z, are easily integrated. The remainder,

which have uniform doubly-periodic functions of z for their integrals, are most easily

integrated by first determining the irreducible infinities of the functions and their orders

:

and then, by the results of Chapters X. and XL, the integral can be constructed.

The irreducible infinities can be determined as follows. In the equation for -j- , let the
dz

index of « be 1— ; and let s = ap. Then the equation which determines u is

P

/duY ^o (t(p-1),, w
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so that for very small values of m, we have

<u P+ ...[ dti— a\dz,

where a is a primitive sth root of unity. Hence

and therefore

a\ {z-c) = puP+ ...,

= U = a''X\z-cf+..

It thus appears that the accidental singularity of w at ^ = c is of order p ; and, as there

are a- distinct values of of, there are o- distinct accidental singularities to be associated

with the respective values.

Applying these to the equations which, having doubly-periodic functions for the

integrals, are numbered (1) to (11), we have the following results, where o- is the number
of distinct irreducible accidental singularities and p is the order of each of these

singularities :

number of equation
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Ex 2. Shew that, if an irreducible trinomial equation of the form

have a uniform integral, then m may not be greater than 5 ; and that, if m be 4 or 5,

the uniform integral is a doubly-periodic function.

Apply this result to the discussion of the equation

(Briot et Bouquet.)

Ex. 3. Shew that the integral of the equation

(^j = X (w - af {lo - hf (w - cf

is a two-valued doubly-periodic function of z. (Schwarz.)

Ex. 4. Shew that, if a function iv be determined by a difFei'ential equation

where i^ is a rational integral algebraical function of w and -^- , of degree m in -^ , and

does not contain z explicitly, then to each value of to there correspond m series of values

of s, the terms in each series differing from one another by multiples of periods.

Prove further that, if the integral w have only a limited number of values for each value

of z, then it is determined by an algebraical relation between w and u, where v, may be z,

2.Trzi

or e "
, or ^{z). (Briot et Bouquet.)

These results should be compared with the results obtained in Chapter XIII. relative

to functions which possess an algebraical addition-theorem.



CHAPTER XIX.

CONFORMAL REPRESENTATION : INTRODUCTORY.

253. In § 9 it was proved that a functional relation between two

complex variables w and 2 can be represented geometrically as a copy of part

of the 2^-plane made on part of the w-plane. At various stages in the theory

of functions, particularly in connection with their developments in the

vicinity of critical points, considerable use has been made of the geometrical

representation of the analytical relation ; but it has been used in such a way

that, when the equations of transformation define multiform functions, the

branches of the function used are uniform in the represented areas.

The characteristic property of the copy is that angles are preserved, and

that no change is made in the relative positions and (save as to a uniform

magnification) no change is made in the relative distances of points that lie

in the immediate vicinity of a given point in the ^-plane. The leading

feature of this property is maintained over the whole copy for every small

element of area : but the magnification, which is uniform for each element,

is not uniform over the whole of the copy.

Two planes or parts of two planes, thus related, have been said to be

conformally represented, each upon the other.

Now conformal representation of this character is essential to the con-

stitution of a geographical map, made as perfect as possible : and a question

is thus- suggested whether the foregoing functional relation is substantially

the only form that leads to what may be called geographical similarity. In

this form, the question raises a converse more general than is implied by the

converse of the functional relation, inasmuch as it implies the possibility that

the property can be associated with curved surfaces and not merely with

planes. But a little consideration will shew that the generalisation is a

priori not unjustifiable, because, except at singular points, the elements of the

curved surface can, in tliis regard, be treated as elements of successive

planes. We therefore have* to determine the Diost (jeneral fortii of analytical

relation between parts of two surfaces winch establishes the property of

conforrnal similarity between the elements of the surfaces.

* The ftillowin^' investif,'atioii is duo to Gauss: for references, see p. 500, note.
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Let X, y, z be the coordinates of a point R of one surface with t, u for its

parameters, so that x, y, z can be expressed in terms of t, u ;
and let X, Y, Z

be the coordinates of an associated point R' of the other surface with T, U
for its parameters, so that X, Y, Z can be expressed in terms of T, U. Then

the analytical problem presented is the determination of the most general

relations which, by expressing T and U in terms of t and w, establish the

conformal similarity of the surfaces.

Suppose that G and H are any points on the first surface in the imme-

diate proximity of R, and that G' and H' are the corresponding points on the

second surface in the immediate proximity of R : then the conformal

similarity requires, and is established by, the conditions : (i), that the ratio

of an arc RG to the corresponding arc R'G' is the same for all infinitesimal

arcs conterminous in R and R' respectively; and, (ii), that the inclination of

any two directions RG and RH is the same as the inclination of the cor-

responding directions R'G' and R'H'. Let the coordinates of G and of H
relative to R be dx, dy, dz and hx, By, 8z respectively ; and those of G' and

of H' relative to R' be dX, dY, dZ and SX, BY, SZ respectively. Let ds

denote the length of RG and dS that of R'G'; let m be the magnification of

ds into dS, so that

dS = mds,

a relation which holds for every corresponding pair of infinitesimal arcs

at R and R'.

By the expressions of x, y, z in terms of t and u, we have equations of

the form
dx = adt + a'du, dy = hdt + h'dn, dz = cdt + c'du,

where the quantities a, b, c, a', b', c' are finite. Let there be some relations,

which must evidently be equivalent to two independent algebraical equations,

expressing T and U as functions of t and u ; then we have equations of the

form

dX = Adt+ A'du, dY^ Bdt + B'du, dZ= Cdt + C'du,

where the quantities A, B, G, A', B', C are finite and are dependent partly

upon the known equations of the surface and partly upon the unknown

equations of relation between T, U and t, u. Then

ds"- = (a- + i- + c") dt- + 2 {aa' + bb' + cc') dtdu + («'- 4- 6'^ + c'-) du\

dS"' = (A"^ + B' + (7^) dt' + 2 (AA' + BB' + GO') dtdu + (A'" + B'"- + C) du\

Since the magnification is to be the same for all corresponding arcs, it

must be independent of particular relations between dt and dit ; and there-

fore

A"' 4- B^ + G' ^ AA' + BB' + CC ^ A'"~ + B'' + G'-^

a- 4- 6- + c^ ~ aa' + bb' -\- cc' ~ a''^ 4- b'"- 4- c'-
'

each of these fractions being equal to m?.
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Again, since the inclinations of the two directions RG, RH : and RG',

RH' ; are given by

ds 8s cos GRH
= (rt- + ¥ + C-) dt St + (act' + bb' + cc') (dt 8a + 8t da) + {a- + b'- + c'-) da 8a,

dSSS cos G'R'H'

={A''+B'+C')dt8t+(AA'+BB'+CG'){dt8u+8tda)+(A''+B''+C'-')du8u,

we have, in consequence of the preceding relations,

vi'ds 8s cos GRH = dS 8S cos G'R'H'.

But dS = mds, 8S = vi8s; and therefore the angle GRH is equal to the

angle G'R'H'. It thus appears that the two conditions, which make the

magnification at R the same in all directions, are sufficient to make the

inclinations of corresponding arcs the same ; and therefore they are two

equations to determine relations which establish the conformal similarity

of the two surfaces.

These two ecpiations are the conditions that the ratio dS/ds may be

independent of relations between dt and du; it is therefore sufficient, for

the present purpose, to assign the conditions that dS/ds be independent of

values (or the ratio) of differential elements dt and du.

Now ds" is essentially positive and it is a real quadratic homogeneous

function of these elements ; hence, when resolved into factors linear in the

differential elements, it takes the form

ds' = n (dp + idq) {dp — idq),

where w is a finite and real function of t and w, and dp, dq are real linear

combinations of dt and du. Similarly, we have

dS' = N{dP + idQ) (dP - idQ),

where, again, iV is a finite and real function of t and u or of T and U, and

dP, dQ are real linear combinations of dt and du or of dT and dU. Thus

^, ^N{dP+idQ){dP-idQ)
^

n {dp + idq) {dp — idq)

It has been seen that the value of m is to be independent of the values and

of the ratio of the differential elements.

Now taking

a' + b^ + c^ '
^~

aP^ + b' + c"
'

so that 6 and are, by the two equations of condition, the same for ds and

dS, and denoting by yjr the real quantity (0 — 6-), we have

ds- = {a- +b- + c") {dt + du {6 + iyjr)} [dt + du {d - t»|,

and dS- ={A'' + B'+ C-) [dt + da {6 4- t»j [dt + da {0 - iyfr)].
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Then, except as to factors which do not involve infinitesimals, the factors of

ds- and of dS- are the same. Hence, except as to the former factors, the

numerator of the fraction for m- is, qua function of the infinitesimal

elements, substantially the same as the denominator; and therefore either

, ^ dP + tdQ . dP-idQ . . . . . ,^ ,

(a) -^ T-j— and —. r-j— are unite quantities simultaneously
;dp + idq dp — idq ^ ''

or

m^ dP + ulQ , dP-idQ , .^ ^.^. . ,^
,(p) —j r^r and -^— .

,

are finite quantities simultaneously.
dj) — idq dp + idq ^ ''

Either of these paii's of conditions ensures the required form of m, and so

ensures the conformal similarity of the surfaces.

Ex. Shew that both p and q satisfy the partial differential equation

Consider (a) first. Since {dP + idQ)i(dp + idq) is a finite quantity, the

differentials dP + idQ and dp + idq vanish together and therefore the quan-

tities P + iQ and jj + iq are constant together. Now P and Q are functions

of the variables which enter into the expressions for p and q ; hence P + iQ

and p -h iq, in themselves variable quantities, can be constant together only if

P+iQ=f{p-^iq),

where y" denotes some functional form. This equation implies two independent

relations, because the real parts, and the coefficients of the imaginary parts,

on the two sides of the equation must separately be equal to one another

;

and from these two relations w^e infer that

P-iQ^Mp-iq),
where /j {p — iq) is the function which results from changing i into — i

throughout f{p + iq) and is equal to f{p — iq), if i enter into /only through

its occurrence in p -\- iq. From this equation, it follows that

dP-idQ
dp — idq

is finite, and therefore a necessary and sufficient condition for the satisfaction

of (a) is that P, Q and p, q be connected by an equation of the form

P+iQ=f{p-^iq).

Moreover, the function / is arbitrary so far as required by the preceding

analysis ; and so the conditions will be satisfied, either if special forms of/ be

assumed or if other (not inconsistent) conditions be assigned so as to deter-

mine the form of the function.

Next, consider (/3). We easily see that similar reasoning leads to the

conclusion that the conditions are satisfied, when P, Q and p, q are connected

by an equation of the form

i' + iQ^gip-^q);
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and similar inferences as to the use of the undetermined functional form of 7

may be drawn. Hence we have the theorem :

—

Parts of two surfaces may he made to correspond, point hy point, in such

a ivay that their elements are similar to one another, by assigning any

relation between their parameters, of either of the forms

P+iQ=f{p + iq), P + iQ = g(p-iq):

and every such correspondence between tiuo given surfaces is obtained by the

assignment of tlie proper functional form in one or other of these equations.

254. Suppose now that there is a third surface, any point on which

is determined by parameters A, and [x ; then it will have conformal similarity

to the first surface, if there be any functional relation of the form

\ + i/u, = h {p + iq).

But if Ir^ be the inverse of the function li, then we have a relation

P+iQ=f[h-'{\ + iti)]

= F{\ + ifx),

which is the necessary and sufficient condition for the conformal similarity

of the second and the third surfaces.

This similarity to one another of two surfaces, each of which can be made

to correspond to a third surface so as to be conformally similar to it, is an

immediate inference from the geometry. It has an important bearing, in the

following manner. If the third surface be one of simple form, so that its

parameters are easily obtainable, there will be a convenience in making it

correspond to one of the first two surfaces so as to have conformal similarity,

and then in making the second of the given surfaces correspond, in conformal

similarity, to the third surface which has already been made conformally

similar to the first of them.

Now the simplest of all surfaces, from the point of view of parametric

expression of points lying on it, is the plane : the parameters arc taken to

be the Cartesian coordinates of the point. Hence, in order to map out two

surfaces so that they may be conformally similar, it is sufficient to map
out a plane in conformal similarity to one of them and then to map out

the other in conformal similarity to the mapped plane : that is to say, we

may, ivithout loss of generality, make one of tJie surfaces a plane, and all

that is then necessary is the determination of a law of conformation.

We therefore take P = X,Q=Y,N=1: and then

P + iQ = X + iY=Z,
where Z is the complex variable of a point in the plane ; and the equations

which establish the conformation of the surface with the plane are

ds^ = n (dp- + dq")

X + iY=f{p + iq)

m-n =/' (p + iq)fi'{p - iq)
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where /i (p — iq) is the form of f{p + iq) when, in the latter, the sign of i is

changed throughout.

As yet, only the form P + iQ =f{p + iq) has been taken into account.

It is sufficient for om- present purpose, in regard to the alternative form

P + iQ = g(p — iq), to note that, by the introduction of a plane as an inter-

mediate surface, there is no essential distinction between the cases*. For

as P= X, Q— Y, we have

X + iY=fj(p-iq),

and therefore A" — iY= g^ {p + iq),

which maps out the surface on the plane in a cop}' differing from the copy

determined by X + iY= g-^ (p + iq)

only in being a reflexion of that former copy in the axis of X. It is therefore

sufficient to consider only the general relation

X + iY=f(p + iq).

Ex. ^^''e have an immediate proof that the form of relation between two planes, as

considered in § 9, is the most general form possible. For in the case in which the

second surface is a plane, we have ds^= dx"+ dy'^, so that ?i = l, p = x, q-y- hence the

most general law is X-\-iY=f {x-\-iy\

that is, v)=f{z)

in the earlier notation. Some illustrations arising out of particular forms of the function

/ will be considered later (§ 257).

255. In the case of a surface of revolution, it is convenient to take ^ as

the orientation of a meridian through any point, that is, the longitude of the

point, (T as the distance along the meridian from the pole, and q as the

perpendicular distance from the axis ; there will then be some relation

between a and q, equivalent to the equation of the meridian curve. Then

ds- = da- + q- dcji-

= q^(d<t>' + de'),

where d6 =— , so that ^ is a function of only one variable, the parameter of

the point regarded as a point on the meridian curve. Here n= q-; and so

the relation, which establishes the law of conformation between the plane

and the surface in the most general form, is

« + ^y =f(<f> + iO)
;

and the magnification m is given by

m^f=f'{^-vid)f^{<l>-ie).

Evidently the lines on the plane, which correspond to meridians of

* A discussion is given by Gauss, Ges. IVerke, t. iv, pp. 211—216, of the corresponding result

when neither of the surfaces is plane.
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longitude, are given by the elimination of 6, and the lines on the plane,

which correspond to parallels of latitude, are given by the elimination of 0,

between the equations

2x ^f{<l> + ie) ^f\{4> -ie)\

%y=f{<^ + id)-M<^-ie)]-

Ex. 1. On the .surface of revolution, let

where m, q, a- have the significations in the text ; shew tliat ^ and x//' satisfy the equation

where z^, z.^ are the conjugate complexes .v+ i^ in the plane. (Korkine.)

Ex. 2. Prove that, in a plane map of a surface of revolution, the curvature of a

meridian at a point ^ is ;:r^ ( —
j
and the curvature of a parallel of latitude at a point (^

is ^^ i
'— )• Hence shew that, if the meridians and the parallels of latitude become

0(p \mqj ^

circles on the plane map given by

the function /and the conjugate function /^ must satisfy the relation

{/, (^ + /^} = {/„(/) -i^J,

where {/, /x} is tlic Scliwarzian derivative. (Lagrange.)

Ex. 3. A plane map is made of a surface of revolution so that the meridians and the

parallels of latitude are circles. Shew that, if (r, a) be the polar coordinates of a point on

the map determined by the point {6, (f>)
on the surface, then

—'—= - 2ac {ae
'^ cos 2 (c'<^ +g) + b cos {jj+ h)],

— 2ac{ae'' sin 2 (ccj) +g) + b am (g + h)},

where a, h, c, g, h are constants.

Prove also that the centres of all the meridians lie on one straight line and that the

centres of all the parallels of latitude lie on a perpendicular straight line. (Lagrange.)

256. The surfaces of revolution which occur most frequently in this

connection are the sphere and the prolate spheroid.

In the case of the sphere, the natural parameter of a point on a great-

circle meridian is the latitude \. We then have dcr = ad\, where a is the

radius ; and q = a cos \, so that

ds'- = a- dX' + a" cos-X, dcf)^

= a" cos-X, (dcf)'- + d'^-),

where sech ^ = cos \. Hence we have

X + iY = f((f> + i'^);

and the magnification tu is given by

ma cos X = {/'
{<f> + 1^)// {<f>

- i^)]i.

F. 32
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There are two forms of/ which are of special importance in representations

of spherical siirfiices.

First, let/(/x) = k[jb, where k is a real constant; then

and therefore X = k(f), Y = k^ = k sech~' (cos X)

;

that is, the meridians and the parallels of latitude are straight lines,

necessarily perpendicular to each other, because angles are preserved. The

meridians are equidistant from one another ; the distance between two

parallels of latitude, lying on the same side of the equator and having

a given difference of latitude, increases from the equator. We have

/' (<^ + 1^) = k =// {(f)
- i^) ;

and therefore

VI = - sec X,
a •

or the map is uniformly magnified along a parallel of latitude with a

magnification which increases very rapidly towards the pole. This map is

known as Mercators Projection.

Secondly, let/(^) = ^^e"^^, where k and c are real constants ; then

X + iY= ^V^(*+'^> = ke-""^ (cos c(/) + i sin C(/)),

and therefore X = ke~'^'^ cos c<f) and Y= ke~'^'^ sin c</).

For the magnification, we have

/' {(ji + i"^) = tcZ;e''«'*+'^' and // (0 - 1^) = - rcA-e-*'«'*-^"^',

so that ma cos \ = cke~'^^,

ck . , ck (1 - sin xy^'-'^
or 77i= —e-'=^sec\=— -—

—

. ^ ,,,,,., .

a a (l + sm A.)^
<'-+^'

The most frequent case is that in which c—1. Then the meridians are

represented by the concurrent straight lines

Y= X tan ^ ;

the parallels of latitude are represented by the concentric circles

T-o T7-0 7o ..CV 7 ., 1 SlU A.

X'+Y- = k-e-^ = k- -—---. ^ ,

1 + sm X,

the common centre of the circles being the point of concurrence of the

lines ; and the magnification is

A;

^'i = —n —TT •

a (1 + sm A.)

This map is known as the stereorjraphic projection : the South pole being the

pole of projection.

It is convenient to take the equatorial plane for the plane of z : the

direction which, in that plane, is usually positive for the measurement of
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longitude, is negative for ordinary measurement of trigonometrical angles. If

we project on the equatorial plane, we have

= ke-^+^,

which gives a stereographic projection.

Ex. 1. Prove that, if .>; >/, z be tlie coordinates of any point on a sphere of ratlins a and

centre tlie origin, every plane representation of the sphere is inckided in tlie equation

for varying forms of the function /.

Ex. 2. Shew that rhumb-lines (loxodromes) on a sphere become straight lines in

Mercator's projection and equiangular spirals in a stereograi)hic projection.

Ex. 3. A great circle cuts the meridian of reference
{(f)
= 0) in latitude a at an angle a;

shew that the con-esponding curve in the stereographic projection is the circle

{X+k tan a)2 -\- (
}"+ k cot a sec a)^= k'^ sec^ a cosec^ a.

Ex. 4. A small circle of angular radius r on the sphere has its centre in latitude c and

longitude a ; shew that the corresponding curve in the stereographic projection is the

circle

/„ X'cos ccosaN'^ /t^ ^ cose sin a\2 k^sin^r(X+ , :— +(i + -.

)
=-, --. Tg.

\ cos r + sin cj \ cos r -\-sm cj (cos r+ sm cy

The less frequent case is that in which the constant c is allowed to remain

in the function for the purpose of satisfying some useful condition. One
such condition is assigned by making the magnification the same at the

points of highest and of lowest latitude on the map. If these latitudes be

Xi, A,o, then

(1-sinXi)^"'-^' _ (l-sin\2)^"^-^)

(1 + sin Xi)i(«+i)
~ (l+sinX„)^<«+i'

'

'1 — sin XA /I + sin Xj^

so that
^ VI - sm X„/ ^ U + sm X2J

lof
1 - sin XA , /I + sinXi

-i<'g(r-
^1 — sin X2/ \1 + sinXj/'

This representation is used for star-maps : it has the advantage of leaving

the magnification almost symmetrical with respect to the centre of the map.

Ex. Prove that the magnification is a minimum at points in latitude arc sin c.

Shew that, if the map be that of a belt between latitudes 30° and 60°, the magnification

is a minimum in latitude 45° 40' 50"; and find the ratio of the greatest and the least

magnifications.

Note. Of the memoirs which treat of the construction of maps of surfaces

as a special question, the most important are those of Lagrange* and

* Noiiv. Mem. de VAcad. Eoij. de Berlin (1779). There are two memoirs : they occur in his

collected works, t. iv, pp. 635—692.

32—2
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Gauss*. Lagrange, after stating the contributions of Lambert and of Euler,

obtains a solution, which can be ap plied to any surface of revolution ; and

he makes important applications to the sphere and the spheroid. Gauss

discusses the question in a more general manner and solves the question

for the conformal representation of any two surfaces upon each other, but

without giving a single reference to Lagrange's work : the solution is worked

out for some particular problems and it is applied, in subsequent memoirs 'j',

to geodesy. Other papers which may be consulted are those of Bonnet|,

Jacobi§, Korkinell, and Von der Muhlllf; and there is also a treatise by

Herz**,

But after the appearance of Riemann's dissertation
"f""!-,

the question

ceased to have the special application originally assigned to it ; it has

gradually become a part of the theory of functions. The general development

will be discussed in the next chapter, the remainder of the present chapter

being devoted to some special instances of functional relations between w and

z and their geometrical representations.

The following three examples give the conformal representation of three surfaces upon

a plane.

Ex. 1. A point on an oblate spheroid is determined by its longitude I and its

geographical latitude /^. Shew that the surface will be conformally represented upon a

plane by the equation

for any form of the function / ; where sech (^ = cos n, and e is the eccentricity of the

meridian.

Also shew that, if the function / be taken in the form f{ii) = l-e , the meridians in

the map are concurrent straight lines, and the parallels of latitude concentric circles ; and

that the magnification is stationary at points in geographical latitude arc sin c. (Gauss.)

Ex. 2. Let the semi-axes of an ellipsoid be denoted by p, {p^-b^y, {p^-c^) in

descending order of magnitude. Shew that the surface will be conformally represented

upon a plane by the equation

for any form of the function /; where u and v are expressed in terms of the elliptic

coordinates p^, p.^ of a point on the surface by the equations

Pl'^Cc^-ft^)-^""'''
p^2(c2_^,2)-Sn ^«;

* Schumacher's Astr. Ahli. (1825) ; Gcs. WerJce, t. iv, pp. 189—216.

t Gott. Abh., t. ii, (1844), ib., t. iii, (1847) ; Gcs. WerJce, t. iv, pp. 259—340.
+ Liouville, t. xvii, (1852), pp. 301—340.

§ Crelle, t. lix, (1861), pp. 74—88 ; Ges. Werkc, t. ii, pp. 399—416.

II
Math. Ann., t. xxxv, (1890), pp. 588—604.

H Grdle, t. Ixix, (1868), pp. 264—285.
** Lehrbuch der Landkartcnprojectionen, (Leipzig, Teubner, 1885).

tt " Grundlagen fiir eine allgemeine Theorie der Functionen eiuer veranderlichen complexen

Grosse," Gottingen, 1851; Ges. Werke, pp. 3—45, especially § 21.
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the modulus is f —^—r^ ] , the constant a is given by

6 = c dn a,

and the value of the constant h is tn adna — Z'(«). (Jacobi.)

Ex. 3. The circular section of an anchor-ring by a plane through the axis subtends an

angle tt - 2e at the centre of the ring, and the position of any point on such a section is

deternained by I, the longitude of the section, and by X, the angle between the radius from

the centre of the section to the point and the line from the centre of the section to the

centre of the ring.

Shew that, by means of the equations

l= 'iiTX,

tan ^\=tan \i tan {ny tan e),

the surface of the anchor-ring is conformally represented on the area of a rectangle whose

sides are 1 and cot e. (Klein.)

257. It was pointed out that the conformation of surfaces is obtained by

a relation

P + iQ=f{p-^iq),

and therefore that the conformation of planes is obtained by a relation

w=f{z),

whatever be the form of the function f, or by a relation

(/) {w, z) = 0,

whatever be the form of the function <^. Some examples of this conformal

representation of planes will now be considered ; in each of them the

representation is such that one point of one area corresponds to one (and

only one) point of the other.

Ex. 1. Consider the correspondence of the two planes represented by

(a - 6) ?<)2 _ 222^ -f- (a -f 6)= 0,

that IS, 2s= (a - 6) w -| .

w

Let r and 6 be the coordinates of any point in the w-planc : and .r, y the coordinates of

any point in the i-plano : then

2.r= {a-b)r+"~ - cos 6, 1y = (« - h) r-^-\- sin 6.

Hence the 2-curves, corresponding to circles in the ?r-plane having the origin for their

common centre, are confocal ellipses, 2c being the distance between the foci, where

G^= cfi-lfi : ;uh1 tlie s-curves, corresponding to straight lines in the ?('-planc passing

through the origin, are the confocal hyperbolas, a result to be expected, because the

orthogonal intersections must be maintained.

Evidently the interior of a ?o-circlc, of radius unity and centre the origin, is, by the

above relation, transformed into the part of the 2-plane which lies outside the ellii).se

x^ja'^+y^ll>-=\, the ic-circumference being transformed into the s-ellipso.

Ex. 2. Consider the correspondence inqjlied by the relation

k - w=sn I — s )
= sn /, where .r+i>/ = z = s,

\ TT y 'it
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with the usual notation of elliptic functions. Taking iv= X+ir, we have

k~'-{X+ il^ = sn {x'+ ly

)

_ sn ,v' en ly dn m/'+ sn it/' en :i;' dn a/

1 — k'^ sn^ .^'' sn^ it/'

Let i/=±iK': then sn?y=:±-^, cn?y=^^^, dn // = Vl+l-, so that

, _,i , „ . -,^, 1 +)t sn x' i en .^•' dn of

, -^ ( 1 + ^O sn x' -,, . en a?' dn x^
whence A = -r—-,—^-y , i = ± r——,—g^,

,

1 4- A.- sn^ X \+k sn^ .r'

and therefore X'^+ T^= 1,

which is the curve iu the ?i'-plane corresponding to the lines y'—±_\K' in the s'-plane,

ttK'
that is, to the lines y= + -r>r in the s-plane.

ttK'
When V= + -ttv and x" lies between K and - K, that is, .r lies between in- and - W, then

.7 4^ _ -

Y is positive and A' varies from 1 to - 1 ; so that the actual curve corresponding to the

line V— , ^ is the half of the circumference on the positive side of the axis of X. Simi-

TlK'
larly the actual curve corresponding to the line y— — xp ^^ ^^^ half of the circumference

on the negative side of that axis.

The curve hereby suggested for the 2-plaue is a rectangle, with sides x= ±.\iv,

kK'IT K'
±~-pr. To obtain the w-curve corresponding to .t^^tt, that is, to x'— K, we have

^ dn ly

so that r=0 and .r=#J^i.duty

Now y' varies from ^A"' through to - |A'' : hence A' varies from 1 to k- and back

from k' to 1. Similarly, the curve corresponding to x= —^,
that is, to x' = — K, is part of the axis of X repeated from

- 1 to -k^ and back from -k" to — L

Hence the area in the ?('-plane, corresponding to the rect-

angle in the s-plane, is a circle of radius unity with two diametral

slits from the circumference cut inwards, each to a distance k"^

from the centre.

The boundary of this simply connected area is the homo-

logue of the boundary of the 2-rectangle given by x= ±|7r,

v= { =r : the analysis shews that the two interiors corre-
^'

spend*. And the sudden change in the direction of motion of the w-point at the inner

extremity of each slit, while z moves continuously along a side of the rectangle, is diie to

the fact that diojdz vanishes there, so that the inference of § 9 cannot be made at this

point. (See also Ex. 10.)

* For details of corresponding curves in the interiors of the two areas, see Siebeck, Crelle, t.

Ivii, (1860), pp. 359—370; ib., t. lix, (1861), pp. 173—184 : Holzmiiller, treatise cited (p. 2, note),

pp. 256—263 : Cayley, Camb. Phil. Tmns., vol. xiv, (1889), pp. 484—494.
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Corollary. We pass at once from the rectangle to a square, by assuming K ' = 2A' ; then

^= (v2- 1)2, and the corresponding modifications are easily made.

Ex. 3. Shew that, if z= ^Y?{\u\k) where ?t' = M+ u', then the ciu-ves «= constant,

?'= constant, are confocal Cartesian ovals whose equations may be written in the form

rj - r dn (?«, h) = cu («, lc\ r^ + r dn (vi, k') = en {vi, k'),

where r and r^ denote the distances from the foci s= and z=\.

If r.2 denote the distance of a point from the third focus s= , , find the corresponding

equations connecting r, r.^; and j-j, rg.

Shew that the curves ?t= A", v= K' are circles, and that the outer and the inner branches

of an oval are given by u and 2K-u, or by v and 2A''- v. (Math. Trip. Pait ii, 1891.)

E.v. 4. The w;-planc is conformally represented on the s-plane by the equation

c \l-w) '

where h and c are real positive constants.

Shew that, if an area be chosen in the w-plane included within a circle, centre the

origin and radius unity, and otherwise bounded by two circles centres 1 and - 1 (so that

its whole boundary consists of four circular arcs), then the corresponding area in the

2-plane is a portion of a ring, bounded by two circles, of radii ce^ and ce~^ and centre the

origin, and by two lines each passing from one circle to the other.

Prove that, when the semi-circles in the tf^-plane are very small, so as merely to

exclude the points 1 and - 1 from the circular area and boundary, the corresponding

3-figure is the ring with a single slit along the axis of real quantities*.

Ex. 5. Consider the correspondence implied by the relation

z=c ainiv.

Taking w= X-^iY, we have

x + iy= cii\n{X {-{ Y)

= e sin X cosh Y+ ic cos ^Y sinh Y,

so that X= c sin X cosh F, 3/= c cos X sinh Y.

When Y is constant, then z describes the curves

-+
c^ cosh^ Y c^ sinh^ Y

which, for different values of Y, are confocal ellipses.

Now take a rectangle lying between X= ±.\it,

cos X is positive: hence when F= +X, y
is positive and x varies from ccoshX to

— c cosh X, that is, the half of the ellipse on

the positive side of the axis of y is covered.

Let X= - ^TT : then

y — and x= -c cosh Y.

As Y varies from + X through to — X

along the side of the rectangle, x passes

from B to // (tlie focus) and back from //

to B.

* See reference, p. 4:51, note.

1,

J'=±X. For all values of X,

Fig. 87.
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When Y= - X, then z describes the half of the eUipse on the negative side of the axis of

3/: when A'= +|7r, then y=0, .r=ccoshF, so that z passes from A to S {n focus) and

back from S to A.

Hence the 2-cm"ve corresponding to the contour of the ?p-rectangle is the ellipse

with two slits from the extremities of the major axis each to the nearer focus : the

analytical relations shew that the two interiors correspond.

E.v. 6. Consider the correspondence imphed by the relation

,_. f2K . ,z\ f'2K;k - V}= sn I— sui 1 -
I

= sn I — f

From Ex. 2, it follows that the interior of a ir-circle, centre the origin and radius

unity, corresponds to the interior of the ^-rectangle bounded by x=±,\tt, y= ± ^^ ,

provided two diametral slits be made in the w-circle along the axis of x to distances

1— Z- from the circumference ; and, from Ex. 5, it follows that the same f-rectangle is

transformed into the interior of the ^-ellipse

where a = c cosh —77 and 5= csinh—v? ,
provided two slits be made in the elliptical area

along the major axis from the cm-ve each to the nearer focus.

Thus, by means of the rectangle, the interiors of the slit ?f-circle and the slit 2-ellipse

are shewn to be conformal areas.

But the lines of the two slits are conformally equivalent by the above equation. For

the elliptical slit on the positive side of the axis of x extends from x= c to A"= ccoshX,

where \ = ~rfv, and it has been described in both directions : we thus have

z= c cosh j3,

where /3 passes from to X and back from X to 0. Hence

sin ~ 1 -= sin ~ 1 (cosh /3) = ^tt+ 2/3,

so that the corresponding ?/;-curve is given by

/2Z3A

\ . J ^^^^2A/3.N|

Then, when /3 assumes its values, w passes from I to k- and back from k- to 1, that is,

w describes the circular slit on the positive side of the axis of X.

Similarly for the two slits on the negative side of the axis of real quantities. Thus
the two slits may be obliterated : and the whole interior of the ?p-circle cau be represented

on the interior of the ^-ellipse.

From the equations defining a and h, it follows that

(« + 6)'= '

in the Jacobian notation; and c- = a'—b~.
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Combining the results of Ex. 1 and Ex. 6 we have the theorem* :

—

The part of the z-plane, which lies outside the ellipse x^/a^+ 7/^/b^= l, is transformed

into the interior of a iv-circle, of radius unity arid centre the origin, by the relation

{a-h)w'^-'izw+ {a+ h) = ;

and the part of the z-plane, which lies inside the same ellipse, is transformed into the interior

of the same w-circle by the relation

k'^w^sn[^ sin-i {z («2 _ ^2) -in
^

whe7-e the Jacobian constant q which determines the constants of the elliptic functions, is

given by

fa-by
^=\a:+b)

Ex. 7. CoiiHidcr the correspondence implied by the relation

{w-\-\fz^A.

When w describes a circle, of radius unity and centre the origin, then v}= e^ : so that,

if r and 6 be the coordinates of z, we have

-(cos^-isin^) = (l+e*')2,

or -p (cos- — I'sin-
J
= l+e**=l+cos0 + isin <^.

Hence (^cos^-l) +lsin2^= l,

that is, r cos^ g~^»

shewing that z then describes a parabola, having its focus at the origin and its latus

rectum equal to 4.

Take curves outside the parabola given by

r= fi-sec-~,

where fi is a constant ^ 1. Then
1 1

-p = -COS|^,
\'r M

,, , , , 2 -ifli 2 -ie , .

so tiiat 10+ 1= T^e - =-e ' cos i^ ;

Vr M

2 1
therefore A'+ 1 = - cos"' J^^ = ( 1 + cos B),

fi
- /x

J = -- sni^,

so that (X.fl-l)%r^=j„

a series of circles touching at the point A'= -1, F=0, and (for
fi. varying from 1 to oc

)

covering the whole of the interior of the ?«>-circle, centre the origin and radius unity.

* Schvvarz, Ge». Werki\ t. ii, pp. 77, 78, 102—107, 141.
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Hence, by means of the relation (w+ 1)^5=4, the exterior of the j-space bounded by

the parabola is transformed into the interior of the ?6'-space bounded by the circle.

Ex. 8. Consider the correspondence implied by the relation

?i)= tan2(j7rs-).

We have ^= cos {hirz^-) = cos {hrr^ e^\

so that, if w+\=Re''', ^l= \^ir~ coii\6, v^^irr^i^m^d, then

2^~^ cos G - 1 = cos ?i cosh V,

2^~i sin e =sin u sinh v.

The ?«-curves, corresponding to the confocal parabolas in the s-plane, are

(2 cos e-Rf 4 sin2 _
^ 9 ^^— = R^.

CDS'* u sm'' u

If u<hir, then 2R~^ cos e> 1, that is, R<2 cos e ; while, if u>h7r, we have R>2 cos 9.

It thus appears that the ^-space lying within the parabola u = ^n, that is, rcos2^^=l,

is transformed into the interior of a ?/j-circle, centre the origin and radius unity, by means

of the relation

By the two relations* in Ex. 7 and Ex. 8, the spaces within and without the parabola

are conformally represented on the interior of a circle.

Kv. 9. Consider the relation

_i — w
^

i+w '

then, if z= x-\-iy and v) = X-\-iT^ we have

When w describes the whole of the axis of X from - oo to +00, so that we can take

A'=tan(/), y=0, where varies from — ^to +-, we have .r= cos2(^, ?/= siu2(^; and z

describes the whole circumference of a circle, centre the origin and radius 1. For internal

points of this circle 1 -x'^-y^ is positive : it is equal to AY-^ {X'^-^{\ + Y)'^}, and there-

fore the positive half of the ?/j-plane is the area conformal with the interior of the circle,

of radius unity and centre the origin, in the 2-plane.

Ex. 10. Again, consider a relation

i2

' =
( 1

\z+ ic/

We have J +ir= ("'+^'-^')^-^^'f+
^;g(^'--^-'-y')

,

^_{x'^+y^ — 2cx — c^){x'^+y^-\-2cx-c'^)
«0 that A =

;^2+ (^^c)2}2
'

„_ Acx {(? — .v^ — y^)

Let X— 0, so that Y= ; then

xJy'^-C'f
4 \y+ c){y+cf

Schwarz, Ges. Werhc, t. ii, p. 146.
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As z passes from A to B (where OA=OB = (), then y changes from -c to -|-r, and X
changes continuously from +03 to 0.

Let :?;2 + ?/2_c2= o, so that Y=0; tlien

— 4a'2 c-y
X=. .= -.-r!=-tanH^,

(2c-H2y)2 c+y

where 2/= c cos ^. Hence, as z describes the semi-circular

arc BCA^ the angle 6 varies from to tt and A' changes

from to — 00 .

(The whole axis of X is the equivalent of AOBCA ; and

at the w-origin, corresponding to 5, there is no sudden

change of direction through irr. The result is apparently

in contradiction to § 9 : the explanation is due to the

fact that T-= at B, and the inference of § 9 cannot l)e made. Similarly for A where

Fig. 88.

dw
dz

dz

is infinite. See also Ex. 2.)

For any point lying within the z-semi-circle, both x and c^ — x^ — y'^ are positive, so

that Y is positive. Hence by the relation

'z - icV
z+ ic)

'

the interior of the s-semi-circle is conformally represented on the positive half of the

It is easy to infer that the positive half of the ?(>-plane is the conformal equivalent

of

/z-ic\^
(i) the interior of the semi-circle ACBA by the relation iv = [''—^) :

^ ^ ^
\z+ icj

'<m
+ y^

(ii) CBDC

(iii) BDAB w=|

(-) ^^^CD
"=(sy-

And, by combination with the result of Ex. 9, it follows that the relation

/z — icV

yz+ ic) _ . z^-c^+

\Z+ IC

2cz

^2 _ g2 _ 2cz

conformally represents the interior of the s-semi-circle ACBA on the interior of the

w-circle, radius iniity and centre the origin.

Similarly for the other cases.

Ex. 11. Find a figure in the --plane, the area of which is conformally represented on

the positive half of the «<>-plane by
/z-icY

(1) ..= .", (n) ^o={^^ .

Ex. 12. Consider the relation

w= ae^ :

then X= ae~y cos x, Y= ae'" sin x.
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The curves corresponding to ?/= constant are concentric circumferences; those corre-

sponding to A-= constant are concurrent straight lines.

As X ranges from to ^, both X and Y are positive ; for a given value of x between

these limits, each of them ranges from to oo , as y ranges from oo to - co . As ^ ranges

from V to TT, X is negative and Y is positive ; for a given value of x between these

limits, -X and Y range from to oo , as y ranges from co to - co

.

Hence the portion of the 2-plane lying between ?/=-qo, y= (x> , x= 0, x= ir^ that is, a

rectangiilar strip of finite breadth and infinite length, is conformally represented by the

relation
^o= ae^'

on the positive half of the w-plane. Combining this result with that in Ex. 9, we see that

the same strip is conformally represented on the area of a ^<;-circle, centre the origin and

radius a, by means of the relation

w+ l

Note. It may be convenient to restate the various instances of areas in the 2-plane,

bounded by simple curves, which can be conformally represented on the area of a

circle in the ?«;-plane :

(i) The positive half of the 2-plane ; Ex. 9.

(ii) An infinite strip of finite breadth; Ex. 9, Ex. 12.

(iii) Area without an ellipse ; Ex. 1.

(iv) Area within an ellipse ; Ex. 6.

(v) Area without a parabola ; Ex. 7.

(vi) Area within a parabola ; Ex. 8.

(vii) Area within a rectangle ; Ex. 2.

(viii) As will be seen, in § 258, any circle changes into itself by a proper homo-

graphic relation.

Ex. 13. Consider the correspondence implied by the relation

1-fwV

Then we have two values of w\ say ^o^, io/, where

'-rs-
?«?.,•'

1-;

Let 2 describe the axis of x, so that z=x.

When 0<.v<l, then to,^ is real and less than

unity and tv^^ is real and greater than unity. Hence

drawing a circle in the ?6'-plane, centre the origin

and radius 1, and six lines as diameters making angles

of _^7r with one another, and denoting a cube root of

1 by a, then, as z passes from to 1 along the axis of x,

to^ passes from A to 0,

ahv.,

A to A' (at infinity),

C to 0,

C to 6" (at infinity),

E to 0,

E to E' (at infinity).
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When l<x<cc , then v\^ i« a real quantity changing continuously from to —1, and
«'2^ is a real quantity changing continuously from - oo to — 1. As z passes from 1 to oo

along the i)Ositive part of axis of A',

w^ passes from to F,

w^ B' (at infinity) to B,

aw^ to B,

aii'2 ly (at iniinity) to D,

ahvi to D,

a%'2 /" (at infinity) to F.

Hence, as z descril)es the whole of the positive part of the axis of x; the branches of io

describe the whole of the three lines A'D', />'/i", C"F'.

When X is negative, we can take .i-= - tan^^, so that (/> varies from to hn. Then

„ 1 - ^ tan (h . 9,),i

.

l+i tan 9
so that, as z passes from to - oo , u\ describes the arc of the circle from A to F, an\ the

arc fi'om C to B, and dhv^ the arc from B to B. And then

so that M'2 describes the arc of the circle from A to B, aw^ the arc from C to D, and (^w.^

the arc from E to F. Hence, as z describes the whole of the negative part of the axis of x,

the branches of w describe the whole of the circumference.

As z describes a line parallel to the axis of x and very near it on the positive side, the

paths traced by the branches are the dotted lines in the figures ; the six divisions, in

which the symbols are placed, are the conformal representations by the six branches

of w of the positive half of the 2-plane*.

Ex. 14. When the variables are connected t by a relation

""l
+ i^Cs)

where (^y is the function which in coefficients is conjugate to 0, then tlie ^-circumference,

centre the origin and radius c, is transformed into the w-circumfercnce, centre the

origin and I'adius c.

Taking Wq and z^ as the conjugate variables, we have

so that tmvn= .

Now if z describe the circumference of a circle, centre the origin and radius c, we have

z=ce'\ z,^ce-'\ zz,= c\

so that moQ= c^,

shewing that ^o describes the circumference of a circle, centre the origin and radius c.

* Cayley, Camb. Phil. Trans., vol. xiii, (1H80), pp. 30, 31.

t Cayley, Crelle, t. evil, (1891), pp. '2G2—277.

W--

«'o=-

'0
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To determiue whetlier the internal area of the ^-circumference corresponds to the in-

ternal area of the z:;-circumference, wc take zzq= g'^ — €, where e is small. Then

</>o (t j
= <^() (~o +^j =00 (~o) + r 0o' (-0)

;

\m 10' (i), 10o'(~~)
—C"-\-C'e ' '

-^+^r 0(-) "«/>M'
so that the interior of the s-circuraference finds its conformal correspondent in the

interior or in the exterior of the zy-circumference according as

(b' (z) <b' (zr.)

(I){Z) (t)(Zo)

taken along the cn'cumference.

The simplest case is that in which (p (2) is of degree m, so that it can be resolved

into ?H factors, say cf)(z) = xi (z — a){z-^)...{z-6) : then

f)-''og-«»)(fft)...(f..).

and
^nC^-l

,

^

iz-a)(z-^)...{z-e)

But the converse of the result obtained—that to the i<;-circumference there corresponds

the i-circumference—is not complete unless the correspondence is (1, 1). Other curves

which are real—they may be, but are not necessarily, circles—and imaginary curves enter

into the complete analytical representation on the s-plane corresponding to the ^y-circum-

ference, of centre the origin and radius c on the lii-plane.

Ba;. 15. Discuss the s-curves corresponding to |i«;| = l, determined by

£J:k. 16. Consider the relation

4 (z^-z+ l)^w^— -^—• --.

27 {z^-zf

We have w-..^, mrl±^' - fetiiJZl

,

The function on the right-hand side, being connected with the expressions for the six

anharmonic ratios of four points in terms of any one ratio, vanishes for

1 , 1 Zn Zn—\
-0) \-i

l-2n' Zr,-V<iQ X — ^Q ^Q — i ^0

SO th-tt w-^v _4 (^-go)(2.o-l)(,-+ 2o-l){.(2o-l)-V,(.0o-2o+ l){2(0„-l)-H}
' 27 (,2_,)2(,^2_,^).

Hence, taking w=X+iY, z= x+ iy,

we have 2ir=^ 2i^(a:Hf-l){2x-l){x^+f-2a;){{x^+f-.v+iy+f}
27 {x^+fy («2 +y2 _2a;+ 1)2



257.] REPRESENTATION 511

Fig. 90.

Hence it appears that, when }'=0, so that w traces the axis of real quantities in its

own plane, the s-variable traces tlie curves

2.r-l=0, A-2+y2_2.r=0,

that is, two straight lines and two circles in its

own plane.

In order to determine the parts of the 2-plane

that correspond to the positive part of the if-plane,

it is sufficient to take Y equal to a small positive

quantity and determine the corresponding sign of

y. Let

where Y (and therefore ?/) is small : then, to a first

approximation,

_27 ^•3(.y_l)3

^~T (2.r - 1 )
(.r+ 1 ) (^ - 2) (a.-2 -x+ if

'

and the sign of fi determines whether the part on the positive or negative side of the axis

of X is to be taken.

When x<-l,
fj.

is negative; z lies below the axis of x. When x is in AO, so that

x> - KO, II is positive ; z lies above. When x is in OB, so that x>0<^,
fj.

is negative ;

z lies below. When x is in BC, so that x>^<l, fi is positive ; z lies above. When x is

in CD, so that .r>l<2, /x is negative ; z lies below. And, lastly, when x is beyond D, so

that x>2,
fj.

is positive and z lies above the axis of real quantities. The parts are indicated

by the shading in fig. 90.

It is easy to see that w= 0, for z= F, Q ; that w= l, for z= A, B, D ; and that w = <x>,

for z=0, C. The zero value of w is of triple occurrence for each of the points /' and Q;

the unit-value and the infinite value are of double occurrence for their respective points*.

Note. It is easy to see that figures 89 and 90 are two different stereographic projections

of the same configuration of lines on a sphere (§ 277, I, w= 3), so that the relations in

Ex. 13 and Ex. 16 may be regarded as equivalent.

Kv. 17. Find, in the same way, the curves in the s-plane, which are the conformal

representation of the axis of X in the w-plane by the relation f

(s4 -1-3-4+ 14)3
^''^ 108 '(2"

+3-4 -2)2-

Ex. 18. Shew that, by the relation

W" = 1 -|- e^,

the lines, .i; = constant in the s-planc, are transformed into a .series of confocal lenuiis-

catcs in the w-plane ; and that, by the relation

where c is a real positive constant greater than unity, the interior of a ^-circle, centre

the origin and radius unity, is transformed into the interior of the lenniiscatc RIi'= c^

in the w-plane, where R and It' are the distances of a point from the foci (1, 0) and

(-1, 0). (Weber.)

See Klein-Fricke, vol. i, p. 70. t Sec Kluin-Fricke, vol. i, p. 75.
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258. The ^^receding examples* may be sufficient to indicate the kind of

correhition between two planes or assigned portions of two planes that is

provided in the conformal representation determined by a relation (p (w, z) =
connecting the complex variables of the planes. We shall consider only one

more instance ; it is at once the simplest and functionally the most important

of all-f-. The equation, which characterises it, is linear in both variables ; and

so it can be brought into the form

az + bw = J,
cz + d'

where a, h, c, d are constants : it is called a homo[/raphic transformation, some-

times a homographic or a linear substitution.

Taking first the more limited form

/^

and writing w = Re'®, z =re'^, fi = k-e^^\ we have

Rr = ^^ B^d = 27, that is, - 7 = 7 - ^,

and therefore the new w-locus will be obtained from the old ^^-locus by

turning the plane through two right angles round the line 7 through the

origin, and inverting the displaced locus relative to the origin. The first

of these processes is a reflexion in the line 7 ; and therefore the geometrical

change represented by wz =
fj,

is a combination of reflexion and inversion.

A straight line not through the origin and a circle through the origin are

corresponding inverses ; a circle not through the origin inverts into another

circle not through the origin and it may invert into itself; and so on.

Taking now the general form, we have

a ad — he
10 —

z+ -

c

cf cL

or transforming the origins to the points - and in the lu- and the ^^-planes
C

respectively, and denoting ^^— by /jl, we have WZ = /j,, that is, the former

case. Hence, to find the 'zw-locus which is obtained through the transforma-

tion of a ^-locus by the general relation, we must transfer the origin to—

,

c

turn the plane through two right angles round a line through the new origin

* Many others will be found in Holzmiiller's treatise, already cited, which contains ample

references to the literature of the subject.

t For the succeeding properties, see Klein, 3Iath. Ann., t. xiv, pp. 120—124, ib., t. xxi,

pp. 170—173; Poincar^, Acta Math., t. i, pp. 1—6; Klein-Fricke, ElUptische Modulfunctionen,

vol. i, pp. 163 et seq. They are developed geometrically by Mobius, Ges. Werke, t. ii, pp. 189—204,

205—217, 243—314.
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whose angular coordinate is |-arg, f — j , invert the locus in the displaced

position with a constant of inversion equal to j — Land then displace the
C

I

origin to the point — . Hence a circle will be changed into a circle by a
c

homographic transformation unless it be changed into a straight line ; and

a straight line will be changed into a circle by a homographic transformation

unless it be changed into a straight line.

The result can also be obtained analytically as follows ; the formulai

relating to the circle will be useful subsequently.

A circle, whose centre is the point (a, ^) and whose radius is r, can be

expressed in the form

(2 -a- /3i) {zo-a + /3i) = r",

or zzo + Gz + 6^^Q 4-7 = 0,

where — d = a — /3i, —6,, = a-{- 131, 7 = 66^, — r". Conversely, this equation

represents a circle, when 6 and 6„ are conjugate imaginaries and 7 is real ; its

centre is at the point - ^{6 + d»), ^ ^ {0 — 6^^), and its radius is (66^ — y)K

When the circle is subjected to the homographic transformation

az + bw = ,

,

c^ + a
, -dw + h , ,, . -dwo + h^we have z= and therefore z.= — .

cw — a c^{ivq — a„

Substituting these values, the relation between w and w„ is

h'um,, + 6'w + 0,'n\, + 7' = 0,

where h' = dck - Odc^ - 6,fid„ + ycc^

,

6' = - b,d + 0a4 + d,,cK - yea,,

d„' =^-bdo+ 6cob + O^ado — yc^a
,

7' = bb,, - Oajb — 6,,ab„ + yaa^

:

here 8' and 7 are real, and 6' and 6J are conjugate imaginaries; therefore the

equation between w and iu„ represents a circle.

A\v. A circle, of radius r and centre at the point {e, /}, in the c-phuie is transformed
into a circle in the jr-plane, by the homographic substitution

az+ b
10= , ;

cz-itd
'

shew that the radius of the new circle is

r
j

ad—hc\
A I

'~'^~
I

'

where A= (o- cos /3 + e)-+ (o- sin /3 +/)''' - r\

F- 33
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d
and 0-, /3 are the modulus and the argument respectively of -

. Find the coordinates of

the centre of the w-circle.

Moreover, since there are three independent constants in the general

homographic transformation, they may be chosen so as to transform any three

assigned ^-points into any three assigned ly-points. And three points on a

circle uniquely determine a circle : hence any circle can he transformed into

any other circle (or into itself) by a pr'operly chosen homographic transforma-

tion. The choice of transformation can be made in an infinite number of ways

:

for three points on the circle can be chosen in an infinite number of ways.

A relation which changes the three points z^, z.^, Zs into the three points

Wj, lUo, W3 is evidently

{W - -Wi) (Wji - W3) _ {z- ^i) (z. - Zs)

{W - Wj) (Wi - Ws)
~ (z- z^ {z^ - z^

'

Hence this equation, or any one of the other five forms of changing the three

points z-i,, z», z-i into the three points Wj, w.^, w.^ in any order of correspondence,

is a homographic transformation changing the circle through z-^,z.i,Z3 into the

circle through w^, Wo, w.^.

It has been seen that a transformation of the form w =f {£) does not

affect angles : so that two circles cutting at any angle are transformed by

w =
-J

into two others cutting at the same angle. Hence* a plane crescent,

of any angle, can he transformed into any otJier crescent, of the same angle.

The expression of homographic transformations can be modified, so as to

exhibit a form which is important for such transformations as are periodic.

If we assume that w and z are two points in the same plane, then there

will in general be two different points which are unaltered by the transfor-

mation ; they are called the fixed (or douhle) points of the transformation.

These fixed points are evidently given by the quadratic equation

au + h

cu + d

that is, CU' — (a — d) u — h = 0.

Lot the points be a and /3, and let M denote (d — a)- + 4<hc ; then

2ca = a-d + il/*, 2c/3 = « - (Z - MK
If, then, the points be distinct, we have

w — a _ (z — a)(a — ca) _ ,,, z — a.

^7^ ~ {z-^){a-c0) ~ ^ z-^'

* Kirclihoff, Vorlesiingeii iiber tiuithcmatiticlie PJiysik, i, p. 28G.
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a — ca a + d — ifi

here K =^""'" " a-c^ a + d + Mf^'

/ ^ y _ (« +d)-
and therefore i^sfK + ^) - ,7^3^ •

The quantity K is called the multiplier of the substitution.

If there be a ^r-curve in the plane passing through a, the w-curve which

arises from it through the linear substitution also passes through a. To find

the angle at which the ^-curve and the w-curve intersect, we have w = a + hiu,

z = a + hz : and then

hiu — Khz,

so that the inclination of the tangents at the point is the argument of K.

Similarly, if a ^-curve pass through /3, the angle between the tangents to the

w curve and the ^^-curve is supplementary to the argument of K.

The form of the substitution now obtained evidently admits of reapplica-

tion ; if Zn be the variable after the substitution has been applied ii times, (so

that ^'o
= z, Zi = w), we have

Zn-ct ^j^,^z-a

Zn-/3 z-^'

The condition that the transformation should be penodic of the ?)th order

is that Zn = z and therefore that K^= 1 ; hence

(a + d)- — 4 {ad - he) cos"—
,

where s is any integer different from zero and prime to n; K cannot be

purely real, and, in general, M is not a real positive quantity. The
various substitutions that arise through different values of s are so related

that, if points z^, z.^,..., z.^ be given by the continued application of one

substitution through its period, the same points are given in a different

cyclical order by the continued application of the other substitution through

its period.

Ex. 1. The value of s„ has been given by Cayley in the form

(/i " + 1 - 1 )
(c2+ rf) + (/r» - A') {cz -a)

obtain this expression.

Ex. 2. Periodic substitutions can be applied, in connection with Kii'clihoft''s result

that a plane crescent can be transformed into another plane crescent of the same angle
;

the plane can be divideti into a limited number of regions when the angle of the crescent

is commensurable with w.

Let ACBDA be a ciicle of radius unity, having its centre at the origin: draw the
diameter AB along the axis of y. Then the seini-circle ACB can be regarded as a plane

33—2
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crescent, of angle lir ; and the semi-circle ABD as another, of the same angle. Hence

they can be transformed into one another.

e,<- dsi

We can effect the transformation most simply by taking A {= i) and B{= —i) as the

fixed points of the substitution, which then has the form

w— i_ j^z — i

w-\-i z+i'

The line AB for the w-cxxvya is transformed from the ^-circular arc ACB: these curves

cut at an angle -^tt, which is therefore the argument of K. Considerations of symmetry

shew that the 2-point C on the axis of x can be transformed into the ^i'-origin, so that

1-A'
-1+i'

whence K=i, so that the substitution is

w — i

w+ i

.z — i
I .

,

z+ t

It is periodic of order 4, as might be expected : when simplified, it takes the form

\+z
w= - .

1 -z

The above figure shews the effect of repeated application of the substitution through

a period. The first application changes the interior of A CBA into the interior of ABDA :

by a second application, the latter area is transformed into the area on the positive side of

the axis of ?/ lying without the semi-circle ADB ; by a third application, the latter area is

transformed into the area on the negative side of the axis of ^ lying without the serai-

circle A CB ; and by a fijurth application, completing the period, the lattei* area is

transformed into the interior of ACBA, tlie initial area.

Tlie other lines in the figure correspond in the respective areas.
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Ex. 3. Shew that, if the plane crescent of the preceding example have an angle

of -TT instead of \it but still have +i and -i for its angular points, then the substitution

2+ <

2m'

cation through a period to the area of the crescent, divides the plane into 2?i regions, all

but two of which must be crescent in form. Under what circumstances will all the 27i

regions be crescent in form ?

Note. The formula in the text may Ije regarded as giving the «th poicer of a substi-

tution. The form of the sul)stitution obtained is equally eftcctive for giving the ?ith root

of a substitution : all that is necessary is to express K in the form pc**, and the 7ith

root is then
Zj — a
-

i loiz-a

n

259. Homographic substitutions are divided into various classes, according

to the fixed points and the value of the multiplier. As the quantities a, h,

c, d can be modified, by the association of an arbitrary factor with each of

them without altering the substitution, we may assume that ad — he — I
;

we shall suppose that all substitutions are taken in such a form that their

coefficients satisfy this relation. Figures which, by them, are transformed

into one another are called congruent figures.

If the fixed points of the substitution coincide, it is called* a parabolic

substitution.

There arc three classes of substitutions, which have distinct fixed points.

If the nmltiplier be a real positive quantity, the substitution is called

hyperbolic.

If the multiplier have its modulus ecpial to unity and its argument

different from zero, it is called elliptic.

If the multiplier have its modulus different from unity and its argument

different from zero, it is called loxodromic.

These definitions apply to all substitutions, whether their coefficients be

real or be complex constants ; when we consider only those substitutions,

which have real coefficients, only the first three classes occur. Such sub-

stitutions are often called real.

The quadratic equation, which determines the common points of a real

substitution, has its coefficients real ; according as the roots of the quadratic

are imaginary, equal, or real, the real substitution will be proved to be

elliptic, parabolic, or hyperbolic respectively. For all of these, we take

d . a ^ .^T
2 + ~=x + iy, w = X+iy,

c
"^

c

* All these names are due to Klein : I. c, p. 512, twte.
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which imply a transference of the respective origins along the respective axes

of real quantity ; and then

^ .^r ad — be 1X +iY = -^ ^
c- X + ly

_ X — iy

so that
Y 1

y c^ix^ + y-y

The axes of x and of X have been unaltered by any of the changes made in

the substitution ; and F, y have the same sign and vanish together ; hence

the effect of a real transformation is to conserve the axis of real quantities, by

transforming the half of the ^-plane above the axis of x into the half of the

w-plane above the axis of X.

A real transformation, which changes z into w, also changes z^ into Wq

(these being conjugate complexes). A circle, having its centre on the

axis of X and passing through a, /3, passes through «„, /So also : hence a

transformation, which changes a circle through a, /3 with its centre on

the axis of x into one through 7, S with its centre on the axis of X, is

z — Oi ^ — tto _w — <y S — 7o

z — a^'^ — a w—<yo'8 — j'

Ex. 1. Shew that, if this circle, through a, /3, oq, /3o) cut the axis of x in h and k,

where h lies in /3/3o
and k in aoQ, and if [a/3] denote 7 .

--— . , a real quantity greater than
0,— Ic p — /I

1, then

(a-ao)(3-^o)_ 4[a3]
fPoincare

)

i^WiJ-^.)
~

{1 +[a/3]}'^
• (Pouacare.)

Ex. 2. Prove that the magnification at any point, by a real substitution, is F/i/.

(Poincare.)

Ex. 3. Any s-circle, having its centre on the axis of x, is transformed by a real

substitution into a •it'-circle, having its centre on the axis of X.

Let the classes of real substitutions be considered in order.

(i) For real parabolic substitutions, the quadratic has equal roots : let

their common value be a, necessarily a real quantity, so that the fixed points

of the substitution coalesce into one on the axis of x. The quantity 31 is

then zero, so that {d + a)- = 4. We may, without loss of generality, take

d+ a = 2. If both origins be removed to the point a, then, in the new

form, zero is a repeated root of the quadratic, so that 6 = 0, and a — d = 0.

Hence a = d = l, and the real substitution is

zw= -,
cz+l'

that is,* -=- + c.

w z

* If the oriRins be not removed to the point a, the form is = 1- c.
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The equations of transformation of real coordinates are

X y
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we may evidently take a + d > 2. Moreover K is real and positive, shewing

that the substitution is hyperbolic.

Taking one of the fixed points for origin and denoting by /the distance

of the other, we have and /as the roots of

an + bu^—

—

J,cu + a

with the conditions ad — bc — l,a + d>2. Hence 6 = 0, a — d — cf, ad = l,

K = -^\ then K is greater or is less than 1 according as cf is positive or is

negative. We shall take K > 1 as the normal case ; and then the sub-

stitution is

az
w =

cz + d'

with a > 1 > d, a + d > 2, ad =^ 1.

Ex. 1. A £-curve is drawn through either of the fixed points of a real hj^erbolic

substitution : shew that the w-cm-ve, into which it is changed by the substitution, touches

the 2-curve. Hence shew that any 2-circle through the two fixed points of the substi-

tution is transformed into itself.

Ex. 2. Let A be a circle through the origin and the point /; and let Cq be the other

extremity of its diameter through / Let a real hyperbolic substitution, having the origin

and / for its fixed points, transform Cq into Cj, q into c^, c^ into C3, and so on : all these

points being on the circumference of A

.

Shew that the radius of a circle (7„, having its centre on the axis of x and passing

through c„ and the origin, is

1 /

so that C„ is the locus of all the points c„ arising through difierent initial circumferences

A. What is the limit towards which (7„ tends as n becomes infinitely great ?

Ex. 3. Apply the inverse substitution, as in Ex. 2, to obtain the corresponding result

and the corresponding limit.

Ex. 4. Prove that a curve of finite length will meet an infinite number, or only a

finite number, of the circles C„, according as it meets or does not meet the circle having

the line joining the common points of the substitution for diameter.

{2^^ote. All these results are due to Poincare.)

It follows from what precedes that no real substitution can be loxodromic;

for, when the multiplier of a real substitution is not real, its modulus is

uriity.

It is not difficult to prove that when a substitution, with complex

coefficients a, h, c, d, is parabolic, elliptic, or hyperbolic, then a + d is

either purely real or purely imaginary. In all other cases, the substitution

is loxodromic.
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Any loxodromic substitution can be expressed in the form

w — a_ z — a

the coefficients of the quadratic determining a and /3 are generally not real,

and the multiislier K, defined by

^K = {a + rf)= - 2 - {a + d) [{a + d)' - 4}i,

is a complex quantity such that, if"

K = pe'"',

where p and tu are real, then p is not equal to unity and w is not zero.

260. Further, it is important to notice one property, possessed by elliptic

substitutions and not by those of the other classes: viz. an elliptic substitution

is either periodic or infinitesimal.

Any elliptic substitution of which a and yS are the distinct Hxed points,

(they are conjugate imaginaries), can be put into the form

w — a
__ J, z — a

where \K\ = 1 : let K = e^'. Then the ?/ith pt)wer of the substitution is

lV,n -IS Z- ^

Now if d be commensurable with 27r, so that

(9/277 = \I[X,

then, taking m = fx, we have

w^ — a _ z — a

that is, iv^ = z,

or the substitution is periodic.

But if 6 be not commensurable with 27r, then, by proper choice of ni, the

argument md can be made to differ from an integral multiple of "In by a very

small quantity. For we expand d/'Iir as an infinite continued fraction : let

piq, p'/q' be two consecutive convergents, so that p'q -pq' = ± 1. We have

i.=lVxfi^'-^-^).whereO<X<l,
Itt q \q qj

q q-

where
|

t;] < 1, that is, q6 — 2p7r = ^ttt) -
,
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where ?;, being real, is numerically less than 1. Hence, taking m = q, we

have

e ' = l + ^"^^ +
w,j-l3 z-0 2-/3 1 ^

where, by making q large, we can neglect all terms of the expansion after the

second. Then
(z -a)(z- 13) 27T7] .

that is, by taking a series of values of q sufficiently large, we can, for emry

value of z find a value of w differing only by an infinitesimal amount from the

value of 2'. Such a substitution is called infinitesimal; and thus the proposi-

tion is established.

But no parabolic and no hyperbolic substitution is infinitesimal in the

sense of the definition. For in the case of a parabolic substitution we have

1 1

Wn — a z — a

which does not, by a proper choice of q, give Wq nearly equal to z for every

value of z : and a parabolic substitution is not substitutionally periodic, that

is, it does not reproduce the variable after a certain number of applications.

But it may lead to periodic functions of variables : thus (z, z+ w) is a

parabolic substitution. And in the case of a hyperbolic substitution, we

have

Wq — a , „ ^= \?

where X is a real quantity which differs from 1. No value of q gives lUq

nearly equal to z for every value of z : hence the substitution is not infini-

tesimal. And it is not substitutionally periodic.

Similarly, a loxodromic substitution is not periodic, and is not infini-

tesimal.

Hence it follows that, in dealing with groups of substitutions of the kind

above indicated, viz. discontinuous, all the elliptic transformations which occur

must be suhstitutionally periodic : for all other elliptic transformations are

infinitesimal. It is easy to see, from the above equations, that the effect of

an unlimited repetition of a parabolic substitution is to make the variable

ultimately coincide with the fixed point of the substitution ; and that the

effect of an unlimited repetition of a hyperbolic substitution is to make the

variable ultimately coincide with one of the fixed points of the substi-

tution. These common points are called the essential singularities of the

respective substitutions.
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261. It has been proved (§ 258) that a linear relation between two

variables can be geometrically represented as an inversion with regard to a

circle, followed by a reflexion at a straight line. The linear relation can be

associated with a double inversion by the following proposition*, due to

Poincare :

—

Whe)i the inverse of a point P with 7-e(jard to a circle is inverted with

regaled to another circle into a point Q, the complex variables of P and Q are

connected hy a lineo-linear relation.

Let ^ be the variable of P, u that of its inverse with regard to the first

circle of centre/" and radius r; let w be the variable of Q, and let the second

circle have its centre at g and its radius s. Then, since inversion leaves the

vectorial angles unaltered, we have

(w-/)(^o-/o) = r=

for the first inversion, and

{w-g){u,-g,)=s'

for the second. From the former, it follows that

v" s"
and therefore ,,-\ = /"„ — r/,,,

z-f w-g '

leading to w — ^
,^

7^ + 8

where, Avhen a8 — ^'y = 1, we have

rscL=g{f,-g,) + s\

rs^= gr- -fs^ -fg (/„ - ^o),

'>'s^=fo-go,

rs8 = -f{f,-g,)+r\

This proves the proposition.

Moreover, as the quantities /, g, r, s are limited by no relations, and as,

on account of the relation aS — /3<y = 1, there are substantially only three

equations to determine them in terms of a, ^, y, 8, it follows at once that the

lineo-linear relation can be obtained in an infinite number of luays by a pair of

inversions, and therefore in an infinite number of ways by an even number of
inversions.

Again, taking the two circles used in the above proof, we have

rs (a + S ± 2) = (r ± sf - {f- g) (/, - g,)

= (r + s)- - d-,

* Acta Math., t. iii, (1883), p. 51.
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where d is the distance between the centres of the circles. Hence a + S

is real, and the substitution cannot be loxodroniic. Moreover, if the circles

touch, the substitution is parabolic ; if they intersect, it is elliptic ; if they

do not intersect, it is hyperbolic.

Eliminating r and s between the equations which determine a, /3, 7, S, we

find

^ 7/+S'

so that, when one centre is chosen arbitrarily, the other centre is connected

with it by the linear substitution*.

Ex. 1. Shew that, if/ and g lie on the axis of real quantities, so that the substitution

is real, then

where X and /x are the fixed points of the substitution.

Hence prove that, if two real substitutions be given, it is generally possilile to

determine three circles 1, 2, 3 such that the substitutions are equivalent to successive

inversions at 1 and 2 and at 1 and 3 respectivc^ly. Discuss the reality of these circles.

(Bumside.)

Ex. 2. Shew that, if a loxodroniic substitution be represented in the preceding

geometrical manner, at least four inversions are necessary. (Burnside.)

This geometrical aspect of the lineo-linear relation as a double inversion

will be found convenient, when the relation is generalised from a connection

between the variables of two points in a plane into a connection between the

variables of two points in space,

* Burnside, Mess, of Math., vol. xx, (1891), pp. 163—166.

I

I



CHAPTER XX.

CONFORMAL REPRESENTATION: GENERAL THEORY.

262. In Gauss's solution of the problem of the conformal representation

of surfaces, there is a want of determinate ness. On the one hand, there is an

element arbitrary in character, viz., the form of the function ; on the other

hand, no limitation to any part of either surface, as an area to be represented,

has been assigned. And when, in particular, the solution is applied to two

planes, then, corresponding to any curve given in one of the planes, a curve

or curves in the other can be obtained, partially dependent on the form

of functional relation assumed, different curves being obtained for different

forms of functional relation.

But now a converse question suggests itself. Suppose a curve given in

the second plane : can a function be determined, so that this curve corresponds

to the given curve in the first plane and at the same time the conformal

similarity of the bounded areas is preserved, with unique correspondence

of points within the respective areas ? in fact, does the conformal corre-

spondence of two arbitrarily assigned areas lead to conditions which can

be satisfied by the possibilities contained in the arbitrariness of a functional

relation ? And, if the solution be possible, how far is it detern)inate ?

An initial simplification can be made. If the areas in the planes,

conformally similar, be T' and R, and if there be an area S in a thiid plane

conformally similar to 7', then >S' and R are also conformally similai- to one

another, whatever S may be. Hence, choosing some foi-in for *S', it will

be sufficient to investigate the question for T and that cho.sen form. The

simplest of closed ciu'ves is the circle, which will thei'cforc be taken as *S'

:

and the natuial point within a circle to be taken as a point of reference is its

centre.

Two further limitations will be made. It will be assumed that the plane

surfaces are simply connected* and one-sheeted. And it will be assumed

* The conformal representation of multiply connected plane surfnees is considered liy

Schottky, Crellc, t. Ixxxiii, (1877), pp. 300—351.
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that the boundary of the area T is either an analytical curve* or is made up

of portions of a finite number of analytical curves—a limitation that arises in

connection with the proof of the existence-theorem. This limitation, initially

assumed by Schwarz in his early investigations"!* on conformal representation

of plane surfaces, is not necessary : and Schwarz himself has shewn
ij;

that the problem can be solved when the boundary of the area T is any

closed convex curve in one sheet. The question is, however, sufficiently

general for our purpose in the form adopted.

Then, with these limitations and assumptions, Riemann's theorem §

on the conformation of a given curve with some other curve is effectively

as follows :

—

Any simply connected part of a plane hounded by a curve T can ahuays he

conformally represented on t/ie area of a circle, the two areas having their

elements similar to one another; the centre of the circle can he made the

homologue of any jwint Oo within T, and any point on the circumference of the

circle can he made the homologue of any point 0' on the boundary of T ; the

conformal representation is then uniquely and completely determinate.

263. We may evidently take the radius of the circle to be unity, for a

circle of any other radius can be obtained with similar properties merely by

constant magnification. Let tu be the variable for the plane of the circle, z

the variable for the plane of the curve T\ and let

log iu= t — m + ni.

Evidently n will be determined by m (save as to an additive constant), for

m + ni is a function of z : and therefore we need only to consider m.

At the centre of the circle the modulus of ^v is zero, that is, e'^ is zero

:

hence m must be — cc fur the centre of the circle, that is, for (say) z — z^ in T.

At tlie boundary of the circle the modulus of w is unity, that is, e'" is

unity: hence m must he along tlie circumference of the circle, tliat is, along

t/ie boundary of T.

Moreover, the correspondence of points is, by hypothesis, unique for the

areas considered : and therefore, as e"^ and n are the polar coordinates of the

point in the copy and as m is entirely real, m is a one-valued function,

which within T is to be everywhere finite and continuous except only at

the point Zq. Hence, so far as concerns m, the conditions are :

—

(i) m must be the real part of some function of z:

(ii) m must be — x at some arbitrary point ZqI

* A curve is said to be an analytical curve (§ 265) when the coordinates of any point on it

can be expressed as an analytical function (§ 34) of a real parameter,

t Crelle, t. Ixx, (1869), pp. lOo—120.

+ Ges. Werke, t. ii, pp. 108—1H2.

§ Ges. Werke, p. 10.
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(iii) m must be along the boundary of T:

(iv) for all points, except z^, within T, m must be one-valued, finite and

continuous.

Now since m + ni = log w = log R + 10, the negatively infinite value of m
at z„ arises through the logarithm of a vanishing quantity ; and therefore, in

the vicinity of ^'o, the condition (ii) will bo satisfied by having some constant

multiple of log {z - z^) as the most important term in 7ii + ni ; and the rest of

the expansion in the vicinity of Zq can be expressed in the form p(z — z^), an

integral rational series of positive powers of z — z^, because ni is to be finite

and continuous. Hence, in the vicinity of -^o, we have

log w = m + ni = - log {z — z„) + j) (z — z,,),

where \ is some constant. This includes the most general form : for the

form of any other function for 7)1 + ni is

- log [{z - Zo) g(z- z,)] +P{z- z,),

where g is any function not vanishing when z — Zq: and this form is easily

expressed in the form adopted. Hence

1

w ^ (z - z,Y ei'^'-'^'K

Since w is one-valued, we must have \ the reciprocal of an integer; and

since the area bounded by T is simply connected and one-sheeted we must
have z — Zq a. one-valued function of tu. Hence X = 1 ; and therefore, in the

vicinity of Z(,,

w = (z- ^•o) e^''^-^»',

a form which is not necessarily valid beycmd the immediate vicinity of z„,

for jL) (^ - ^'o) might be a diverging series at the boundary. Thus, assuming

that^(^ — ^u) is 1 when z = z„, we have, in the immediate vicinity of ^o,

m + ni = log {z — ^„),

a form which satisfies the second of the above conditions.

It now appears that the quantity m must be determined by the con-

ditions :

(i) it must be the i-eal part of a function of z, that is, it nnist satisfy

the e(|uation V"/n=0:

(ii) along the boundary of the curve T, it must have the value zero :

(iii) at all points, except Zo, in the area bounded by T, ni must be
uniform, finite and continuous : and, for points z in the

inunediate vicinity of z„, it must be of the form log ?•, wheiv
)• is the distance from z to z„.
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When m is obtained, subject to these conditions, the variable w is thence

determinate, being dependent on z in such a way as to make the area

bounded by T conformally represented on the cu'cle in the w-plane.

264. The investigations, connected with the proof of the existence-

theorem, shewed that a function exists for any simply connected bounded

area, if it satisfy the conditions, (1) of acquiring assigned values along the

boundary, (2) of acquiring assigned infinities at specified points within the

area, (3) of being everywhere, except at these specified points, uniform, finite,

and continuous, together with its differential coefficients of the first and the

second order, (4) of satisfying V-tt = everywhere in the interior, except at

the infinities. Such a function is uniquel}- determinate.

But the preceding conditions assigned to m are precisely the conditions

Avhich determine uniquely the existence of the function : hence the function

m exists and is uni(|uely determinate. And thence the function w is

determinate.

It thus appears that any simply connected hounded area can he conformally

represented on the area of a circle, luith a unique correspondence of points in

the areas, so that the centre of the circle can he made tJie homologue of an

internal jJoint of the hounded area.

An assumption was made, in passing from the equation

w = {z — z^) e^'^~^^

to the equation which determines the infinity of rn, viz. that, when z = Zq,

the value of p(z—z,i) is 1. If the vakie of p (z — Zq) when z=Zo be some

other constant, then there is no substantial change in the conditions

:

instead of having the infinity of 7n actually equal to logl^r — 2^o|, the new
condition is that m is infinite in the same way as logj^ — 2^o|j ^iid then a

constant factor must be associated with w. A constant factor may also arise

through the circumstance that n is determined by m, save as to an additive

constant, say 7: hence the form of w = e"'+"'' will be

w= A'e^'u = Au.

Since displacement in the plane makes no essential change, we may take

a form w = Au -\- B, where now the confurmal transformation given by w is

over any circle in its plane, the one given by u being over a particular circle,

centre the origin and radius unity.

The conformation for lu is derived from that for v by three operations

:

(i) displacement of the origin to the point —BjA :

(ii) magnification equal to A'

:

(iii) rotation of the circle round its centre through an angle 7:



264.] DERIVATIVE FUNCTIONS REQUIRED 529

these operations evidently make no essential change in the conformation.

If the limitation to the particular circle, centre the origin and radius 1,

be made, evidently B = 0, J.' = 1, but y is left arbitrary. This constant

can be determined by assigning a condition that, as the curve C has its

homologue in the circle, one particular point of C has one particular point of

the circumference for its homologue : the equation of transformation is then

completely determined.

This determination of A', B, y is a determination by very special con-

ditions, which are not of the essence of the conformal representation : and

therefore the apparent generality for the present case should arise in the

analysis. Now, if w= Au + B, we have

^|logf^)U^|logf*^)|,
dz\ ^\dzj] dz\ ^\dz)y

which is the same for the two forms; and therefore the function to be

sought is

d f , /dw^
log

dz \ ° \dz

when the area included by is to be represented on a circle so that a given

point internal to G shall Juive the centre of the circle as its homologue.

The arbitrary constants, that arise when w is thence determined, are given

by special conditions as above.

Again, if the conformation be merely desired as a representation of the

^r-area bounded by the analytical curve G on the area of a circle in the

w-plane (without the specification of an internal point being the homologue

of the centre), there will be a further apparent generality in the form of the

function. From what was proved in § 258, a circle in the w-plane is trans-

formed into a circle in the w-plane by a substitution of the form

_Au->!-B

so that, if u be a special function, ic will bo the more general function giving

a desired conformal representation ; and, without loss of this generality, we

may assume AD — BG = 1. Using [w, z] to denote

d"^ I , dw d I , dw
Yi.

dz\'^' ° dz

that is, ,
— 4 ( —

7

w ^ \w

called the Schwarzian derivative by Cayley*, we have

[w, z\ = {m, z\,

* Camh. Phil. Trans., vol. xiii, (187!)), p. 5; for its properties, see Caylcy's memoir just quoted,

pp. 8, 9, and my Treatise on DiJ'erential Equations, pp. 92, 93.

F. 34
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which is the same for the two forms : and therefore the function to he

sought is

[w, z],

ivhen the area included hy the analytical curve C is to he conformally repre-

sented on a circle. The (three) arbitrary coustants, that arise when iv is

thence determined, are obtained by special conditions.

These two remarks will be useful when the transforming equation is

being derived for particular cases, because they indicate the character of the

initial equation to be obtained : but the importance of the investigation is

the general inference that the conformal representation of an area bounded

by an analytical curve on the area of a circle is possible, though, as the proof

depends on the existence-theorem, no indication is given of the form of

the function that secures the representation.

Further, it may be remarked that it is often convenient to represent a

^•-area on a w-half-plane instead of on a w-circle as the space of reference.

This is, of course, justifiable, because there is an equation of unique transfor-

mation between the circular area and the half-plane ; it has been given (Ex. 9,

§257). Moreover, a further change, given by u = -^, is still possible: for,

when a, h, c, d are real, this transformation changes the half-plane into itself,

and these real constants can be obtained by making points p, q, r on the

axis change into three points, say 0, 1, x , respectively—the transformation

then being
n ~ p q — r

u —
.

u — r q — p

265. Before discussing the particular forms just indicated, we shall

indicate a method for the derivation of a relation that secures conformal

representation of an area bounded by a given curve C.

Let* the curve C be an analytical curve, in the sense that the coordinates

cc and y can be expressed as functions of a real parameter, say of u, so that

we have x =p {u), y = q (u) ; then

z — a: + iy =j) -\-iq =
(f)

(?<,).

If for u we substitute w = u + iv, we have

z = ^ (w)
;

and the curve C is described by z, when w moves along the axis of real

quantities in its plane.

When the equation x + iy =
(f)

(u + iv) is resolved into two equations

involving real quantities only, of the form a: = \(u, v), y = fi{u, v), then the

eliminations of v and of u respectively lead to curves of the form

^lr (x, y, h) = 0, X (*> y> y) = 0,

* Beltrami, Ann. dl Mat., 2'"'' Ser., t. i, (1867), pp. 329—366; Cayley, Quart. Journ. Math.,

voL XXV, (1891), pp. 203—226; Schwarz, Ges. IVerkc, t. ii, p. 150.
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which are orthogonal trajectories of one another when u and v are treated as

parameters. Evidently % {x, ?/, 0) = is the equation of G : also

\ {u, 0) = p, fi (u, 0) = q.

So far as the representation of the area bounded by (7 on a half-plane is

concerned, we can replace w by an arbitrary function of Z(=X + iY) with

real coefficients: for then, when F= 0, we have w =f{X) and

which lead to the equation of G as before, for all values of/. This arbi-

trariness in character is merely a repetition of the arbitrariness left in

Gauss's solution of the original problem.

Now let the ty-plane be divided into infinitesimal squares with sides

parallel and perpendicular to the axis of real quantities. Then the area

bounded by G is similarly divided, though, as the magnification is not every-

where the same, the squares into which the area is divided are not equal to

one another. The successive lines parallel to the axis of u arc homologous

with successive curves in the area, the one nearest to that axis being the

curve consecutive to G. Similarly, if the ^-plane be divided.

Conversely, if a curve consecutive to G, say G', be arbitrarily chosen, then

the space of infinitesimal breadth between G and G' can be divided up into

infinitesimal s<[uares. Suppose the normal to G at a point L meet G' in L'

:

along G take LM=LL , and let the normal to G at M meet G' in M' \ along

G take MN = MM', and let the normal to G at N meet C" in N' : and so on.

Proceeding from G' with L'M', il/'iV, ... as sides of infinitesimal squares, we

can obtain the next consecutive curve G", and so on ; the whole area bounded

by G may then be divided up into an infinitude of squares. It thus appears

that the arbitrary choice of a curve consecutive to G completely determines

the division of the whole area into infinitesimal scpiares, that is, it is a

geometrical equivalent of the analytical assumption of a functional form

which, once made, determines the whole division.

Next, we shall shew how the form f of the function can be determined

so as to make the curve consecutive to G a given curve. As above, the

curve G is given by the eliniination of a (real) parameter between

x^p{u), y = q{u);

and the representation is obtained by taking

X + iy = z =p (w) + iq (iv) =p {/{Z)] + iq [f{Z)].

Let the arbitraril}^ assumed curve C", consecutive to G, be given by the

elimination of a (real) parameter 6 between

x=p + eP, y = q + €Q,

where p, F, q, Q are functions with real coefficients, and e is an infinitesimal

34—2
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constant : the form of/ has to be determined so that the curve corresponding

to an infinitesimal value of Y is the curve C. Taking u=f(X), where

u and X are real, we have, for the infinitesimal value of Y,

= L (w) + iY^P (u)^ + i
\q ('") + ^Y

£l l' ('0|

.

^ du ,
, .r du ,

so that x=p—YjYq, ^^^^'^ dX^'

dashes denoting differentiation with regard to u. This is to be the same

as the curve C", given by the equations

x = p + eP, y = q+ eQ-

Hence the (real) parameter in the latter differs from u only by an infini-

tesimal quantity : let it be u — fju, so that we have

x=p — fjup' + eP, y = q — /Ji'q' + ^Q,

the terms involving products of e and
fj,

being neglected, because they are of

at least the second order. Hence

-fxp'+eP = - Y-^q, -fiq'+eQ = Y^^p';

whence fi (p- + q'^) = e (P^ + Qq),

and 6 (p'Q - q'P) =Yj^(j)''+ q") *.

Now e is a real infinitesimal constant, as is also Y for the present purpose

:

so that we may take e = AY, where ^ is a finite real constant: and A may

have any value assigned to it, because variations in the assumed value

merely correspond to constant magnification of the ^-plane, which makes no

difference to the division of the area bounded by C. Thus

A{p'Q-q'P) =
f^{p^

+ q%

and therefore ^ A"^ = I ,7^—^-^ du,
J pQ-qP

the inversion of which gives u =f{X) and therefore w =f{Z), the form

required.

Also we have a — AY —^ ,~^
,r p'^+q'-^

shewing that, if the point x = p-\- eP, y = q + eQon C lie on the normal to G
at x=p, y = q, the parameters in the two pairs of equations are the same;

the more general case is, of course, that in which the typical point on C is in

*. Beltrami obtains tbis result more directly from the geometry by assigning as a condition

that the normal distance between the curves is equal to the arc given by du: I.e., (p. 530, note),

p. 3-13.
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the vicinity of C. And it is easy to prove that the normal distance between

the curves at the point in consideration is

ds

dX'

where ds is an arc measured along the curve C.

Ex. 1. As ail illustration*, let Cbo an ellipse x'^la'^+y^lh'^= \ and let C'be an interior

confocal elli[)se of semi-axes «-«, b-fi, where n and /3 are infiiiitcsimally small ; so that,

since

{a - af - {h - (if= a2 - U^ =c%

c c
we have aa = h3 = C€ say ; then the semi-axes of 6" arc a— t, h- , f. We have

p— acosn, q= b sin u,

C €P— — cos u, Q= — J sin u,
a b

so that AX— \
— du—— ti,

J c c '

or, taking A = —, we have X=2i and therefore Z=w. Hence the equation of transfor-

mation is

z— x-\-iy = a cos Z-\- ih nrnZ ;

or, if a= ccosh F^, 6= csinh Fq, and if F' denote Fq- F, the equation is

2= ccos (A'-l- {F') = c cos Z'.

The curves, corresponding to parallels to the axes, are the double system of confocal

conies.

Ex. 2. When the curve C is a parabola, with the origin as focus and the axis of real

quantities as its axis, and C is an external confocal coaxial parabola, the relation is

z=a{Z+if;

substantially the same relation as in Ex. 1, § 257.

Ex. 3. When C is a circle with its centre on the axis of real quantities and C" is

an interior circle, having its centre also on the axis but not coinciding with that of C, the

circles being such that the axis of imaginary quantities is their radical axis, the relation

can be taken in the form
2= ctanZ. (Beltrami; Cayley.)

Note. Although, in the examples just considered, the successive curves C
ultimately converge to a curve of zero area (either a point or a line), so that

the whole of the included area is transformed, yet this convergence is not

always a possibility, when a consecutive to G is assigned arbitrarily. There

will then be a limit to the ultimate curve of the series, so that the repre-

sentation ceases to be effective beyond that limit. The limitation may
dz

arise, either through the occurrence of zero or of infinite values of jy for

areas and not merely for isolated points, or through the occurrence of

branch-points for the tranvsforming function. In either case, the uniqueness

of the representation ceases.

* Beltrami, I.e., (p. 530, note), p. SU ; Cayley, (ih.), p. 20G.
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Ex. 4. Consider the area, bounded by the cardioid

r= 2a(l + cos^)
;

then we can take

;r= jo = 2a(l +COS u) cos «, y= q= '2a (1 +cos u)&vau,

where evidently ?<=5 along the curve. Let the consecutive curve be given by

^= - rtf+ 2a (1 + e) (1 + cos u') cos u\ y= 2a (1 + e) (1+ cos u') sin vJ,

so that, to determine X, we assume P= -a+ 2a (1 +cos ?i)cos«, (?= 2a (1 +cosm) sinw,

for u' — u=—fi a small quantity.

"We have p'-+q'^=^l6a-coii'^u,

q'P-p'Q= l2a^cos^^u,

p'P+ q'Q= — 2a^ sin u
;

and then, proceeding as tefore and choosing A of the text as equal to —
^, (which imphes

tliat e is negative and therefore that the interior areti is taken), we iind

X—u,

therefore Z=xo. Thus the cardioid itself and the consecutive curves are given by

z = p + iq = 2a{\+cosZ)e^^.

To trace the curves, corresponding to lines parallel to the axes of X and }", we have

(^^)^
= 2cosi^i^^

(|y= 2cosiZoe-
uz.

Hence, multiplying, we have

r= 4ae (cos ^Zcos ^Zq)

= 2ae ~ (cosh F+ cos X)

;

and, dividing, we have

ie ix cos \Z

' cosiX cosh 4F- 1 sin hX sinh i F

'

cos-|Zo'

j (X- e)_ cos\X cosh ^F+ i sin ^X sinh \Y
:

^X cosh ^T-i sin ^.

and therefore tan J(X-^)=tan|Xtanh^F.

Moreover, we have -^-^=2aie^^(l + e^^),
dZ

which vanishes when Z=7r (2« + l), that is, at the point A'=(27i + 1) tt, F=0 ; whence the

cusp of the cardioid is a singularity in the representation.

When F=0, then X=6 and r= 2a (1+cos^), which is the cardioid ; when F is very

small and is expressed in circular measure, then

tan ^{X-6) =^Y tan ^X,

or X=^+Ftan|^,

so that r= 2a ( 1 + cos 6) - Aa F.

It is easy to verify that 6= u' + \Y tan \u',

agreeing with the former result.

The relation may be taken in the form

(2/a)^= 2cosiZei^'=e''^+l,

which shews that 2= a is a branch-point for Z. Two diflferent paths from any point to a
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point P, which together enclose a, give different vahics of Z at P. Hence the representa-

tion ceases to he effective for any area that inchides the point a.

Consider a strip of the Z-plane between the lines F=0, F= + so , X= - ^Tr, X= +^7r.

First, when Z=hTT+ iy, we have X=hr, so that

tan (i-TT - |(9) = tanh ^ F

;

and therefore tan^^= e~ ,

2a
whence r = -—; .

,

1 + cos 6

a part of a parabola. And when }' varies from oo to 0, ^ varies from to hn.

Secondly, when Z=JC, so that i'=0, we have X=0, and then

r= 2a(l+cos^):

and, when X varies from ^ to - Jtt, 6 varies from ^tt to - hir.

Thirdly, when Z= -^tt+ iY, we have X= -^ir, so that

tan(|7r-|-|^) = tanhU',

whence tan^6=-e~
,

so that, as Y varies from to x , ^ varies from - hn to 0. And then

_ 2a

^~l+cos5'

another part of the same parabola as before.

Lastly, when Y is infinite and A' varies from - to 4-
.^

, we have

tan^(A-^) = taniA'',

so that ^= 0; and then r= a, in effect the point of the s-plane corresponding to the

point at infinity in the Z-plane.

We thus obtain a figure in the s-plane ABCDA correspc.mding to the strip in the

Z-plane : the boundary is partly a parabola DAB, of focus and axis OA, and partly

a cardioid with for cusp—the inverse of the parabola with regard to a circle on the

latus rectum BD as diameter : the angles at B and D are rii^ht.

X=-i7r X=-j7r

Fig. 92.

To trace the division of the space between the axes of the cardioid and of the parabola

corresponding to tlie division of the plane strip into small squares, we can proceed as

follows.
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Lete~ =(?: then we have

- = c i
- + c] + 2c cos X,

a \c J

or, if ^= ap, then p = l+c^+ 2c cos X ;

tan I {X -6) =^^ tan hX,

sin(.r-i^)'

cos 5^ _ sin ^5 _ 1

and

so that

and therefore , ,,— • .-— , ,l+("cosA csinA 1^1p

so that c cos X= v p cos ^^ - 1, c sin X= v p sin ^6,

from which the curves, corresponding to c= constant and to X= constant, are at once

obtained. They are exhibited in the figure, the whole of the internal space being

divisible.

By combination with the transformation, which (Ex. 12, § 257) represents a strip of

the foregoing kind on a circle, the relation can be obtained, leading to the representation

of the figure on a circle.

Ex. 5. Shew that, if a straight line be drawn from the cusp to the point r= a, 6= 0, so

as to prevent z from passing round 2= or z= a, then the area bounded by the cardioid

and this line can be represented, on a strip of the ?t'-plane given by T=0, Y=cc,
X= —TT, X= +7r, by the equation

iw= log {{z/aY - 1}

.

(Burnside.)

Ex. 6. In the same way, treating the curve (the Cissoid of Diodes) (2r — .r)_?/^=.r^,

and taking the equations

. „ sin^M
X= 2r sm^ %. ii= 2r ,

cos u

as defining the points on the curve, we may assxime the consecutive curve defined by the

equations
Sill It

x= e + (2r - f) sin- 21, y = (2r -e)- - ^

,

^ ^ ; ./ \ / cos?*!

another cissoid with the same asymptote. Proceeding as before we find the value of X
to be tan ?<+ ^^ tan'' u, on taking J = - §r.

The relation, which changes the cissoidal arc into the axis of A' and a consecutive

cissoidal arc into a line parallel to the axis of A^ at an infinitesimal distance from it,

is then

z= 2r
cosw

where the relation between w and Z is

Z= tan w + jV tan^ lo.

Note. The method is applicable to any curve, whose equation can be expressed in the

form r=f{6) : a first transformation is

z=f{w)e''\

The determination of w in terms of Z depends upon the character of the consecutive

curve chosen; this curve also determines the details of the conformation.
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266. It has been pointed out (§ 265, Note) that, though a curve and its

consecutive in the ^^-plane correspond with a curve and its consecutive in the

*y-plane, the conformation is only effective for parts of the included areas,

in which the magnification, if it is not uniform, becomes zero or infinite only

at isolated points, and in which no branch-points of the transforming relation

occur. The immediate vicinity of a curve C is conformable with the

immediate vicinity of a corresponding curve 8, arbitrarily chosen limits

being assigned for the vicinity.

But, as remarked by Cayley*, when a curve is given, then the con-

secutive curve can be so chosen that the whole included area is conformable

with the whole corresponding area in the Z-plane. For a circle can be thus

represented, the ultimate limit of the squares when consecutive curves are

constructed being then a point : this can be expressed by saying that the

area can be contracted into a point. For instance, the relation

z{w + l)-\-i{w -\)=0
transforms the 2^-lialf-plane into the area included by a w-circle of radius

unity. The lines parallel to the axis of x are internal circles all touching

one another at the point (— 1, 0): and the lines parallel to the axis of y are

circles orthogonal to these, having their centres on a line parallel to the axis

of l^and all touching at the point (—1, 0). Similarly for the contraction of

any circle, by making it one of two systems of orthogonal circles : the form of

the necessary equation is obtained as above by taking the next circle of the

same system as the consecutive curve : and a circle can thus be contracted to

its centre (the infinitesimal squares being bounded by concentric circles and

by radii) when the w-circle is derived from a strip of the 2^-half-plane by the

relation lu = e*^. Such a contraction of a circle is unique.

But, by Riemann's theorem, it is known that the area of a given analy-

tical carve can be conformally represented on the area of a given circle, so

that a given internal point is the homologue of the centre and a given point

on the curve is the homologue of a given point on the circumference of the

circle : and that the representation is unique. Hence it follows that, when
an analytical curve G is given, a consecutive curve C can be chosen in such a

manner as to secure that the construction of the whole series of consecutive

curves by infinitesimal squares will make the curve G contract into an

assigned point i".

267. The areas, already considered in special examples, have been

bounded by one or by two analytical curves : we shall now consider two

special forms of areas bounded by a number of portions of analytical curves.

These areas are (i) the area included within a convex rectilinear polygon,

(ii) the area bounded by any number of circular arcs, and especially the area

* I.e. (p. 530, note), pp. 213, 214.

t For further developments, see Cayley's memoir cited p. 530, note.
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bounded by three circular arcs. For the sake of analytical simplicity, the

former will be couformally represented on the half-plane, the transformation

to the circle being immediate by means of the results of § 257.

In regard to the representation* of the rectilinear polygon, convex in

the sense that its sides do not cross, we shall take the case corresponding

to the first of the two forms of § 264 ; it will be assumed that the origin in

the w-plane is left unspecified and that the magnification is subject to an

unspecified increase, constant over the plane. Our purpose, therefore, is to

represent the ^t'-area included b}' a polygon on the half of the ^-plane ; the

boundary of the polygonal area in the ?y-plane is to be transformed into the

axis of real quantities in the ^•-plane.

It follows from Schwarz's continuation-theorem (§ 36), that a function

defined for a region in the positive half of a plane and acquiring continuous

real values for continuous real values of the argument can be continued across

the axis of real quantities : and the continuation is such that conjugate

values of the function correspond to conjugate values of the variable. More-

over, the function, for real values of the variable, can be expanded in a

converging series of powers, so that

w — u'o = {x — c)P{x— c),

where P is a series of positive, integral powers with real coefficients that does

not vanish when c is the value of the real variable w.

Suppose a convex polygon given in the ^y-plane, the area included by

which is to be represented on the ^•-plane, and the contour of which is to be

represented along the axis of x by means of a relation between iv and z.

First, consider a point say ^ on the side Af^iA,. which is not an angular

point. Then, if 6 denote the inclination of A^^^Ar to

the axis of u, the function

(w - /3) e-'>+e)

is real when w lies on the side A^.A,-: it changes sio-n

when w passes through /3 : and for all other points w,

lying either in the interior or on the other sides of the

polygon, it has the same properties as w. Hence, if h be

a (purely real) value of 2: corresponding to w = yS, we have
""^"^

-pi 93

{w - /3) e-''<-+^) = (z-h)P{2- b),

* In connection with the succeeding investigations the following authorities may be

consulted

:

Schwarz, Ges. Werke, t. ii, pp. 65—83 ; Christoffel, Ann. di 2Iat., 2.ia Ser., t. i, (1867),

pp. 95—103, ib., t. iv, (1871), pp. 1—9; Schliifli, Crelle, t. Ixxviii, (1873), pp. 6.3—80;
Daiboux, Theorie genende des surfaces, t. i, pp. 176—180; Phragm^n, Acta Math., t. xiv,

(1890), pp. 229—231.
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for points in the vicinit}^ of ^ : the series P{z—h) does not vanish for z = h;

and, when w lies on the side A^A^^i, then z = x.

Next, consider the vicinity of an angular point of the polygon. Let 7 be

the coordinate of A,., let imtt be the internal angle of the polygon, and let \/r be

the inclination of ^,.^^+] to the axis oi n\ and consider the function

When V) lies on the side ArA^-i at a distance d from A^, then

tv — <y =: rfe*'''+^t

,

so that the function is then real and positive.

When w lies in the interior of the polygon, the function has the same

properties as w, and its argument is negative.

When tu lies on the side ArAr+i at a distance d' from A^, then w — 7= d'e'''',

so that the finiction is d'e~'^'"^^'''^\ that is, fZ'e"''"'". Hence

1

{(w — 7)e-*<''+^'p

is real and positive along the side A^-^A,., and is real and negative along

the side ArAy+i. If then z = c be the value corresponding to w = 7, we

can expand this function in the form {z — c) Q' {z ~ c): and therefore

{w - 7) e-^'c^+s) ={z- cY R(z- c),

where R (= Q'*^) does not vanish for z = c.

These forms assume that neither b nor c is infinite. The point on the

boundary of the polygon (if there be one), corresponding to a; = 00 , can be

obtained as follows. We form a new representation of the ^•-plane given by

which conformally represents the upper half of the ^r-plane on itself: and

then, on the assumption that such point at infinity does not correspond

to an angular point of the polygon, we have f = corresponding to an

ordinary point of the boundary, so that

where Q does not vanish when z = co .

All kinds of points on the boundary of the w-polygon have been considered,

corresponding to points on the axis of x.

We now consider points in the interior. If w' be such an interior point

and z' be the corresponding s-point, then

IV — w' = (z — z) 8{z — /),

where S does not vanish for z = z' because at every point ,- must be different
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from zero : for otherwise the magnification from a part of the s-plane to a

part in the interior of the polygon would be zero and the representation

would be ineffective.

Now in the present case, just as in the first case suggested in § 2G4, it is

manifest that, if a particular function ti give a required representation, then

Aii + B, where |^j = l, will give the same '?('-polygon displaced to a new

origin and turned through an angle = arg. A, that is, no change will be made

in the size or in the shape of the polygon, its position and orientation in the

w-plane not being essential. Hence the function to be obtained may be

expected to occur in the form w — An + B, so that, in representing a figure

hounded by straight lines, tJie function to be obtained is

Now in the vicinity of a boundary-point /S, not being an angular point

and corresponding to a finite value of 2, we have

tu-/3 = e''<-+^> (z - b) P (z - b),

and therefore Z = P^{z — b),

having z — b for an ordinary (non-zero) point.

For a boundary-point /3', not being an angular point and corresponding to

an infinite value of z on the real axis, we have

and therefore Z = h - Oif-l,
z z" ^ \z)'

where Q^ is finite for = 00 . Thus Z vanishes for such a point.

In the vicinity of an angular point 7, we have

w-'y = e'''"+^' {z - cY R(z- c),

and therefore Z = — + R.iz — c),
z — c

where R^ has z = c for an ordinary point.

Lastly, for a point lu' in the interior of the polygon, we have

w — lu' = {z — z') S{z — z'),

and therefore Z = Si{z — z'),

having z = z' for an ordinary point.

Hence Z, considered as a function of z, has the following properties :

—

It is an analytical function of z, real for all real values of its argument,

and zero when x is infinite

:
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It has a finite number of accidental singularities each of the first order

and all of them isolated points on the axis of x : and at all other

points on one side of the plane it is uniform, finite and continuous,

having (except at the singularities) real continuous values for real

continuous values of its argument.

The function Z can therefore be continued across the axis of x, conjugate

values of the function corresponding to conjugate values of the variable : and

its properties make it, by § 48, a rational, algebraical, meromorphic function

of z.

Let a, b, c, ..., I be the points (all in the finite part of the plane) on the

axis of x con-esponding to the angular points of the polygon, and let

flTT, ^TT, yir, ..., Xtt

be the internal angles of the polygon at the respective points : then (by § 48)

„ a-1 /S-1 \-l
z — a z — b z — l

no additive constant beiog required because Z has been proved to vanish for

infinite values of z.

Moreover, because avr, /Stt, ..., Xtt are the internal angles of the polygon,

we have

S (tt — ttTr) = 27r,

so that S(a-l) = -2,

a relation among the constants a, (3, ..., X in the equation

d (, /dw\) a-1 \-l
dz \ °\dzj] z — a '" z — l''

and each of the quantities a, yS, ..., X, is less than 2. This equation*, when

integrated, gives

IV = Gj{z - ay-' (z - by-' ...{z- ly-' dz + c,

where G and 6" are arbitrary constants, determinable from the position of the

polygon f.

268. It may be remarked, first, that any three of the real quantities

a, b, c, ..., I can be chosen arbitrarily, subject to the restrictions that the

points a, b, c, ..., I follow in the same order along the axis of x as the angular

points of the polygon and that no one of the remaining points passes to

infinity. For if three definite points, say a, b, c, have been chosen, they can,

by a real substitution

* This relation, as is possible with many relations in conformal representation of areas, is

made the basis of some interesting apjilications in hydrodynamics, by Michell, Phil. Tram., (1890),

pp. 389—431 ; and in conduction of heat, by Christoffel, I.e., p. .538, note.

t This result was obtained independently by Christoffel and by Schwarz : I.e., p. 538, note.
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where p, q, r, s are real quantities satisfying j)5 — qj^ — 1, be changed into

other three, say a, b', c' : and then, substituting

and using the relation S(a — 1) = — 2,

we have w = r/(^- a')""^^- ^7^' ••• (^ ~ l')^-'d^+ C,

where F is a new constant. By the real substitution, the axis of real

quantities is preserved : and thus the new form equally effects the conformal

representation of the polygon.

But, secondly, it is to be remarked that when three of the points on the

axis of X are thus chosen, the remainder are then determinate in terms of

them and of the constants of the polygon.

Note. The 2-point at infinity has been excluded from being the homo-

logue of one of the angular points of the io-po\ygon : but the exclusion is not

necessary.

If 2; = 00 be the homologue of an angular point a, at which the internal

angle is fiir, then proceeding as before, we have

for points in the vicinity of a ; and therefore

d
[,

/dw^[ At + 1
, ,

.11

Let a, b, c, ..., k be the homologues of the other vertices where the angles

are air, ^tt, ..., kit: then the function

1 {log f*"V - °^ - ^ "-^ - - "—
dz\ ^\dz)') z — a z — b '" z — k

is finite at a, b, ..., k. The term in - in the fractional part is
z ^

z '

But u — 1 + S (a — 1) = - 2, so that the term is ^—— . Hence the function
z

for infinite values of z begins with -
, and therefore it vanishes at that point.

It has thus no infinities for any value of z : being a uniform function, it is

therefore a constant, which (owing to the value of the function for ^ = 00 ) is

evidently zero : so that

Hence, if one of the angular points of the polygon be made to correspond

a-1 /3-1 K-1
z — a z — b z—k'
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to an infinite value of z, the equation which determines the confornial

representation is

w = Al{z- cif-^ {z - bf-' ...{z- Ic)"-' dz + B,

where a — 1+/3-1 + ...+/C — 1 = — l+/x,

/XTT (usually equal to zero) being the internal angle at the vertex which has

its homologue at infinity.

269. The simplest example is that of a triangle of angles air, /Stt, yir, so

that
a + /3 + 7=l.

Then a particular function determining the conformal representation of this

i<;-triangle on the half ^-plane is

dz
'^

' (z - a)i-» (z-by-^ (z - cy-y

'

dz
so that

rT " ^^ ~ "^'~" ^^ ~ ^^'~^ ^^ ~ ^^'"^

'

a differential equation of the class partially discussed in §§ 246—252.

For general values of a, /3, 7 the integral-function w is an Abelian

transcendent of some class which is greater than 1: and tiien, after §§ 110,

239, z is no longer a definite function of vj, and the path of integration must

be specified for complete definition of the function.

If a = 0, the only instance when the integral is a uniform function of w
is when fi = \, 7 = 2- ^^"^ then the function is singly-periodic (§ 252, III.).

In such a case the ty-figure is a strip of the plane of finite breadth, extending

in one direction to infinity and terminated in the finite part of the plane by

a straight line perpendicular to the direction of infinite extension.

If no one of the quantities a, /3, 7 be zero, then on account of the condition

a-f/8-|-7= 1, the only cases when the integral gives z as a uniform function

of w are as follows. In each case the function is doubly-periodic.

(§ 252, III., 10). . .{A) : a= i, /3 = l, 7 = i
: an equilateral triangle.

(ib., 9). . .{B) : a= ^, /3 = ^, 7 = ^ : an isosceles right-angled triangle.

(ib., 8)... ((7): a= ^-,/3 = |, 7 = ,'. : a right-angled triangle with one

angle equal to ^tt.

The integral expressions for these cases have been given by Love *, who has

also discussed a further case, (due to Schwarz, Ex. 3, § 252), in which z occurs

as a two-valued doubly-periodic function of w ; the triangle is then isosceles

with an angle of §7r, the values of a, /3, 7 being a = 5 ,
/S = ^, 7 = ^.

* Amer. Journ. of Math., vol. xi, (188U), pp. 158—171.
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The example next in point of simplicity is furnished by a quadrilateral,

in particular by a rectangle : then

and the general form is

w =/ {(z — a) (2 — b)(2 — c) (z — d)]~^ dz,

so that 2^ is a doubly-periodic function of lu.

First, let it be a square : and choose x , 1, as points on the axis of x

corresponding to three of the angular points in order. The symmetry of the

i^-figure then enables us to choose — 1 as the remaining angular point.

In the vicinity oi z = k, we have

dz\ ^\dzj] z — K

a finite quantity, where « = 0, 1, — 1 in turn.

For infinite values of z, we have

where T is finite for z = :c : hence

d L (dw\\ , 1
, ,

.11

Hence the function

d (1 idiu\] . / 1 1 1

is finite for ^^ = 0, ^^ = 1 , ^ = — 1 : it is zero for ^^ = x : it is not infinite for

any other point in the plane. It is a uniform function of ^^ : it is therefore a

constant, equal to its value at any point, say, at ^= x where it is zero: and so

d (, fdiu\\
1 / 1 1 1

rz dz
whence w = C l , , ^—r^-ri 4- C,

C and C" being dependent upon the position and the magnitude of the

-if^-square.

Again, the half ^•-plane is transformed into the interior of a .^-circle, of

radius 1 and centre the origin, by the relation

t + z

Then except as to a constant factor, which can be absorbed in C, the integral

in lu changes to

dZ
(1-^0^'/.
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so that, by the relation

W = dZ

Fig. 94.

the interior of a ^-circle, centre the origin and radius 1, is the confuriiial

representation of the interior of some

square in the TT-plane. Denoting by
ri ^^

L the integral I yz.
—-rry, so that 2L

J o{i — ar)-

is the length of a diagonal, the angidar

points of the square are D, A, B, G
on the axes of reference : and these

become d, a, h, c on the circumference

of the circle. They correspond to -1, 0, I, cc on the axis of x in the

representation on the half-plane.

Ev. Shew that the area outside a square in the w-plane can be confornially repre-

sented on the interior of a circle in the i-phuie, centre the origin and radius unity, by the

equation

the 2-origin corresponding to the infinitely distant part of the vt'-plane. (Schwarz.)

Secondly, let the rectangle have unecpial sides. Then the symmetry of

the figure justifies the choice of j , 1, — 1, — . as four pijints on the axis of x

corresponding to the angular points of the rectangle when it is represented

on the half-plane. We thus have

^u = C f {(1 - ^=) (1 - ^V)}-J dz + C.

If the rectangle be taken so that its angular points are a, a + 2bi, — a + 2hi,

— a in order, these corresponding to 1, j ,
— j ,

—1 respectively, then we have

= 0',

a = GK,

a-^2bi = G{K + iK')]

so that the relation is

'^K = jj{l-z^){l-k^z^)]-idz,

and then -r^ = — ,K a

_27rb

whence q = e "
,

where q is the usual Jacobian constant : this equation determines the relation

between the shape of the rectangle and the magnitude of k.

F. 35
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In the particular case when the rectangle is a square, we have h = a and
jr/ -1

SO q = e-2-, or jr=^- and therefore* k = 2- Vs or r = 3 + VS. The differ-

ence from the preceding representation of the scpiare is that, there, the point

2 = 1 was the homologue of the centre of the square, whereas now, as may

easily be proved, the point z = i (V2 + 1) is the homologue of the centre.

But in the case of a quadrilateral in which such symmetrical forms are

obviously not possible and, in the case of any convex polygon, only three points

can be taken arbitrai'ily on the axis of cc : the most natural three points to take

are 0, 1, oo for three successive points. The values for the remaining points

must be determined before the representation can be considered definite.

Thus in the case of a quadrilateral, taking go , 0, 1 as the homologues of

D, A, B respectively and - as the homologue of C, _,^

(where /u,< 1), the equation for conformal representation '°'^

is

w = Ca + C,
where

u = j" z'^-' (l - zf-' {I - fi2)y-Ulz = I^^Zdz,say.
'^

pig. 95

If the w-origin be taken at A, and the real axis along AB, we have

= 0',

a = G
I

Xdx + C",
J

f/e'- =.
f
" Xdx + C",

J

1

being the equations for the four angular points. They determine only three

quantities C, C, jx, so that they coexist in virtue of a relation, which is in

effect the relation between the sides and the angles of a quadrilateral.

An equation to determine fju is

a
I
Xdx = de''"'

\
Xdx;

Jo Jo

the second equation serves to determine C, because C" = 0.

The equation determining /x can be modified as follows +, so as to be expressed

in terms of the hypergeometric series.

* This is derived at once by means of the quadric transformation in elliptic functions.

t For the analytical relations in reference to the definite integrals, see Goursat, "Sur

r6quation diff^rentielle linc^aire qui admet pour int^grale la s6rie hyperg^omdtrique," Ann.

de VEc. Norm. Sitj)., 2">« S6r., t. x, (1881), Suppl., pp. 3—142 ; and for the relations between the

hypergeometric series, see my Treatise on Differential Equations, pp. 192—201, 232, 233, the

notation of which is here adopted.



269.] DETERMINATION OF CONSTANT 547

Let - e'"'*= X, so that the equation is
a

/Xdx= X / Xdx.
y

Now to compare tlie.sc integrals witli tlie definite integrals which ai'e the solutiou

the differential equation of the hypergeonietric series, we take

o' = l-y, ^'= a, y'= a + /:i,

so that X^J^'-^iX- .7;)v' -^'-1(1- y.r)-'^.

And o'>0<l, y-/3'>0, a'+l-y = 2-y-a-/3= a>0,

so that, as /li<1, the definite integral is finite at all the critical points.

Wo have

r(«+^) ^"
1

r(^+y)
'"

C"^ , «' ^^4- V, '^r(a'+l-y')r(l -a')
. ,

/ Xdx^c-"'^-'-^-^^^'"^^-''^ -^—r(2^^0 '^ (l-/x)^^^^^

'^

x/''(^'-y'+l, 1 -„', -2-/, ^^_^

r(y+8y'^-

Hence Q^-ifJ^^ ^..0-1)1^^) ^^ -..•o-..)r(y)r(S)

Now if M= U{y--\)n{-a')U{-^ _r(a+ ^)r(y)r(l-a)
1 n("i-y')n(y'-«'-i)n(y'-^'-l) r(y+S)r(l-S)r(^)'

n (-a')n(-/3') ^ r(y)r(i-a)
1 n(y'-a'-^')n(-y') T (/3+ y) r(y+ 8- 1)'

then ri = J/j};+ iViF,.

Substituting, we have

'1^^ '^ r(a+^) '^' ' r(^+y)J

'L r(y+S) ^ ^ r(a+^) ij

By using the propei-ties of the r functions, the coeflicient of Y^ can be proved

equal to

r(i3)r(y)f, . ,
,

^., . _, e""siny7r rO)r(y)
• riH 4-1/1 ^

\
' /

r-
) a sm o-ir ^(^«4-•^/^ 'asin aTT r(/S + y)

i- '''" v"-'-^ " ^..x.^,.;- ^ ^.^^ ^^ "rO+ y)

3.")—

2
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and the coefficient of }", C''^'"' ^^ proved* equal to

r(7)r(S),, . , ^ , . ,^ , ,
e"*' sinw , r (y) r (S)

— P^

—

hr^ id sin (a + 8 + y)n-a sni (8 + y) n\ = .— '- b -^'---l- .

rtsinaTT r(y+ 8)
'^

\ >' a sin an- r(y+ S)

I\Ioi-eover

i\=y^=^y,= t.^-y\\-i.r-^-^' F[\^a', \-{i', 2-y', ^1,

r4=y24=ys= /"''(l-M)''""'"^>{l-«'> 1-/3', y'-a'-/3'+l, 1-m}:

SO that ~ = „. , —^—

j

7

;

and therefore an equation to determine y. is

F{y, l-«,y+ 8,M} _ c r(^)r (y+ 8)

7^{y, l-a,y+ i8, 1-A.} 6r(8)r(y+^)-

£'0.'. A regular polygon of n sides, in the ?<'-plane, has its centre at the origin and one

angular point on the axis of real quantities at a distance unity from the origin. Shew that

its interior is conformally represented on the interior of a circle, of radius imity and centre

the origin, in the z-plane by means of the relation

w r (1 - .r'0~'' dx= r (1
-^»)""

rf^. (Schwarz.)
Jo Jo

270. It is natural to consider the form \vhich the rehition assumes when

we pass from the convex polygon to a convex curve, by making the number

of sides of the polygon increase without limit. The external angle between

two consecutive tangents being denoted by dyjr, and the internal angle of the

polygon at the pomt of intersection of the tangents being ^ir, we have

77 — ^TT — dyjr,

, ^ ^ dyjr
so that ^ — 1 = —

TT

Let X be the point on the axis of real quantities, which corresponds to this

angular point of the polygon ; then the limiting form of the relation

^^log^^=V°'-^
dz\^ dz) ~' z — a

dz\° dz J TTJZ—x'

where x is the point on the real axis in the ^r-plane corresponding to the

point on the w-curve at which the tangent makes an angle y^r Avith some

fixed line, and the integral extends round the curve, which is supposed to be

simple (that is, without singular points) and everywhere convex.

The disadvantage of the form is that x is not known as a function of -\/r,

and its chief use is to construct curves such that the contour is conformally

represented, according to any assigned law, along the axis of real quantities

* In reducing the coefficients to these forms, limiting cases (such as j3 + 7= l) of the quadri-

lateral are excluded.
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in the ^-plane. The utility of the form is thus limited : the relation is not

available for the construction of a function by which a given convex area in

the w-plane can be conformally represented on the half of the 2^-plane*.

Ex. Let x— ia,n^y]r: then taking the integral from -tt to +7r, we have

d^/ dw\__\ p dyj/'

dz\ ^ dzj~ TT J -nZ-tan^\f/'

_ 2 n^ d(fi

TT J -^nZ- tan
(f>

'

The integral on the right-hand side is

rh^ d4> ro d<l>

Jo z — tan ^ i in- 2+ tan <^

= 2z P" --^ —
y 2^ - tan^^

-22
/"

:?^^^

1-1:72 1^-- II-

4

2-Z

and therefoi-e -^ ( log -=-
)
= —.,

dz\ dz J z-i

which, on further integration, leads to the ordinary expression for a circle on a half-

plane.

271. In regard to the conformal representation on the half of the 2-plane

of figures in the w-plane bounded by circular arcs, we proceed
"f"

in a manner

similar to that adopted for the conformal representation of rectilinear polygons.

It is manifest that, if u =f{z) determine a conformal representation on

the ^-plane of a ?i>-polygon bounded by circular arcs and having assigned

angles, then

Au->rB

Cu -f D
where A, B, C, D may bo taken subject to the condition AD — /?r'=l, will

represent on the half 2-plano another such ])olygon with the same assigned

* See Christoffel, Gott. Nachr., (1870), pp. 283—298.

t For the succeeding inveBtigations the following authorities may Ije consulted :

—

Schwarz, Gck. Werke, t. ii, pp. 78—80, 221— 259.

Cayley, Camh. Phil. Trana., vol. xiii, (1879), pp. 5—35.

Klein, Vorlcsnngen iiber das Ikosacder, Section I., and particularly pp. 77, 78.

Darboux, Theorie ginerale des surfaces, t. i, pp. 180

—

192.

Klein-Fricke, Thcm-ic der pUlptisclwn Modulfitnctlonrn, t. i, pp. 93

—

114.

Goursat, I.e., p. 510, note.
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angles: for the homographic transformation, preserving angles nnchanged,

changes circles into circles or occasionally into straight lines. Hence, as

in § 264, when the transforming function is being obtained, it is to be expected

that it will be such as to admit of this apparent generality : and therefore,

since

{w, z] = |w, z],

where [w, z] is the Schwarzian derivative, it follows that, in obtaining the

conformal repJ-esentation of a figure hounded by cirxular arcs, the function to

he constructed is

We proceed as in the case of the rectilinear polygon and find the form of

the appropriate function in the vicinity of points of various

kinds. But one immediate simplification is possible, which

enables us to use some of the earlier results.

Let G be an angular point, CA and CB two circular

arcs, one of which may be a straight line : if both were

straight lines, the modification would bo unnecessary. In-

vert the figure with regard to the other point of intersection

of CA and GB : the two circles invert into straight lines cutting at the same

angle /jltt. Take the reflexion of the inverted figure in the axis of imaginary

cpiantities : and make any displacement parallel to the axis of real quantities:

if W be the new variable, the relation between w and W is of the form

aW+h_
cW+~d~'^'

where ad — &c = 1 ; and therefore

{W,z] = {w,z].

Consider the function for the TT-plane. Let F be the point corresponding

to G, an angular point of the polygon, having z = c as its homologue on the

axis of X, account being taken of the possibility of having c = oo ; let /3 be any

point on either of the straight lines corresponding to a point on the contour

of the polygon not an angular point, having z — h as its homologue on the

axis of a;. If a contour point not an angular point have z=cci as its

homologue on the axis, denote it by /3'.

Then for the vicinity of yS, we have (as in § 267) a relation of the form

W-/3 = e'^^+^^(z-h)P{z-h):

dW
then log "^ = const. + log P, (z — h),

so that {W,z]=P.,(z-h),

where P., is an integral function of ^ — h, converging for sufficiently small

values of 1^ — 61.
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For the vicinity of j3', we have similarly

F-/3' = .>-^ 1(2(1):

551

then
dz z"

and therefore W,z]
z"

Q. Qr

-M
where Q, does not vanish for z — (X)

.

In the vicinity of the angular point V, having a finite point on the axis of

x for its homologue, we have

W-r = e'(-+«) (z - cY R(z- c),

and, proceeding as before, we find that

where C^ depends on the coefficients in the series R{z — c).

But if the angular point V have the point at infinity on the axis of x for

its homologue, we have

z^

then, proceeding as before, we find that

Z^ Z^ '\Z

where T., i -
j
does not vanish when ^ = oo

Lastly, for a point W in the interior having its homologue at z = z', we
have

W- W' = (z-z')S{z-z'),

and then {W, z} = S, {z - z').

Hence
{ W, z], considered as a function of z, has the following properties :

—

(i) It is an analytical function of z, real for all real values of the

argument z; and if x=X) do not correspond to an angular

point of the polygon, then for very large values of z

where Q., is finite when z = oo .
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(ii) It has a finite number of accidental singularities, all of them

isolated points on the axis of x : and at all other points on one

side of the plane it is uniform finite and continuous, having

(except at the accidental singularities) real continuous values

for real continuous values of its argument. Its form near the

singularities, and its form for infinitely large values of 2, if

z = 00 he the homologue of an angular point, are given above.

Hence {W, z] can be continued across the axis of x, conjugate values of

[W, z] corresponding to conjugate values of 2 : and thus its properties make

it an algebraical rational meromorphic function of z.

Two cases have to be considered.

First, let the angular points of the polygon have their homologues at

finite distances from the ^-origin, say, at a, h,...,l: and let avr, ^tt, ...,X7r be

the internal angles of the polygon at the vertices. Then

' ' z — a {z — ay

has no infinity in the plane ; it is a uniform analytical function of z, and

must therefore be a constant, which, by the value at z = (X) , is seen to be

zero. Hence

[W, z]=X^'~ + ^^^^^ = 2J{z\
^

' z — a ^ {z — af

the summation being for the homologues of all the angular points of the

polygon. But when z is very large, we have, in this case

1

v,A=Iq4

SO that, expanding ^J(z) in powers of - and comparing with the latter form,

we have, on equating coefficients of z~^, z~'^, z~'-\

= 2^0,

0-:S^oa + iS(l-a-),

= S^oa' + Sa(l -a-),

relations among the constants of the problem.

Secondly, let one angular point, say (/-, of the polygon have its homologue

on the axis of x at infinity, and let ojk be the internal angle at a : and let the

homologues of the others be b, ... , k, I, the internal angles of the polygim

being /Stt, ..., kit, Xtt. Then the function

^0 _ 1 T ^^"W,z]-tJ'',-\l.
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has no infinity in the plane : it is a uniform analytical function of z, and

must therefore be a constant, say M\ thus

^ ^ z —b{z — b)-

But, when z is very large, we have

i«^.-l = *^^^ z \z

because a; = <x) is the homologue of the vertex a of the polygon, the angle

there being cm: and 2'(-) does not vanish when z='Xi. Hence, expanding

in powers of - and compariiig coefficients, we have

M = 0,

so that [W,z] = l.^ + iS ^^^l = 27 (z),
^ ' > z-b ^ (z -b)- ^ ^

where the summation is for the homologues of all the angular points other

than a, and the constants are subject to the two conditions

25o = 0,

X5o6 = Hl-«-)-iS(l-y8--).

The form of the function
[
W, z] is thus obtained for the two cases, the

latter being somewhat more simple than the former : and the exact expansion

of W in the vicinity of a singular point can be obtained with coefficients

expressed in terms of the constants.

272. In either case the e(|uation which determines W is of the tliiid

order: but the determination can be simplified by using a well-known

property of linear diffi;'rential equations*. If ?/, and y., be two solutions

of the equation

the quotient of which is ecjual to the quotient of two solutions of

f?+/r = o.
da;'

(IP
where /= Q ~ j ,

~ P'^ being the invariant of the equation fin- linear trans-

foiination of the dependent variable, and where Vjy = e^^'''^, then thi' iMpiation

satisfied by s, = 2/1/2/2, is

[s, x] = '21.

* Sec my Trcntisr on I)ij)'i'rr)iliiil F.tiiKitionx, pp. Si)— 1)3.
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Hence for the present case, if we can determine two independent solutions

Z^ and Z.. of the et^uation

for the first case, or two independent sokitions of the equation

for the second case, then

~ CZ, + DZ,

is the general solution of the ecjuation

[W,.z] = ^J{z) or 2/(2),

and therefore is the function by which the curvilinear w-polygon is conform-

ally represented on the 2^-half-plane.

273. As a first example, consider the w-oxeii between two circular arcs

which cut at an angle Xir. The ^^-origiu can be conveniently taken as the

homologue of one of the angular points: and the 2^-point at infinity along the

axis of .7- as the homologue of the other. Then we have

lfl.,,| = 4 + 41i^),
z z

provided ^ = 0, ^ . = ^ (1 - \-) - i (1 - \-),

both of which conditions are satisfied by ^ = ; and so

z-

The linear differential equation is

dz- z-

so t hat Z, = ri '1 +
^' , Z,= « <i -^'

;

and therefore the general solution for W is

c^^ + d

The (three) arbitrarj'^ constants can be determined by making 2 = and

z = <X) correspond to the angular points of the crescent, and the direction of

the line z = z^ (which is the axis of x) correspond to one of the circles, the

other of the circles being then determinate.

If the '?(;-circles intersect in — i (the homologue of the ^-origin) and + i
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(the homologue of x= co), and if the centre of one of the circles be at

the point (cot a, 0), then the relation is

.0* — ce""*
w = i ~T .

,

z'^ + ce-"^

where c is an arbitrary constant, equivalent to the possible constant magnifi-

cation of the 2r-plane without affecting the con formal representation : it can

be determined by fixing homologous points on the contour of the crescent.

More generally, if the w-circles intersect in Wy and w.^, respectively homo-

logous to z = and z = oo , then

w — w.,

is the form of the relation.

Evidently a segment of a circle is a special case.

274. Next, consider a triangle in the w-plane formed by three circulai-

arcs and let the internal angles be Xvr, /xtt, vir. The homo-

logue of one of the angulai- points, say of that at fiir, can be

taken at 2^ =^ go ; of one, say of that at A-tt, at the ^-origin ; and of

the other, say of that at vtt, at a point z = ^ : all on the axis

of X. Then we have

z z — \ z- {z—\f

whcre the constants B and C are subject to the relations

n + c = 0,

£. O-K C. 1 = J (1 -fi-') - ^ (l-X^) -
.1 (1 - v%

so that -B=:C = ^ (\- - fi- + v"-'i ),

and therefore

1 — X" , 1 — V' ,X" — fi^ -\- v^ — 1

But I (z) is the invariant of the differential e([uation of the hypei-geometric

series*

d'Z
^

y-(a + ^ + l)2 dZ_ a^ ^^ ^
dz' z{l—z) dz z(l—z)'' '

provided A,- = (1 - 7)', fi- = (a - /S)", i/- = (7 - a - y9)-

;

so that, if ^1 and Z^ be two particular solutions of this equation, the function

which gives the conformal representation of the 7/;-triangle on (he 2^-h;ilf-

plane is

^AZ, + nz,

* Dijj'ciriitidl Ktjiiiitidii.t, p. IHS.
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The transforming function thus depends upon the solution

equation of the hypergeometric series, and for general

which are > < 1 we shall obtain merely general values

the transforming function will be obtained as a quotient

solutions of the equation of the series. Now according to

1^1, these solutions, which are in the form of infinite series,

we have w equal to an analytical function of z, which has

in different parts of the plane.

The distribution of the values 2=0,1, X) as the homologues of the three

angular points was an arbitrary selection of one among six possible arrange-

ments, which change into one another by the following scheme :

—

of the differential

values of X, fx, v

of a, j3, 7; hence

of two particular

the magnitude of

change : and thus

different branches

z
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Fig. 98.

The three circles, arcs of which form the triangle, divide the whole of the

w-plane into eight triangles which can be arranged

in four pairs, each pair having angles of the same

magnitude. Thus

D, D' have angles Xtt, /att, vit,

A, A' Xtt, (1 — yu,)7r, (1 -i/)7r,

B,B' (1 -X)7r, yLtTT, (l-i/)7r,

and G, C {\ —\)'rr, {\ — ix)'ir, vtt;

and when any one of the triangles is given, it

determines the remaining seven. It is convenient

then to choose that one which has the sum of its angles the least, say the

triangle of reference : let it bo D. Unless A,, /a, v, each of wliich is > < 1, be

each = ^, then A- + /a + i/ < |.

We have already, in part, considered the case in which X -\- fx + v = \.

For, when this equation holds, inversion with the other point having Xtt for

its angle as centre of inversion, changes* D into a triangle bounded by

straight lines and having Xir, fjuir, vir as its angles ; and therefore, in that

case, the problem is merely a special instance of the representation of a

Mz-rectilinear polygon on the 2^-half-plane.

But there is a very important difference between the cases for which

\ + fi + V <1 and those for which X + fj,
+ v >1 : in the former, the ortho-

gonal circle (having its centre at the radical centre of the three circles) is real,

and in the latter it is imaginary. The cases must be treated separately.

275. First, we take \ + /x + v < 1. Then of the two triangles, which

have the same angles, one lies entirely within the orthogonal circle and the

other entirely without it ; and each is the inverse of the other with regard to

the orthogonal circle
-f*.

Let inversion with regard to the angular point Xtt in

A take place : then the new triangle is bounded by two straight lines cutting

at an angle Xtt and by a circular arc cutting them at

angles /ultt and vtt respectively, the convex side of the

arc being turned towards the straight angle. The
new orthogonal circle is the inverse of the old and its

centre is A, the angular point at Xtt ; its radius is the

tangent from A to the arc CB, and therefore it com-

pletely includes the triangle ABC.

The homologue of A is, as before, taken to be the .^-origin 0, that of C to

be the point z = 1, say c, and that of B to ho z = cc on the axis of x, say b for

-f- 00 and b' for — x .

* The figure in the text does not apply to this case, because, as may easily be proved, the three

circles must meet in a point.

t For the general properties of such systems of circles, see Lachlan, Quart. Joitrn. Math., vol.

xxi, (1886), pp. 1—51).

Fig. 99.
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Suppose that we have a representation of the triangle on the positive

half-plane of z. The function {w, z\ can be continued across the axis of x

into a negative half-plane, if the passage be over a part of that axis, where

the function is real and continuous, that is, if the passage be over Oc, or over

ch, or over h'O ; and therefore w is defined for the whole plane bv,}w, z\ — 1I{z),

its branch-points being 0, c, h. Any branch on the other side, say w-^, will

give, on the negative half-plane, a representation of a triangle having the

same angles, bounded by circular arcs orthogonal to the same circle, and

having 0, c, h for the honiologues of its angular points. Thus if the con-

tinuation be over ch, the now ?(;-triangle has CB common with the old, and

the angular point A! lies beyond GB from A.

To obtain the ncAv triangle A'CB geometrically, it is sufficient to invert

the triangle AGB, with regard to the centre of the circular arc GB. This

inversion leaves CB unaltered ; it gives a circular arc GA' instead of GA
and a circular arc BA' instead of BA : the angles of A'GB are the same as

those of AGB. Since the orthogonal circle oi AGB cuts GB at right angles

and GB is inverted into itself, the orthogonal circle is inverted into itself;

therefore the triangle A'GB has the same orthogonal circle as the triangle

AGB.

The branch Wj , by passing back across the axis round a branch-point into

the positive half-plane, leads to a new branch w.,, which gives in that half-plane

a representation of a triangle, again having the angles A,7r, ixtt, vtt and having

0, c, h for the honiologues of its angular points. Thus if the passage be

over Oc, the new ?(;-triangle has A'G common with A'GB and the angular

point B" lies on the side of GA' remote from B: but if the passage be

over cb, then we merely revert to the original triangle GAB. The new
triangle has, as before, the same orthogonal circle as A'GB.

Proceeding in this way by alternate passages from one side of the

axis of X to the other, we obtain each time a new w-triangle, having one side

common with the preceding triangle and obtained by inversion with respect

to the centre of that common side : and for each triangle we obtain a new
branch of the function w, the branch-points being 0, 1, oo . If, by means of

sections such as Hermite's (§ 103), we exclude all the axis of x except the part

between two branch-points, the function is uniform over the whole plane thus

bounded.

All these triangles lie within the orthogonal circle, and they gradually

approach its circumference : but as the centres of inversion always turn that

circle into itself, while the sides of the triangle are orthogonal to it, they do

not actually reach the circumference. The orthogonal circle forms a natural

limit (§ 81) to the part of the w-plane thus obtained.

Ex: Shew that all the inversions, necessary to obtain the complete system of triangles,

can be obtained by combinations of inversions in the three circles of the original triangle.

(Burnside.)
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Each of the triangles, thus formed in successive alternation, gives a

w-regiou conforrnally represented on one half or on the other of the 2-plane.

If, then, the original triangle be combined with the first triangle that is

conforrnally represented on the negative half-plane, every other similar

combination may be regarded as a symmetrical repetition of that initial

combination : each of them can be conformally represented upon the whole

of the ^•-plaue, with appropriate barriers along the axis of x.

The number of the triangles is infinite, and with each of them a branch

of the function w is associated : hence the integral relation between to

and z which is equivalent to the differential relation {w, z] = 21 {z), when

\-\- IM ^- V <\, is transcendental in w.

In the construction of the successive triangles, the successive sides passing

through any point, such as G, make the same angle each with its predecessor:

and therefore the repetition of the operation will give rise to a number of

triangles at G each having the same angle Xtt.

If X, be incommensurable, then no finite number of operations will lead to

the initial triangle : each operation gives a new position for the homologous

side and ultimately the w-plane in this vicinity is covered an infinite mimber

of times, that is, we can regard the jy-surface as made up of an infinite

number of connected sheets.

If A, be commensurable, let it be ei^ual to Ijl' , where I and V are integers,

prime to each other. When I is odd, 21' triangles will fill up the w-space

immediately round G, and the {21' + l)th triangle is the same as the first : but

the space has been covered I times since 21'X'ir = 2^7r, that is, in the vicinity of

G we can regard the w-surface as made up of I coiniected sheets. When I is

even (and therefore V odd), V triangles will fill up the space round G com-

pletely, but the {I' -\- l)th triangle is not the same as the first : it is necessary

to fill up the space round G again, and the {21' + l)th triangle is the same as

at first ; the space has then been covered I times, so that again the ?<;-surface

can be regarded as made up of I connected sheets. The simplest case is

evidently that, in which A, is the; reciprocal of an integer, so that ^ = 1
;

and the w-surface must then be regarded as single-sheeted.

Similar considerations arise according to the values of yu, and of v.

If then either A,, //,, or v be incommensurable, the number of w-sheets is

unlimited, that is, z as a function of w has an infinite number of values, or the

equation between z and to is transcendental in z. Hence, ivhen \ + ij,
+ v < 1

and either X or fi or v is incommensurable, the integral relation between w and

z, which is equivalent to the differential relation [lu, z] = 21 {z), is transcend-

ental both in w and in z.

If all the quantities X, /j., v be commensurable and have the forms Ijl',

mjin', njn', fractions in their lowest terms, and if N be the least common
multiple of I, ni, n, then the number of ?(;-8heets is N, that is, z as a function
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of w has N values and therefore the equation between z and w is algebraical

in z, of degree N. Hence, luJieii \ + /j, + v <! and X, fi, v have the forms of

fractions in their loivest terms, and ifN he the least common inidti-ple of their

numerators, tJie integral relation between tu and z equivalent to the differential

relation

{w, z] = 21 (z)

is an algebraical equation of degree N in z, the coefficients of luhich are

transcendental functions of w.

The simplest case of all arises when X, /j,, v are the reciprocals of integers

:

for then N =1 and s is a uniform transcendental function of lu, satisfying

the equation
{w,z] = 2[(z);

or, making z the dependent and lu the independent variable, we have the

result :

—

A function z that satisfies the equation

iPz dz 3 /d-zV

dw^ dw ^ \dw"J

1 ,1 111
7:,- .,

+-,
L- nr n-

{z - ly

dz

dw

where l, m, n are inteqers, such that ^ H \- - <\,is a uuiforui transcendental^
I m n -^

function of to.

Restricting ourselves to the last case, merely for simplicity of explanation,

it is easy to see that the whole of the space within the orthogonal circle is

divided up into triangles, with angles Xtt, fnr, vir bounded by circular arcs

which cut that circle orthogonally : and, by the inversion which connects the

space external to the circle with the internal space, the whole of the outside

space is similarly divided. Moreover, it has been seen that every triangle

can be obtained from any one by some substitution of the form Wr =— -f
:

therefore the division of the interior of the circle into triangles is that

which is considered, in the next chapter, for the more general case of division

into polygons, the orthogonal circle of the present case being then the

' fundamental ' circle. The uniform transcendental function of w is therefore

automorphic : the infinite group of substitutions is that which serves to

transform a single triangle into the infinite number of triangles within the

circle*.

One or two special cases need merely be mentioned.

If any one of the three quantities X, fi, v be zero and if X + /a + r is

not equal to unity, the triangle can be included under the general case

just treated. For let X = 0, and suppose that fi + v \s, not greater than unity

:

* The figure for the example v^l, ij.
= \, 'K — l is given by Schwarz, Ges. Werke, t. ii, p. 240

;

and the figure for the example j' = ^, fj.
= l, X= j is given iu Klein-Frickc (p. 370) ; both of course

satisfying the conditions X + /x + ;/ < 1.
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i{ fi + v were greater than unity, the triangle would be a particular instance

of the class about to be discussed. The division of the area within the

(real) orthogonal circle is of the same general character as before : a

particular illustration is provided by the division appropriate to the

elliptic modular-functions, for which /i = |^, v = ^ (§ 284). When two

triangles, one of which is obtained from the other by continuation in the

^-plane across the axis of real variables, are combined, they give a -jy-space

(corresponding to the whole of the ^r-plane) for which X = 0, /^' = ^, v = ^.

Since the orthogonal circle is real, it forms a natural limit to these spaces

;

when it is transformed into the axis of real variables in the w-plane by
a homographic substitution, the positive half of the w-plane is divided as

in figure 108 (p. 590).

The extreme case of the present class, for which \ + fi + v is less than

unity, is given by X= 0, fx = 0, v = : the triangle is then the area between

three circles which touch one another. Reverting to the differential equa-

tion of the hypergeometric series, we have 7 = 1, a = /3 = | ; the equation is

dz"^ z{\—z)dz z(l—z) '

which is the differential equation of the Jacobian quarter-periods in elliptic

functions with modulus ec|ual to z^. If

K = \^ {1-z sin'' </))-^ d<^, K' = f" {1 - (1 - z) sin- <^}-^ dxf),

Jo Jo

then w = -^ ,

„ ciK + bK'
or, more srenerally, w = -^j^ 7^^,

,

^ -^ cK+dK"

a relation between tv and z which gives the confbrnial representation of the

w-triangle upon the ^-half-plane.

276. We now pass to the consideration of the case in which the triangle

with angles Xtt, fjiir, vir has no real orthogonal circle : the other associated

triangles have therefore not a real orthogonal circle. In this case, the sum of

the angles of the triangle is greater than tt, so that we have

X-\- fx + v>l from the pair D and D'

,

— X-\-lx + v<\ from the pair A and A',

\ — fjb + v < 1 from the pair B and B',

}<. + jii — v <1 from the pair C and C,

as the conditions which attach to the (luantities X, /x, v. As before, we invert

F. SO
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with respect to the angular point Xtt in A : then the new triangle D is

bounded by two straight lines and a circle, the

intersection of the lines being in the interior of the

circle, because the orthogonal circle is imaginary.

Let d be distance of L from the centre of the

circle, 6 the angle OLJS^, r the radius of the circle :

then

d sin 6 = — r cos vir, d sin (Xtt — 6) = — r cos /ivr,

which determine d and 6. Let R- = r- — d'-, so that

iR is the radius of the (imaginary) orthogonal circle. Fig. lOO.

With L as centre and radius equal to II describe a sphere : let P be

the extremity of the radius through L perpendicular to the plane. Then P
can be taken as the centre for projecting the plane on the sphere stereo-

graphically* ; so that, if Q be a point on the plane, Q' its projection

on the sphere, PQ . PQ' = 2R-. The projection of LN is a great circle

through P, the projection of LM is another great cii'cle through P in-

clined at Xtt to the former: and since PO is equal to the radius of the

plane circle, so that its diameter subtends a right angle at P, the stereo-

graphic projection of that plane circle is a great circle on the sphere,

making angles vir and /jltt with the former gi'eat circles. There is thus,

on the sphere, a triangle bounded by arcs of great circles, that is, a

spherical triangle in the ordinary sense, whose angles are Xtt, /xtt, vtt : and

this spherical triangle is conformally represented on the ^r-half-plane, its

angular points L, iV, M finding their homologues in ^; = 0, 1, cjo respectively.

Just as in the former case, the successive passages, backwards

and forwards across the ^•-axis, give in the ?i;-plane new triangles with

angles Xtt, /att, vtt, all with the same imaginary orthogonal circle of

radius iM and centre L : each of these, when stereographically projected

on the sphere with P as the centre, becomes a spherical triangle of angles

Xtt, fiTT, VTT bounded by arcs of great circles, every triangle having one side

common with its predecessor : and the triangles are equal in area.

Moreover, the triangles thus obtained coiTespond alternately to the

positive half and the negative half of the ^•-plane : and it is convenient to

consider two such contiguous triangles, connected with the variable w,

as a single combination for the purposes of division of the spherical

surface, each combination corresponding to the whole of the ^^-plane.

The repetition of the analytical process leads to the distribution of the

surface of the sphere into such triangles : and the nature of the analytical

relation between w and z depends on the nature of this distribution.

If X, /jl, or V be incommensurable, then the number of triangles is

* Lachlan, (I.e., p. 557, note), p. -13.



276.] DIVISION OF SPHERICAL SURFACE 563

infinite, so that the relation is transcendental in lu: and the surface of

the sphere is covered an infinite number of times; that is, corresponding

to z there is an infinite number of sheets, so that the relation is trans-

cendental in z. Thus, when X, + /i + v is greater than 1 and any one of

the three quantities X, yti, v is incommensurable, the integral relation

between w and z, which is equivalent to

[w,z] = ^I{z),

is transcendental both in w and in z.

If the quantities X, /x, v be commensurable, the simplest possible

cases arise in connection with the division of the surface by the central

planes associated with the inscribed regular solids. These planes give the

divisions into triangles, which are equiangular with one another.

First, suppose that the spherical surface is divided completely and

covered only once by the two sets of triangles, corresponding to the upper

half and the lower half of the ^r-plane respectively. One of the sets, say

N in number, will occupy one half of the surface in the aggregate : and

similarly for the other set, also N in number. Hence

R^{\-[-IJb-\-v— \)'iT = the area of a triangle

=
-j^ (area of a hemisphere),

2
so that \-\-^-{-v—\=^j.

Then, in passing round an angular point, say Xtt, the triangles will

alternately correspond to the upper and the lower halves : hence, of the

whole angle 27r, one half will belong to one set of triangles and the

other half to the other set. Hence tt -^ Xtt is an integer, that is, X is the

reciprocal of an integer, say y . Similarly for fi, which must be of the form

— ; and for v, which must be of the form - ; where in and n are integers.

Thus 111,2
L m n JS

The only possible solutions of this equation are

(I.)* X = ^, /i = ^, n = any integer, N = 2n

(H.) \ = i, f,
= l ^ = ^ , N=12

(IV.) X = i, ^^1, v = i , i\^=24

(VL) x = i,
/. = !, ;. = i

,
iVr=60.

277. In each of these cases there is a finite number of triangles : with

each triangle a branch of w is associated, so that there is only a finite number

* The reason for the adoption of these numbers to distinguish the cases will appear later, in

§279.

36—2
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Fig. 101.

of branches of w : the sphere is covered only once, and therefore there is onl}^

a single ^^-sheet. Hence the integral relation between w and z is of the first

degree in z: and it is algebraical in w, of degrees 2?i, 12, 24, 60 respectively.

The regular solids, with which these sets of triangles are respectively

associated, are easily discerned.

I. We have X,, fx, v = ^, ^, -. The solid is a double pyramid, having

its summits at the two poles of the sphere : the

common base is an equatorial polygon of 2n sides

:

the sides of the various triangles, in the division of

the sphere, are made by the half-meridians of longi-

tude, through the angular points of the polygon

from the respective poles to the equator, and by arcs

of the equator subtended by the sides of the polygon.

II. We have \, fi, v = ^, ^, l- The solid is the

tetrahedron ; and the division of the surface of the

sphere, by the planes of symmetry of the solid, into

24 triangles, 12 of each set, is indicated, in fig. 102, on the (visible) half of

the sphere, the other (invisible) half of the sphere being the reflexion, through

the plane of the paper, of the visible half

The angular summits of the tetrahedron are T, the middle points of its

edges are >S', the centres of its faces are F : all

projected on the surface of the sphere from

the centre. If desired, the summits of the

tetrahedron may be taken at F: the centres

of the faces are then T.

Each of the angles at T is ^^tt : each of the

angles at i^ is ^tt: each of the angles at >S'

is ^TT.

The shaded triangles (only six of which

are visible, being half of the aggregate) corre-

spond to one half of the ^--plane; and the un-

shaded triangles correspond to the other half

of the £;-plane.

IV. We have X, /x, v = \, ^, \. The solid is the cube or the octahedron.

These two solids can be placed so as to have the same planes of symmetry, by

making the centres of the eight faces of the octahedron to be the summits of

the cube. In the figure (fig. 103), the points are the summits of the

octahedron : the points G are the summits of the cube and the centres of the

faces of the octahedron : and the points S are the middle points of the edges :

all projected from the centre of the sphere.
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'I'he shaded triangles (the visible twelve being one half of the aggregate)

correspond to one half of the ^-plane ; the unshaded triangles eon-espond to

the other half of the 2^-plane.

Each of the angles at is Jtt : each of the angles at C is ^tt : each of the

angles at >S^ is ^tt ; and it may be noted that the triangles COO are the

triangles in the tetrahedral division of the spherical surface, the point in

the present triangle 000 being the point S in a triangle STF and the

two points being the points F and T in the former figure (fig. 102).

VI. We have \, /m, v ^ ^, i, i,

I

Di5
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The solid is the icosahedron or the dodecahedron. These two solids can

be placed so as to have the same planes of symmetry, by making the centres

of the twenty faces of the icosahedron the vertices of the dodecahedron. In

the figure (fig. 104) the vertices of the icosahedron are the points /: those

of the dodecahedron are the points D : and the middle points of the edges are

the points S. The shaded triangles (the visible thirty, six in each lune

through a vertex of the icosahedron, being one half of their aggregate)

correspond to one half of the ^-plane : the unshaded triangles, equal in

number and similarly distributed, correspond to the other half of the ^'-plane.

The angles at the vertices / of the icosahedron are ^tt ; those at the vertices

D of the dodecahedron are ^tt ; and those at the middle points S of the edges

(the same for both solids) are ^tt.

278. Having obtained the division of the surface, we now proceed to

determine the functions, which establish the conformal representation.

In all these cases, 5 is a uniform algebraical function of w : therefore

when we know the zeros and the infinities of ^r as a function of w, each in its

proper degree, we have the function determined save as to a constant factor.

This factor can be determined from the value of lu when 2=1.

The variable w belongs to the stereographic projection of the point of the

spherical surface on the equatorial plane, the south pole being the pole of

projection. If X, F, .^ be the coordinates of the point on the spherical

surface, the radius being unity, then

X + iY

For a point in longitude I and latitude ^ir — S, we have X = cosZsinS,

Y= sin I sin B, Z = cos S : so that, if preferable, another form for w is

In our preceding investigation, the angle at Xir was made to correspond

with z = 0, that at vtt with z = l, that at /mtt with z = oo .

Case I. We take \ = -
^ fj, =^, v — ^,

Stt 47r
For the angular points /xtt we have S = ^tt ; 1 = 0, — , — , . .

.
, each point

belonging to two triangles of the same set, that is, triangles represented on

the same half of the plane : thus the various w-points in the plane are

2m— r
e« ,

for r = 0,l,...,n — l, each occurring twice. Hence z = oo , when the function

n—l ?![?

n (w - e " '*)='

r=0

vanishes, that is, z=oo , when (w'^ — iy vanishes.

1
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For the angular points vir, we have 8 = ^7r: 1 = -, — , — ,..., each° ^ n n 11

point belonging to two triangles of the same set : thus the various w-points in

the plane are

for r = 0, \, ...,n— 1, each occurring twice. Hence z =\, when the function

n {w-e" |-

r=0

vanishes, that is, ^^ = 1, when (w^ + 1)" vanishes.

Now 2: is a uniform function of w : hence we can take

l-z

where ^ is a constant, easily seen to be unity : because, when w = (corre-

sponding to the common vertex Xtt at the North pole) and when iu = cc (corre-

sponding to the common vertex Xtt at the South pole), z vanishes, as required.

The relation is often expressed in the equivalent form

z : z-\ -.1=- 4w" : - (?y" + 1)- : {lu'' - ly,

which gives the conformation on the half ^--plane of a 'zy-triangle bounded by

circular arcs, the angles being -, Jtt, ^tt. The simplest case is that in

which the triangle is a sector of a circle with an angle — at the centre.
n

The preceding relation is a solution of the equation

[w, z] = l

1-1 1-1
n- 1 — X 'i'

z" {z-\f z{z-l)_

If we choose X = |, yw. = i, v = -\bo that ^ = 0, when (w"-l-l)- vanishes,

z=cc, when (w" — 1)" vanishes, and z=\, when w" vanishes, the relation

establishing the conformal representation will be

z: z-\ •.l={w'^+Vf : 4w» : (?<;" - 1)'

:

this relation is a solution of the equation

[w, z] = 1
1 — i ?r n-—^' + 7 7T,+(^-1)-^ z{z-\)^

Case II. We take \ = ^; so that z = must give the points 8, each of

them twice, since there are two triangles of the same set at S: /m = J (and

these are taken at T), so that z= oo must give the points 7\ each of them
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thrice : and v — ^ (and these are taken at F), so that 2 = 1 must give the

points F, each of them thrice.

Taking the plane of the paper as the meridian from which kmgitudes are

measured, the coordinates of the four w-points in the plane, corresponding to

T by stereographic projection, are

^/2

V3
V2
V3

. V2
*V3

.^/2

^V3

1-
V3

1

^73
1 +

V3
1 +

\/3

say w^, w.,, Ws, W4. Then 2^=00 gives each of these points thrice: that is,

z = Qo , when {(w — w^). . .(w — w^)]'^ vanishes, or 2^ = go , when

vanishes.

The coordinates of the four points corresponding to F, are

V2
V3
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It has been assumed that the plane of the paper is the meridian.

Another convenient meridian to take is one which passes through a point

S on the equator : in that case, the preceding analysis applies if a rotation

through an angle ^tt be made. The effect of this rotation is to give the new

variable W for any point in the form
in

W = we'^,

so that w" = — iW'\ The relation then takes the form

z:z-l : 1

= 12 \f^ W'(W'- ly : {W' + 2TP \/^3 + \y:-{W* - 2Tr2\/^3 + 1)='

;

but there is no essential difference between the two relations.

The lines by which the «y-plane is divided into triangles, each conformally

represented on one or other half of the 2^-plane, are determined by z = Zq,

that is, by

{w* - ^w"" VS - 1)^ _ (wo^-2wo''V3-iy

The figure is the stereographic projection of the division of the sphere, and

it can be obtained as in § 257 (Ex. 13, Ex. 16).

Case IV. We take X = i, so that z = must give the eight points C;

each is given three times, because at G there are three triangles of the same

set : we take v = \, so that z = \ must give the six points 0, each four times

:

and //' = ^, so that z=co must give the twelve points S, each of them twice.

We take the plane of the paper as the meridian. The points are 0, 1

,

i, —\,—i, oo
; each four times. Hence z=\, when the function

vanishes.

+ 1+1
The points C are the eight points ^=~==~

: the product of the eight

corresponding factors is

^8 + 14w'4-l :

and each occurs thrice, so that z = Qi, when the function

(w« + 14w^ + l)=*

vanishes.

The points 8 are (i) the four points - -~ in the plane of the paper,

giving a corresponding product

w* — C)W- + 1 :

+ i
(ii) the four points — -^ in the meridian plane, perpendicular to the

plane of the paper, giving a corresponding product

70'' + ^w- + 1 :
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""-(•ir+l)

[278.

and (iii) the four points e^^"'
'

, (for r = 0, 1, 2, 3), in the equator, giving a

corresponding product

Each of these points occurs twice : and therefore z = oo
,
when the function

that is, when the function

vanishes.

Hence z =
(lu'- - 33w« - 33w^ + 1)-

'

the constant multiplier being determined as unity, by taking account of the

value unity for z : and

(w^- - 33w8 - 33w* + 1)^
*

The relation can be expressed in the equivalent form

z : z-1 .l={i(f + 14w^ + 1)' : 108w' (lu' - 1)* : {iv'- - 33w;« - 33w^ + 1)^

;

it gives the conformation on half of the 5-plane of a w-triangle bounded by

circular arcs and having its angles equal to ^tt, ^tt, ^tt respectively.

The lines, by which the 2y-plane is divided into the triangles, are given by

z = Zo, that is, by
(w^ + uw' + ly _ (wp'+uwo'+iy
w'{iv'-iy^ ~ «'o' (w'o' - 1)'

Fig. 106.
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The division is indicated in Fig. 106, being the stereographic projection of the

divided spherical surface of Fig. 103, with respect to the south pole, taken

to be diametrically opposite to the central point 0.

Case VI. We take X,= J, so that z = must give the twenty points D,

each of them thrice; v = ^, so that z = l must give the twelve points I, each

of them five times; and /*= |, so that z = co must give the thirty points S,

each of them twice.

Let an edge of the icosahedron subtend an angle at the centre of the

sphere : then its length is 2r sin ^0. Also, five edges are the sides of a

pentagon inscribed in a small circle, distant 6 from a summit : hence the

radius of this circle is r sin 6 and the length of the edge is 2r sin 6 sin ^vr, so

that

2 sin ^0=2 sin sin ^tt,

whence tan^^ = -|(V5 - 1), cot ^^ = |(V5 + 1).

Let a denote e^". Then the value of w corresponding to the north pole /
is ; the values of w for the projections on the equatorial plane of the five

points / nearest the north pole are

tan|^, a"tan^^, aHan^^, aHan^^, aHan ^^

:

the values of w for the projections on the equatorial plane of the five points /
nearest the south pole are

a cot ^0, cc' cot \0, a^ cot 10, a^ cot ^0, a^ cot ^0 :

and for projection of the south pole the value of w is infinity. The product

of the corresponding factors is

IV. U (w- a-"- tan ^0) .U(w- a^+i cot ^0) . 1
r=0 r=0

= w{w^ — tan^ ^0) (w^ + cot* ^0)

= w (iv'' + lltu' - 1)

after substitution. Each point / occurs five times ; and therefore z=l, when
the function

vanishes.

The points D lie by fives on four small circles with the diameter through

the north pole and the south pole for axis. The polar distance of the small

circle nearest the north pole is tan S = 3 — ^/o, and of the circle next to it is

tan 8' = 3 + ^5, so that

^ ,. x/l5-6\/5-l ^ .,, v/l5 + 6\/5-l
^^"^^=

3-V5 -
'^^"^^ ^ 3-fV5 •
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The function corresponding to the projections of the five points nearest the

north pole is

w^ + tan^ ^8,

and to the projections of the five nearest the south pole is

lu^ — cot^ ^8 ;

while, for the projections of the other two sets of five, the products are

w^ + tan' ^5'

and vj^ — cot^ ^8'

respectively. Each occurs thrice. Hence z = 0, when the function

',(w' + tan-^ IS) (w' - cot-' ^8) (iif + tan-' W) (W - cot^ h8')]\

that is, when (w"' - 228^^-5 + 494i<;^° + 228iv' + l)^

which is the reduced form of the preceding product, vanishes.

Fi". 107.
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The points >S lie by tens on the equator, by fives on four small circles

having the polar axis for their axis. Proceeding in the same way with the

products for their projections, it is found that 2^= oo , when the function

{^30 _^i^ 522?(;5 (^20 _ 1) _ lOOOow" (w^' + l)j2

Hence z = j^ao _^ 1 ^ 522^- (w'' - 1) - lOOOow^" (w'« + 1 )j-

'

the constant factor being found to be unity, through the value of 1—

^

which is 1-z-
^^^^ _^ ^ ^ g22w^ (^.0 _ 1) _ i0005w'« (w" + 1)}^

'

These relations give the conformal representation on half of the .s^-plane of a

w-triangle, bounded by circular arcs and having angles ^tt, ^tt, Itt.

The lines, by which the w-plane is divided into the triangles, are given

by z = Zo, that is, by

(w'" - 228w'" + 494^<;'» + 228i^-^ + 1>^ _ (wp-" - 228wo^^ + 494?V + 228?^o-^ + iy

Vfi (Wi» +l\w^-\f
~

Wo' (Wo" + 1 1Wo' - 1)'

The division is indicated in figure 107, which is the stereographic projection* of

the divided spherical surface of figure 104, with /i„ as the pole of projection.

279. The preceding are all the cases, in which simultaneously 2^ is a uni-

form function of w, and w is an algebraical function of z : they arise when

the surface of the sphere has been completely covered once with the two sets

of triangles corresponding to the upper half and the lower half of the 2:-plane.

But an inspection of the figures at once shews that they are not the only

cases to be considered, if the surface of the sphere may be covered more than

once.

In the configuration arising through the double-pyramid, the surface of

the sphere will be covered completely and exactly m times, if the angles at

the poles be 2>n'jr/n, where m is prime to n. The corresponding relation

between w and z is obtained from the simpler form by changing n into n/m.

In the tetrahedral configuration (fig. 102) the surface of the sphere will be

exactly and completely covered twice by triangles FFT (or by triangles I'TF,

it being evident that these give substantially the same division of the surface).

The relation between w and z will then be of the same degree, 12, as before

in w, for the number of different triangles in the two w-sheets is still twelve

of each kind : because there are two w-sheets corresponding to the single

S'-plane, that relation will be of the second degree in z. The values of the

angles are determined by

(III.) x,f.,v=m.
* In regard to all the configurations thus obtained as stereographic projections of a si)lierical

surface, divided by the planes of symmetry of a regular solid, Mobius's "Theorie der Synnnetr-

ischen Figuren," (Gcd. ]]'erke, t. ii, especially pp. ()12— (i'JO) maybe consulted with advantage;

and Klein-Fricke, FAliptischc Modulfunctioiieii, vol. i. pp. 102—106.
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Again, in the octahedral configuration, the surface of the sphere will be

exactly and completely covered twice by triangles OCO. The relation

between w and z will be of degree 2-i in lu and degree 2 in ^

:

and the values

of the angles are determined by

(V.) X,fi,v = lhh
Similarly, a number of cases are obtainable from the icosahedi-al configu-

ration, in the following forms :

(VII.) \, /x, V = i, ^, ^ with triangles such as /i-DiA

;

(VIII.) \fi,v = lhi A/:/.;

(IX.) X,f,,v = ^,li SJJ,;

(X.) \fi,v = li,i DJJ,;

(XL) \,f,,v =m IJ,h:

(XII.) \,f,,v = ii,i /lAAs;

(XIII.) \,f,,v = i,l,l IJJ,,;

(XIV.) x,/x, i; = i 1,1 /AA;
(XV.) X,fi,v = l,l^ IJsD,.

Other cases appear to arise : but they can be included in the foregoing, by

taking that supplemental triangle which has the smallest area. Thus,

apparently, /lAAo would be a suitable triangle, with \ fi, v = ^,j,^'- it is

replaced by /joAo^w, an example of case (X.) above.

These, with the preceding cases numbered* (I.), (II.), (IV.), (VI.), form the

complete set of distinct ways of appropriate division of tlie surface of the

sphere.

It is not proposed to consider these cases here : full discussion will be

found in the references already given. The nature, however, of the relation,

which is always of the form

f(z) = F(iv),

wheref and F are rational functions, may be obtained for any particular case

without difiiculty. Thus, for (III.), we have

{w, z] = ^

when

1—1 1—

i

1— i-4-i_T

z^ (1-^)-"^ z{z-l)

<s : 1 - ^ : 1 = - 12 V3 w- {iv' + 1)- : (w^ + 2w- VS - 1)^ : {w' - 2w- VS - 1)^.

Again, if

^ : 1 -^ : 1 = (^ + 1)- :
- 4^ : (^ - 1)^

* These numbers are the numbers originally assigned by Scliwarz, Ges. Werke, t. ii, p. 246,

and used by Cayley, Camh. Phil. Trans., vol. xiii, pp. 1-1, 15.
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a special case of § 278, I., by taking n = 1, then

Hence [w, Z] = (||)' [{iv, z] - [Z, z]]

2

{Z-iy • \_{i-zf ^ z{z-\)\

"1—1 1—4 1 — 14.4_1'

z^ ^{Z-iy^ z(Z-i) J'

so that X. = ^, I' = f ,
/A = ^. Hence the relation

(Z+iy:-4>Z:(Z-iy

= - 12 \/3 w^ (^4 _^ 1)2 . (^y4 _^ 2w2 VS - 1>^ : (w^ - 2iu- VS - 1)^

gives the conformation of triangles bounded by circular arcs and having

angles Jtt, ^tt, |7r.

The foregoing are the only cases, for X + yu, + i^ >1, in which the integral

relation between w and z is algebraical both in w and in z.

In all other cases in which X, fi, v are commensurable, this integral

relation is algebraical in z and transcendental in w.

It is to be noticed, in anticipation of Chapter XXII., that, since every

triangle in any of the divisions of the spherical surface, or of the plane,

can be transformed into another triangle, the functions which occur in

these integral relations are functions characterised by a group of substi-

tutions. When the functions are algebraical, the groups are finite, and

the functions are then the polyhedral functions : when the functions are

transcendental, the groups are infinite and the functions are then of the

general automorphic type.

The case in which X + fji + v = l has already been considered: the spherical

representation is no longer effective, for the radius of the sphere becomes

infinite and the triangle is a plane rectilinear triangle. The equation may
still be used in the form

{w, z] = 2/ (z)

with the condition \ + fi + v = l. A special solution of the equation is then

given by

leading to the result of § 268, the homologue of the angular point fin being

at ^ = 00 .

280. It is often possible by the preceding methods to obtain a relation

between complex variables that will represent a given curve in one plane on
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an assigned curve in the other : there is no indication of the character of the

relation for an arbitrary curve or a femily of curves. But in one case, at any

rate, it is possible to give an indication of the limitations on the functional

form of the relation.

Let there be a family of plane algebraical curves, determined as potential

curves by a variable parameter* : and let their equation be

F {x, y, u) = 0,

where u is the variable parameter, which, when it is expressed in terms of x

and y by means of the equation, satisfies the potential-equation

d-u d^u _
dx^ dy^

Since u is a potential, it is the real part of a function w of x + iy : and the

lines u = constant are parallel straight lines in the '2<;-plane. It therefore

appears that the functional relation between w and z must represent the

w-plane conformally on the ^•-plane, so that the series of parallel lines in the

one plane is represented by a family of algebraical curves in the other : let

the relation, which effects this transformation, be

X {z, w) == 0.

Let the algebraical curve, which corresponds to some particular value of u,

say u = 0, be

F{x,y,0)=f(x,y) = 0,

which in general is not a straight line. Let a new complex ^ be determined

by the equation

this equation is algebraical, and therefore ^ can be regarded as a function of

w, say i/r (lu), between which and z, regarded as a function of iv, say <^ (w),

there is an algebraical equation.

Now when w = 0, z describes the curve

f{x,y) = 0:

hence at least one branch of the function ^, defined by

/(^^tO = »'

* Such curves are often called isothermal, after Lame. The discussion of the possible

fuuctional relations, that lead to algebraical isothermal curves, is due to Schwarz, Ges. Wcrke,

t. ii, pp. 2G0—2G8 : see also Hans Meyer, "Ueber die von geraden Linien und von Kegelschnitten

gebildeten Schaareu von Isothermen ; so wie iiber einige von speciellen Curven dritter Ordnung

gebildete Schaaren von Isothermen," (a Gottiugen dissertation, Ziirich, Ziu'cher and Furrer,

187St) ; Cayley, Quart. Joiirn. Math., vol. xxv, pp. 208—214 ; and the memoir by Von der Miihll,

cited p. 500.
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can be taken as equal to x when u = 0, that is, t]tere is one branch of the

function ^ which is purely real when w is purely imaginary.

The curves in the ;3-plane are algebraical : when this plane is conformally

represented on the ^-plane by the foregoing branch, which is an algebraical

function of z, the new curves in the ^-plane are algebraical curves, also

determined as potential curves by the variable parameter u. And the ^-curve

corresponding to w = is (the whole or a part of) the axis of real quantities.

In order that the conformal representation may be effected by the functions,

they must allow of continuous variation : hence lines on opposite sides of

u = correspond to lines on opposite sides of the axis of real quantities. The

functional relation between f = ^ + tV; and lu = u-i- iv is therefore such that

^ + irj = i^ (u + iv),

^ — ir] = yjr (— u + iii).

The equation of the ^-curves, which are obtained from varying values of

?/, is algebraical : and therefore, when we substitute in it for f and 77 their

values in terms of -«/r {u + iv) and -v/r (— m + iv), we obtain an algebraical

equation between \^{n-\-iv) and -v|r (— w + iv), the coefficients of which are

functions of u though not necessarily algebraical functions of u. Let

6 = — 2u; and let -v/to, i/tj denote -^{w), yjr (w + 6) resj)ectively ; then the

equation can be represented in the form

9{f2,fz,0) = 0,

algebraical and rational in t/to and -»/r.,, but not necessarily algebraical in 6.

Because the functions allow continuous variation, we can expand y^r^^ in

powers of : hence

,(f.f.^e<^,,e^2^, = 0-

When this equation, which is satisfied for all values of tv and of 6, where

w and 6 are independent of one another, is arranged in powers of 6, the

coefficients of the various powers of must vanish separately. The coefficient

independent of 6, when equated to zero, can only lead to an identity, for it

will obviously involve only -v/r. : any non-evanescent equation would determine

\lr.2 as a constant. Similarly, the coefficient of every power of 6, which

involves none of the derivatives of -\|r._,, must vanish identically. The co-

efficient of the lowest power of 9, which does not vanish identically, involves

yjr.^, _.
' and constants: but, because the equation gi'^z, "^s, 0) = is

algebraical in yfr^, the second and higher derivatives of -v/r.j, associated with

the second and higher powers of 6 in the expansion of •v/tj, cannot enter into

the coefficient of this power of 6. Hence we have

(t=, dw J

37
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an algebraical equation between yjr.. and -^ , the coefficients of which are

constants.

The coefficient of the next power of 6 will involve -r^ , and so on for the

powers in succession. Instead of using the equations, obtained by making

these coefficients vanish, to deduce an algebraical equation between yjr.,

and any one of its derivatives, we use h = 0. Thus for , „'
, the equation

would be obtained by eliminating -yjr^' between the (algebraical) equations

7 / . I /N /^ dh , , dh
, „ -

h(ir.,.ir:) = 0, g^-^,+—,^„ =0;

and so for others.

Returning now to the equation

in which, as it is algebraical in yjr., and i^g, only a limited number of co-

efficients, say k, are functions of 6, we can remove these coefficients as

follows. Let A; — 1 differentiations with regard to w be effected : the resulting

equations, with ^ = 0, are sufficient to determine these k coefficients alge-

braically in terms of \p:2, -^3 and their derivatives. But the coefficients are

functions of only and do not depend upon w : hence the values obtained for

them must be the same whatever value be assigned to w. Let, then, a zero

value be assigned: -v/r^ and its derivatives become constants; yfr^ becomes

"^{6), say -v/tj, and all its derivatives become derivatives of -y^r^; so that the

coefficients can be algebraically expressed in terms of i/rj and its derivatives.

When these values are substituted in (/ = 0, it takes the form

algebraical in each of the quantities involved. But between ^frl and each

of its derivatives there subsists an algebraical equation with constant co-

efficients : by means of these equations, all the derivatives of yjri can be

eliminated from g^ = 0, and the final form is then an algebraical equation

involving only constant coefficients. But

^1^^ = -^!^ (6), -v^2 = ^ i'ii^), "^^ — "^ {^'-' + 0) ;

and therefore the function i/r (w) possesses an algebraical addition-theorem.

Now i/r (w) and cf) (w) are connected by the algebraical equation

therefore (fi{w) possesses an algebraical addition-theorem. But, by § 151,
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when a function
(f)
(w) possesses an algebraical addition-theorem, it is an

algebraical function either of w, or of e'^^, or of an elliptic function of w, the

various constants that arise being properly chosen : and hence the only

equations

wldch can give families of algebraical curves in the z-j)lane as the conformal

equivalent of the parallel lines, u = constant, in the v)-plane, are such that z

is connected by an algebraical equation either with w, or luith a simply-peHodic

function of w, or with a doubly-periodic function of w.

There are three sets o^ fundamental systems, as Schwarz calls them, of

algebraical curves determined as potential curves by a variable parameter

:

they are curves such that all the others can be derived from them solely by

algebraical functions.

The first set is fundamental for the case when z is an algebraical function

oi w: it is given by
u = constant,

being a series of parallel straight lines.

The second set is fundamental for the case when z is an algebraical

function of e'"'" ; if W denote e''"', then z is an algebraical function of W, and

all the associated curves in the 2^-plane are conformal representations of the

algebraical curves in the TF-plane. If fjL = a + ^i, where a and ^ are real,

then

Y
(a^ + /3-) u = I a log (.Y^ + F-) + (3 tan-i ^ ,

a relation which can lead to algebraical curves in the TF-plane only if a or

/3 be zero. If a be zero, then /a is a pure imaginary, and the TT-curves are

straight lines, concurrent in the origin : if ;S be zero, then fi is real, and the

Tl^-curves are circles with the origin for a common centre. Hence the set

of fundamental systems for the case, when z is an algebraical function of e'**^,

consists of an infinite series of concurrent straight lines and an infinite series

of concentric circles, having for their common centre the point of concurrence

of the straight lines.

The third set is fundamental for the case when z is an algebraical function

of a doubly-periodic function, say, of sn (fiw).

Ex. Prove that either the moduhis i- is real or that an algebraical transformation of

argument to another elliptic function having a real modulus is possible : and shew that the

set of fundamental curves are quartics, which are the stereographic projection of coufocal

sphero-conics. (Schwarz, Siebeck, Cayley.)

We thus infer that all families of algebraical c^irves, determined as

potential curves by a variable parameter, are conformal representations of

37—2
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one or other of these sets of fundamental systems, by equations winch are

algehi'aical.

But though it is thus proved that the relation between z and iv must

express z as an algebraical function either of w, or of e'^'*', or of sn ixiv, in

order that a group of algebraical curves may be the conformal representation

in the 2^-plane of the lines u = constant in the w-plane, the same limitation

does not apply, if we take a single algebraical curve in the 2-plane as the

conformal representation of a single line in the ?y-plane.

1-W
Let w = ^ : then the lines in the TT^-plane, which correspond to the

parallel lines, u — constant, in the i(;-plane, are the system of circles

u + \)\ " u-Vl) {u-\-lf

Now consider a relation

— ^=sn-i(Tryl-^),
TT

where Z is as yet some unspecified function of z : then

k-iW = snl^Z

Hence i WWo = sn (^ z) sn (^ ZA
,

so that, if W describe the circle corresponding to u = 0, we have

whence Z — Zo= .

If Z=sm~^z, and therefore Zo = mn~'^ z^, then

2x = z + Zo = 2 sin ^(Z + Z^ cos ^^- = (g ~ ^+ q^) sin \{Z^ Z,\

2iy = z-Zo = 2cos^{Z + Z^) sin ~^- =i{q-^- q^) cos ^{Z + Z,),

so that
, _F X, + ,

_^^'
,^ =l,

(q ' + q^y (q ^ - q^f

an ellipse, agreeing Avith the result in § 257, Ex. G. This is obtained from

the relation

;_,! -w [2K .
,K J

t; = sn — sin~^ z
1 + ?y V TT
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which is not included in the general forms of relation obtained in the

preceding investigation.

But the equation

k^ su { Z]+ -H^'-sn — ZA +u+1)
[ V TT 7 « + ]J (u + iy

does not lead to an algebraical relation between x and y for a general (non-

zero) value of II. Neither the conditions of the proposition nor its limita-

tions apply to this case.

The problem of determining the kinds of functional relation which will

represent a single algebraical curve in the ^-plane upon a single line of the

w-plane is wider than that which has just been discussed: it is, as yet,

unsolved.



CHAPTER XXI.

Groups of Linear Substitutions.

281. The properties of the linear substitution

az + b

C2 + a

considered in Chap. XIX. as bearing upon the conformal representation of two

planes, were discussed solely in connection with the geometrical relations of

the conformation : but the applications of these properties have a significance,

Avhich is wider than their geometrical aspect.

The essential characteristic of singly-periodic functions and of doubly-

periodic functions, each with additive periodicity, is the reproduction of the

function when its argument is modified by the addition of a constant quantity.

This modification of argument, unifoi'm and uniquely reversible, is only a

special case of a more general modification which is uniform and uniquely

reversible, viz., of the foregoing linear substitution. This substitution may
therefore be regarded as the most general expression of linear periodicity,

in a wider sense : and all functions, characterised by the property in the

general form or in special forms, may be called automorphic.

Our immediate purpose is the consideration of all the points in the

plane, which can be derived from a given point z and from one another by

making z subject to a set of linear substitutions. The set may be either

finite or infinite in number ; it is supposed to contain every substitution

which can be formed by combining two or more substitutions. Such a set

is called a group.

The substitution is often denoted by S{z), or by

az + h^

,

' cz ->rd/

it is said to be in its normal form, when the real part of a (if a be a complex

constant) is positive and ad — hc = l.

The ideas of the theory of groups of substitutions are necessary for a proper considera-

tion of the properties of automorphic functions. What is contained in the present chapter

is merely sufficient for this requirement, being strictly limited to such details as arise in

connection with these special functions. Information on the fuller development of the

theory of groups, which owes its origin as a distinct branch of mathematics to Galois,



281.] FUNDAMENTAL SUBSTITUTIONS 583

will be found in appropriate treatises such as those of Serret*, Jordan +, XettoJ, and

Klein§: and in memoirs by Klein||, Poincare**, Dyckft, and BoIzaJJ. The account of

the properties of groups contained in the present chapter is based upon the works of

Klein and Poincare just quoted.

A substitution can be repeated ; a convenient symbol for representing

the substitution, that arises from ti repetitions of 8, is *S". Hence the various

integral powers of 8, considered in § 258, are substitutions, indicated by the

Bymhols 8^, S^, 8^,....

But we have negative powers of 8 also. The definition of 8-{z) is

given by
88'>{z) = 8{z),

80 that 8°{z) = z and it is often called the identical substitution: the

definition of >S~^ {z) is given by

88-'{z) = 8'{z) = z,

so that >S^~^ (z) is a substitution the inverse of 8 ; in fact, if lo = 8 (z) = ,

,

^ ^ ^ ^ cz + d

then z = 8~^ w = . And then, from 8~^ z, by repetition we obtain

8-\ 8~\ 8~\....

If some of all the substitutions to which a variable z is subject be

not included in 8 and its integral powers, then we have a new substitution

T and its integral powers, positive and negative. The variable is then

subject to combinations of these substitutions: and, as two general linear

substitutions are not interchangeable, that is, we do not have T(8z) = 8(Tz)

in general, therefore among the substitutions to which z is subject there

must occur all those of the form

...8'^TP8yT'...,

where a, /3, y, S, ... are positive or negative integers.

If, again, there be other substitutions affecting z, that are not included

among the foregoing set, let such an one be U: then there are also powers

of (/ and combinations of *S^, T, U (with integral indices) operating in any

order: and so on. The substitutions 8, T, U, ... are cnWed fundamental

:

the sum of the moduli of a, ^, y, 8, ... of any substitution, compounded from

the fundamental substitutions, is called the index of that substitution ; and

the aggregate of all the substitutions, fundamental and composite, is the

group.

* Cours d^Algebre Superieure, t. ii, Sect, iv, (Paris, Gauthicr-Villars).

t Traite des substitutions, (ib., 1870).

% Substitutiunentheorie ririd ihre Amcendung auf die Algebra, (Leipzig, Teubncr, 1882).

§ Vorlesungen iiber das Ikosaeder, (ib., 1884).

II
Matli. Ann., t. xxi, (1883), pp. 141—218, where references to earlier momoirs by Klein are

given.

** Acta Math., t. i, (1882), pp. 1—62, pp. 193—294 ; ib., t. iii, (1883), pp. 49—92.

tt Math. An7i., t. xx, (1882), pp. 1—44, ib., t. xxii, (1883), pp. 70—108.

liX Amer. Journ. of Math., vol. xiii, (1890), pp. 59—144.
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There may however be relations among the substitutions of the group,

depending on the fundamental substitutions ; they are, ultimately, relations

among the fundamental substitutions, though they are not necessarily the

simplest forms of those relations. Hence, as we may have a relation of

the form

...>s«...r^...z7^..(^) = ^,

the index of a composite substitution is not a determinate quantity, being

subject to additions or subtractions of integral multiples of quantities of the

form (a) + (6) -f (c) + . .
.

, there being one such quantity for every relation

:

we shall assume the index to be the smallest positive integer thus obtainable.

282. There are certain classifications which may initially be associated

with such groups, in view of the fact that the arguments are the arguments

of uniform automorphic functions satisfying the equation

f{Sz)=f{z):

in this connection, the existence of such functions will be assumed until their

explicit expressions have been obtained.

Thus a group may contain only a finite number of substitutions, that is,

the fundamental substitutions may lead, by repetitions and combinations, only

to a finite number of substitutions. Hence the fundamental substitutions,

and all their combinations, are periodic in the sense of § 260, that is, they

reproduce the variables after a finite number of repetitions.

Or a group may contain an infinite number of substitutions : these may
arise either from a finite number of fundamental substitutions, or from an

infinite number. The latter class of infinite groups will not be considered

in the present connection, for a reason that will be apparent (p. 598, note)

when we come to the graphical representations. It will therefore be

assumed that the infinite groups, which occur, arise through a finite

number of fundamental substitutions.

A group may be such as to have an infinitesimal substitution, that is,

there may be a substitution -^ , which gives a point infinitesimally near

to z for every value of z. It is evident there will then be other infinitesimal

substitutions in the group ; such a group is said to be continuous. If there

be no infinitesimal substitution, then the group is said to be discontinuous,

or discrete.

But among discontinuous groups a division must be made. The definition

of group-discontinuity implies that there is no substitution, which gives an

infinitesimal displacement for every value of z : but there may be a number

of special points in the plane for regions in the immediate vicinity of which

there are infinitesimal displacements. Such groups are called improperly
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discontinuous in the vicinity of such points : call other groups are called

properly discontinuoas. For instance, with the group of real substitutions

where a, /3, <y, B, are integers such that aS — /S7 = 1, it is easy to see that, when

z^ and ^2 are real, we can make the numerical magnitude of

OLS'i + /3 OCZo + ^
>yz-i^ + S ^z., + S

as small a non-evanescent quantity as we please by proper choice of a, f3,y, B:

thus the group is improperly discontinuous, because for real values of the

variable it admits infinitesimal transformations. But such infinitesimal

transformations are not possible, when z does not lie on the axis of real

quantities, that is, when z is complex : so that, for all complex values of

z, the group is properly discontinuous.

The various points, derived from a single point by linear substitutions,

will, in subsequent investigations, be found to be arguments of a uniform

function. Continuous groups would give a succession of points infinitely

close together ; that is, for these points, we should have / (z) unaltered in

value for a line or a small area of points and therefore constant everywhere.

We shall therefore consider only discontinuous groups.

A group containing only a finite number of substitutions is easily seen to

be discontinuous : hence the groups which are to be considered in the present

connection are the discontinuous groups which arise from a finite number of

fundamental substitutions*.

The constants of all linear substitutions of the form —

—

z are sup-
cz + d '

posed subject to the relation ad — be = I. This condition holds for all

combinations, if it hold for the components of the combination. For let

^ az + ^ ™ az + b

yz + 6 cz + d

, ^rn _ {oiCL + ^c)z + ab+^d _Az + B
~ (ya + 8c)z + yb + 8d ~ 07+ D '

whence AD - BG = (aS - ^y) {ad - be) = 1

.

It is easy to see that >ST( = U) and 7'>S'( = V) are of the same class, that

is, they are elliptic, parabolic, hyperbolic or loxodi-omic together; but there is

no limitation on the class arising from the character of the component sub-

stitutions.

* These discontinuous, or discrete, groups will be considered from the point of view of auto-

morphic functions. But the theory of such groups, which has nianj' and wide applications quite

outside the range of the subject of this treatise, can be applied to other parts of our subject.

Thus it has been connected with the discussion of llienumn's surfaces by Dyck, Math. Ann.,

t. xvii, (1880), pp. 473—501), and by Hurwitz (I.e., p. 40(1, note).
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Moreover, if U = V, so that S and T are interchangeable, then

a — d _c b

that is, 8 and T have the same fixed points. They can be applied in any

order ; and, for any given number of occurrences of S and a given number of

occurrences of T, the composite substitution will give the same point. Thus

if S = z + w, then T = z + 0' ; if >S = kz, then T = k'z. The class of func-

tions, which have their argument subject to interchangeable substitutions

of the former category, have already been considered : they are the periodic

functions with additive periodicity. The group is S"''T"'', (—z + iiiw + m'(o'),

for all integral values of m and of m.

The latter class of functions have what may be called a factorial

periodicity, that is, they resume their value when the argument is mul-

tiplied by a constant*.

283. Some examples have already been given of groups containing a

finite number of substitutions
"f",

in the case of certain periodic elliptic

substitutions. The effect of such substitutions is (p. 514) to change a

crescent-shaped part of the plane having its angles at the (conjugate) fixed

points of the substitution into consecutive crescent-shaped parts : and so to

cover the whole plane in the passage of a substitution through the elements

constituting its period. They form the simplest discontinuous gi^oup—in

that they have only one fundamental substitution and only a finite number

of derived substitutions.

The groups which are next in point of simplicity are those with only

two substitutions that are fundamental and only a finite number that

are composite. Both of the fundamental substitutions must be periodic,

and therefore elliptic, by § 260. Taking one of these groups as an example,

one of its fundamental substitutions has + 1 as its fixed points and it is

periodic of the second order : it is evidently

w = Sz = -
.

z

The other has ^ and co as its fixed points, and it is periodic of the second

order : it is evidently

w^Tz=\-z.

* Functions having this property are discussed in Rausenberger's Theorie cler periodischen

Functionen, (Leipzig, Teubner, 1884) : in particular, in Section VI.

t The complete theory of finite groups of linear substitutions is discussed, partly in its

geometrical relation with polyhedral functions, by Klein, Math. Ann., t. ix, (1876), pp. 183—188,

and, in its algebraical aspect, by Gordan, Math. Ann., t. xii, (1877), pp. 23—46. A reference to

these memoirs will shew that the previous chapter contains all the essentially distinct finite

groups of linear substitutions.
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Evidently 8''z = z, TH = z, {S = S-\ T= T-'), so that we have ab-eady all the

powers of the fundamental substitutions taken separately.

1
But it is necessary to combine them. We have Uz = STz = , a new

substitution : and then

U'z=~-, U'z = z,
z

so that U is periodic of the third order. Again

V2 = TSz = ^-^,
z

which is not a new substitution, for Vz = U'Z : and it is easy to see that there

is only one other substitution, which may be taken to be either TUz or SVz:

it gives

TUz = SVz= ^
z-V

again periodic of the second order.

Hence the group consists of the six substitutions for z given by

1 , 1 z-\ z
Z, ', l-z,

z' 'l-z' z 'z-V
taking account of the identical substitution.

These finite discontinuous groups are of importance in the theory of

polyhedral functions : to some of their properties we shall return later.

Next, and as the last special illustration for the present, we form a

discontinuous group with two fundamental substitutions but containing an

infinite number of composite* substitutions. As one of the two that are

fundamental, we take

w=Tz-=-^,
z

which is elliptic and periodic of the second order. As the othei", we take

?f =& = 5 + 1

,

which is parabolic and not periodic. All the substitutions are real.

Evidently T-z = z, so that T=T~^: and S''^^z = z -\- m, where m is any

integer. Then all the composite substitutions, are either of the form

...SpTS'^TS'Xz or of the form ...SpTS''TS"'Tz, both of these being included

in -, , where a, b, c, d are integers, such that ad — hc = l.
cz ~\~ ct

Ex. Prove the converse—that the suhstitution "
, , where a, h, r, d are integers

cz-\-a

such that (id—hc = \, is compounded of the substitutions >S' and T.

* One such group has ah-eady occurred: its fuiulameutal (paraboHc) substitutions were

w = 1^2 = 2+0), w = Tz — z-\-t>>'.
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This group, again, is of the utmost importance : it arises in the theory of

the elliptic modular-functions. As with the polyhedral groups, the general

discussion of the properties will be deferred : but it is advantageous to

discuss one of its properties now, because it forms a convenient introduction

to, and illustration of, the corresponding part of the theory of groups of

general substitutions.

284. In the discussion of the functions with additive periodicity, it was

found convenient to divide the plane into an infinite number of regions such

that a region was changed into some other region when to every point of the

former was applied a transformation of the form z + mit) + inw , that is, a

substitution : and the regions were so chosen that no two homologous points,

that is, points connected by a substitution, were within one region, and each

region contained one point homologous with an assigned point in any region

of reference.

Similarly, in the case when the variable is subject to the substitutions of

an infinite group, it is convenient to divide the plane into an infinite number

of regions ; each region is to be associated with a substitution which, applied to

the points of a region of reference, gives all the points of the region, and each

region is to contain one and only one point derived from a given point by

the substitutions of the group. It is a condition that the complete plane is

to be covered once and only once by the aggregate of the regions.

When the discontinuous group has only the two fundamental substitutions,

^z = z -^-X and Tz = , the division of the plane is easy : the difficulty of

determining an initial region of reference is slight, relatively to that which

has to be overcome in more general groups*.

The ordinates of z and w (= ^z^ are positive together or negative together

;

and similarly for the ordinates of z and U)(y = Tz) : so that it will suffice to

divide the half-plane on the positive side of the axis of real quantities.

For the repetitions of the substitution &,, it is evidently sufficient to divide

the plane into a series of strips, bounded by straight lines parallel to the axis

of y at unit distance apart.

For the application of the substitution T, we have to invert with regard

to a circle of radius 1 and centre the origin and to take the reflexion of the

inversion in the axis of y.

In these circumstances, we can choose as an initial region of reference, the

space bounded by the conditions

1 1 „ ,

* In addition to the references already given, a memoir by Hurwit?;, Math. Ann., t. xviii,

(18H1), pp. .')81—,')14, may be consulted for this group.
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It is sufficient to prove that any point in this region when subjected to a

substitution of the group, necessarily of the form j , where a, b, c, d are

integers such that ad — be = I, is transformed to some point without the

region, and that the aggregate of the regions covers the half-phme.

If c be 0, then a=l =d and the transformation is only some power of S,

which transforms the point out of the region.

If c be + 1, then, since ad — be = l,yfe have

1

z + d'

a and d being integers. For any point z within the region, \z + d,, which is

the distance of the point from some point 0, + 1, + 2, ... on the axis of x, is

> 1 : hence
\w — a\< 1,

that is, the distance of w from some point 0, f 1, ± 2, ... on the axis is < 1,

and therefore the transformed point is without the region.

Similarly, if c be — 1.

If IcI be > 1, then w =
, .

' ' c c- dz+~
c

As z is within the region,
I
^ + -

I ^ ^ : and therefore
c 2

at 1 1

^2V3<*^'^-

V3
2

so that \w
I

c

Hence the distance of w from some point of the axis is < h \/'^> that is, the

transformed point is without the region.

The exceptions are points on the boundary of the region. The boundary

a; = — I is transformed by S to cc = + ^: the boundary .v- + y- = 1 is trans-

formed by T into itself: but all other points are transformed into others

without the region.

"We now apply the substitutions S and T to this region and to the

resulting regions. Each substitution is uniform and is reversible : so that

to a given point in the initial region there is one, and only one, point in each

other region.

The accompanying diagram (Fig. 108) gives part of the division of the

plane into regions, the substitutions associated with each region being

placed in the region in the figure ; it is easy to see that the aggregate of

regions completely covers the half-plane. All the linear boundaries of S'\

for different integral values of n, are changed by the substitution T into

circles having their centres on the axis of x and touching at A : thus the

boundary between S and S- is transformed into the boundary between
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TS and TS-. All the lines which bound the regions are circles having

their centres on the axis of x or are straight lines perpendicular to that

axis; and the configuration of each strip is the same throughout the

diagram.

Fig. 108.

It will be noticed that in one region there are two symbols, viz., 8^'^TS~'^

and TST : the region can be constructed either by 8~'^ applied to TS~'^ or by

T applied to ST. It therefore follows that

TST = S-'TS-\

Hence S . TST . S = S . S-' TS-' . S = T,

or, since T'=l, we have STSTST= 1 = TSTSTS,

a relation among the fundamental substitutions. Thus the symbol of any

region is not unique : and, as a matter of fact, if we pass clockwise in a small

circuit round from the initial region, we find the regions to be 1, T, TS, TST,

TSTS, TSTST, TSTSTS, the seventh being the same as the first and giving

the above relation.

By means of this relation it will be found possible to identify the non-

unique significations of the various regions. At each point there are six

regions thus circulating always, either in the form SS, ®ST, &STS, ... or in

the form ST, STS, @TST, .... And by successive transformations, the space

towards the axis of x is distributed into regions.

The decision of the region to which a boundary should be assigned will

be made later in the general investigation ; it will prove a convenient step

towards the grouping of edges of a region in conjugate pairs.
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Note. It may be proved in the same way that, for any discontinuous

group of substitutions, the plane of the variable can be divided into regions

of a similar character. As will subsequently appear, there is considerable

freedom of choice of an initial region of reference, which may be called a

fundamental region.

285. We pass now to the consideration of the more general discontinuous

groups, based on the composition of a finite number of fundamental substitu-

tions. By means of these groups and in connection with them, the plane of

the variable can be divided into regions, one corresponding to each substitu-

tion of the group. The regions are said to be congruent to one another

:

the infinite series of points, one in each of the congruent regions, which arise

from z when all the substitutions of the group are applied to z, are said to

be corresponding or homologous points : and the point in Rq of the series is

the irreducible point of the series. As remarked before, the correspondence

between two regions is uniform : interiors transform to interiors, boundaries

to boundaries.

Two regions arc said* to be contiguous, when a part of their boundaries is

common to both. Each region, lying entirely in the finite part of the plane,

is closed : the boundary is made up of a succession of lines which may for

convenience be called edges, and the meeting-point of two edges may for con-

venience be called a corner.

Such a group, when all the substitutions are real, is calledf Fuchsian,

by Poincare ; the preceding example will furnish a simple illustration, useful

for occasional reference. All the substitutions are of the form

as2 + bg

CgZ + dg
'

which form will be denoted hy fg(z). We shall suppose that an infinite

group of real substitutions is given, and that it is known independently to

be a discontinuous group: we proceed to consider the characteristic properties

of the associated division of the plane, which is to be covered once and only

once by the aggregate of the regions. The fundamental region is denoted

by Bq: the region, which results when the substitution fm{z) is applied

to the points of R^, will be denoted by R^.

So long as we deal with real substitutions, it is sufficient to divide the

half-plane above the axis of a; into regions : and this axis may be looked upon

as a boundary of the plane. Since the group is infinite, the division into

regions must extend in all directions in the plane to its finite or infinite

boundaries: for we should otherwise have infinitesimal transformations. Thus

* Poincare uses the term Umitrophc.'i

.

t Math. A7m., t. xix, p. 554, t. xx, pp. 52, 53: Acta Math., t. i, p. 6'2. The same term is

applied to a less limited class of groups ; see p. (50G, note.



592 CATEGORIES [285.

the edge of a region is either the edge of a contiguous region, and then it is

said to be of theyir*-^ kind ; or it is a part of the boundary of the plane, that

is, in the present case it is a part of the axis of x : and then it is said to be of

the second kind. Since all real substitutions transform a point above the axis

o{ X into another point above the axis o{ x, it follows that all edges congruent

with an edge of the first kind (an edge lying off" the axis of ai) themselves

lie off the axis o^ x, that is, are of the first kind : and similarly all edges con-

gruent with an edge of the second kind are themselves of the second kind.

The corners, being the extremities of the edges, are of three categories.

If a corner be an extremity of two edges of the first kind and not on the

axis of X, then it is of the first category : and the infinite series of corners

homologous with it are of the first category. If it be common to two

edges of the first kind and lie on the axis of x, then it is of the second

category: and the infinite series of corners homologous with it are of the

second category. If it be common to two edges, one of the first and one of

the second kind, it is of the third category ; of course it lies on the axis of

X and the infinite series of corners homologous with it are of the third

category. We do not consider two edges of the second kind as meeting :

they would, in such a case, be regarded as a single edge.

Each edge of the first kind belongs to two regions. We do not assign

such an edge to either of the regions, but we use this community of

region to range edges as follows. Let the edge be Ep, common to Rq

and Rp ; then, making the substitution inverse to fp {z), say fp~'^ {z), Rp

becomes R^, Rq becomes R-p, and Ep becomes fp~^ (Ep), which is necessarily

an edge of the first kind and is common to the new regions R^p and Rq,

that is, it is an edge of R^. Let it be Ep : then Ep and Ep may be

the same or they may be different.

If Ep and Ep' be different, then we have a pair of edges congruent to

one another : two such congruent edges of the same region are said to be

conjugate. Since the substitutions are of the linear type, the correspondence

being uniform, not more than one edge of a region can be conjugate with

a given edge of that region.

If Ep and Ep' be the same, then the substitution transforms Ep into

itself : hence some point on Ep must be transformed into itself. As the edge

is of the first kind so that the point is above the axis of X, the substitution

is elliptic and has this point as the fixed point of the substitution in

the positive half-plane. The two parts of Ep can be regarded as two

edges : and the common point as the corner, evidently of the first category.

Because the directions of the edges measured away from the point are

inclined at an angle vr, it follows that the multiplier of the elliptic sub-

stitution is e'^', or — 1. An illustration of this occurs in the special

example of § 284, where the circular boundary of the initial region of



285.] FUNDAMENTAL SUBSTITUTIONS 593

referenc

that is,

reference is changed into itself by the fundamental substitution wz= — l,

w—i z—i
w + 1 z + i

Hence the edges of the first kind are even in number and can he arranged

in conjugate pairs.

Further, a point on an edge of the first kind is transformed into a

point on the conjugate edge—uniquely, unless the point be a corner, when

it belongs to two edges. Hence points on edges of the first kind other than

corners correspond in pairs.

An edge of the second kind is transformed into one of the second kind,

but belonging to a different polygon : there is no correspondence between

points on edges of the second kind belonging to the same polygon.

Each corner, as the point common to two edges, belongs to at least three

regions. As a point of one edge, it will have as its homologue an extremity

of the conjugate edge : as a point of another edge, it will have as its homologue

an extremity of the edge conjugate to that other : and these homologues may
be the same or they may be different. Hence several Cornells of a given

region may he homologous : the set of homologous corners of a given region is

called a cycle. Since points of a series homologous with a given point all

belong to one category, it is convenient to arrange the cycles in connection

with the categories of the component points.

The number of edges of the first kind is even, say 2/i : and they can be

arranged in pairs of conjugates, say Ei, E^+i ; E.,, En+2 ',• Then since En+p

is the conjugate of Ep, and f^+p (z) is the substitution which changes R(, into

Rn+p, fi+piz) is a substitution changing Ep into En+p. After the preceding

explanation, y^~^ (z) is also a substitution changing Ep into its conjugate E^+p

:

hence we have

fn+p (z) =fp~' (2).

Hence for a division of the plane, each region of winch has 2n edges of the

first kind, the group contains n fundamental substitutions : the remaining n

substitutions, necessary to construct the remaining contiguous regions, are

obtained by taking the first inverses of the fundamental substitutions.

The edge Ep has been taken as the edge common to Rq and Rp, the region

derived from R^ by the substitution y^, (^). Every region will have an edge

congruent to Ep-. if Ri be one such region, then the region, on the other side

of that line and having that line for an edge (the edge is, for that other

region, the congruent of the conjugate of Ep), is obtainable from R^ by the

substitution yi {/^(^)j, Wc thus have an easy method of determining the

substitution to be associated with the region, by considering the edges which

are crossed in passing to the region : and, conversely, when the substitutions

are associated with the regions, the correspondence of the edges is known.

As in the special example, there are relations among the fundamental

substitutions. The simplest mode of determining them is to describe a small

F. 38
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circuit round each corner of M^ in succession : in the description of the circuit,

the symbol of each new region can be derived by a knowledge of the edge last

crossed and when the circuit is closed the last symbol is the symbol also of Ro,

so that a relation is obtained.

286. The only limitations as yet assigned to the initial region (and there-

fore to each of the regions) of the plane are (i) that it contains only one point

homologous with z, and (ii) that the even number of edges of the first kind

can be arranged in congruent conjugate pairs. But now,

without detracting from the generality of the division, we ^f^—s"^"—~^D
can modify the initial region in such a way that all the / /

edges of the first kind are arcs of circles with their centres ;'
;'

on the axis of x. For let G...AFB...DGG be a region with '

'

• • ' H 'CGD and AFB for conjugate edges
;
jom GD by an arc of \ ^ _\

a circle GED with its centre on the axis of x : and apply to '^ \~-__zU--^

GED the substitution inverse to that which scives the region
. Fig- 109.

in which E lies : let AHB be the result, being also (§ 258)

an arc of a circle with its centre on the axis of x. Then the part AFBHA,
say 6'o. is transformed to GGDEG, say ^o', by the substitution which causes a

passage from R^ across GGD into another region : every point in S^, has a

homologue in 8^ : and there is, by the hypothesis that Rq is the initial region,

no homologue in i^,, of a point in Sq except the point itself. If, then, we take

away >S*o from Rq and add 8q', we have a new region

^o' = -^0+'Slo' — ^fl-

it satisfies all the conditions which apply to the regions so far obtained : there

is no point in R^' homologous with a point in it, and the conjugate edges

GGD and AFB are replaced by conjugate edges GED, AHB congruent

by the same substitution as the former pair. And the new conjugate

edges are circles having their centres on the axis of x.

Proceeding in this way with each pair of conjugate edges that are not

arcs of circles having their centres on the axis of x, and replacing it by a pair

of conjugate edges congruent by the same substitution and consisting of

arcs of circles having their centres on the axis of x, we ultimately obtain a

region in which all the edges of the first kind are arcs of circles having their

centres on the axis of a;. These can, of course, be arranged in conjugate pairs,

congruent by the assigned fundamental substitutions. Straight lines perpen-

dicular to the axis of x count as circles with centres at x — cc on that

axis : all other straight lines, not being parts of the axis of x, can be replaced

by circles.

The edges of the second kind are left unaltered.

A region, thus bounded, is called a normal polygon.

Further, this normal polygon may be taken convex, that is, edges do not

cross one another. If the preceding reduction of a region to the form of



286.] OF NORMAL POLYGON o95

a normal polygou should lead to a cross polygon, then, as is usual in

dealing with the area of such cross figures, part of the area is to be

considered negative : and therefore, for every point in this negative part,

there must be two points in the positive part. Hence,

in the positive part, there are

(i) points, none of which has a homologue in

the negative part, or in the positive

part except itself : their aggregate gives

a normal polygon Q :

(ii) two sets of points, each set of which consists

of the homologues of points in the nega-

tive part, and makes up a positive normal

polygon ; let the polygons be T^ and T^. ^'^- ^^^^

The negative part is a normal polygon T, to which T^ and 1\, are each congruent.

We now change R by adding a normal polygon T and subtracting a

normal polygon T, : thus for the new region we have a positive (that is, a

convex) polygon Q, and a positive (convex) polygon T^. No point in Q has a

homologue in T^: hence T^ and Q together make up a region such that

homologues of all points within it lie outside : this region is a normal

polygon, and it is convex. Hence we may take as the initial region of

reference a normal convex polygon, that is, a convex j)ohjgon hounded bg arcs of
circles having their centres on the axis of x, or by portions of the axis of x: the

nwmiber of arc-edges is even, and they can be arranged in conjugate pairs.

Simplicity is obtained by securing that the curves, which compose the-

boundary, are as like one another in character as possible. The substitutions

are linear and they change boundaries into boundaries : the whole plane is to

be covered : and there are no gaps between a bounding edge and the homo-

logue of the conjugate bounding edge. The only curves, which satisfy this

condition of leaving no gaps, and which are of the same character after any

number of linear transformations, are circles and straight lines.

287. We have seen that two (or more than two) corners of a convex

polygon may be homologous : it is

now necessary to arrange all the

corners in their cycles. Let AB and

ED be two conjugate edges of a

normal polygon, and let -. be
^ •'^ cz + d

the substitution which changes AB
into ED ; then, as usual, we have •

^'^'

a _ ad — be 1

^~c~ & d
z + -

c

38—2
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SO that arg. (w j + arg. (z + -j= ir.

This at once shews that, whatever be the value of - and of -, the points A,
c c

E are homologous, and likewise the points B, D. Hence to obtain a corner

homologous to a given corner we start from the corner, describe the edge of

the polygon beginning there, then describe in the same direction* the conju-

gate edge : the extremity of that edge is a homologous corner.

The process may now be reapplied, beginning with the last point ; and it

can be continued, each stage adding one point to the cycle, until we either

return to the initial point or until we are met by an edge of the second kind.

In the former case we have a completed cycle, which may be regarded as a

closed cycle. In the latter case we can proceed no further, as edges of the

second kind are not ranged in conjugate pairs ; but, resuming at the initial

point we apply the process with a description in the reverse direction until

we again arrive at an edge of the second kind : again we have a cycle, which

may be regarded as an open cycle.

In the case of a closed cycle, if one of the included points be of the first

category, then all the points are of the first category : the cycle itself is then

said to be of the first category. If one of the points be of the second category,

then since no edge of the second kind is met in the description, all the edges

met are of the first kind ; and therefore all the points, lying on the axis of x

and being the intersections of edges of the first kind, are of the second

category : the cycle itself is then said to be of the second category.

Open cycles will contain points of the third category : they may also

contain points of the second category for points both of the second and of

the third categories lie on the axis of x, and homology of the points does not

imply conjugacy of all edges of which they are extremities. Such cycles are

said to be of the third category.

It thus appears that the cycles can be derived when the arrangement in

conjugate pairs of edges of the first kind is given ; and it is easy to see that

the number of open cycles is equal to the number of edges of the second

kind.

We may take one or two examples. For a quadrilateral, in which

the conjugate pairs are 1,4; 2, 3—the numbers being

as in the figure—we have by the above process A, AB,
DA, A: that is, ^ is a cycle by itself Then B, BC, CD,

D, DA, AB, B : that is, B and D form a cycle ; and then

C, CD, BC, G, that is, C is a cycle by itself. The cycles

are therefore three, namely, A; B, D; C.

* This is necessary : the direction is easily settled for a complete polygon the sides of which
are described in positive or in negative direction throughout.
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For a hexagon, in which the conjugate pairs are 1,5; 2, 4 ; 3, G, the

cycles are two, namely. A, F, D, C and B, E. If the conjugate pairs be

Fig. 113.

1, 6; 2, 5; 3, 4, the cycles are four, namely, A\ B, F; G, E ; D. If the

conjugate pairs be 1, 4 ; 2, 5 ; 3, 6 the cycles are two, namely, A, C, E;

B, D, F.

For a pentagon, with one edge of the second kind as in the figure and

having 1, 3; 4, 5 as the conjugate pairs, the cycles are three, namely,

E] A, D; B, C ; the last being open and of the third category.

For a quadrilateral as in the figure, having three corners on the axis of x

and 1, 2; 3, 4 as the arrangement of its conjugate ^
pairs, the cycles are D; A, C; B\ the last two

being of the second category.

We have now to consider the angles of the

polygons taken internally. It is evident that at

any corner of the second category, the angle is

zero, for it is the angle between two circles meeting

on their line of centres ; and that at any corner of

the third category the angle is right. There therefore remain only the

angles at corners of the first category. Let A^, A.^, ..., A^ be the corners

in a cycle of the first category and denote the angles by the same letters.
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Since A^ and A.^ are homologous corners, they are extremities of conjugate

edges. Apply to the plane, in the vicinity of A.,, the substitution which

changes the edge ending in A.^ to its conjugate ending in A^: then the

point A^ is transferred to the point A^; one edge at A., coincides with its

conjugate at A^ and the other edge at Ao makes an angle

Ao with it, because of the substitution which conserves

angles. The latter edge was the edge which followed A2

in the cycle for the derivation of A^ : we take its conju-

gate ending in A-^, and treat these and the points A. and
'^'

A3 as before for ^1 and A., and their conjugate edges, namely, by using the

substitutions transforming conjugate edges and passing from A3 to A.2 and

then those from A2 to Ai.

Proceeding in this way round the cycle, we shall have

(1) a series of lines at the point, each line between two angles being

one of the conjugate edges on which the two corners lie

:

(2) the angles corresponding to the corners taken in cyclical order.

Hence after n such operations we shall again reach an angle A^. If the edge

do not coincide with the first edge, we repeat the set of n operations : and

so on.

Now all these substitutions lead to the construction of the various regions

meeting in A, which are to occupy all the plane round A, and no two of

which are to contain a point which does not lie on an edge. Hence

after the completion of some set of operations, say the pth. set, the

edges of ^1 will coincide with their edges of the first angle A^ ; and

therefore

p (A, + A. + . . . + A n) = ^TT,

so that A^ + A. + ... +An= —

.

P

Hence the sum of the angles at tJie corners, in a cycle of the first category,

is a submultiple of^ir.

Fiu-ther, if f/ be the number of polygons at A, we have

np = q.

Corollary 1. For a cycle of the second category—it is a closed cycle—
both p and q are infinite.

The cycle contains only a finite number of corners, because the polygon

has only a finite number* of edges: as each corner is of the second category,

* If the number be infiuite, the edges must be iutinitesimal iu length unless the perimeter of

each of the polygons is infinite : each of these alternatives is excluded.

The reason for finiteness (§ 282) in the number of fundamental substitutions in the group

is now obvious : their number is one-half of the number of edges of the first kind.
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the angle is zero : and therefore the repetition of the set of operations can be

effected without limit. Hence p is infinite ; and, as n polygons at a corner

are given by each set of operations, the number q of polygons is infinite.

Corollary 2. Corresponding to every cycle of the first category, there is

a relation among the fundamental substitutions of the group.

Lety*!, be the substitution interchanging the conjugate edges through A^

and A.,; f^ the substitution interchanging the conjugate edges through A.,

and A^ ; and so on. Let U denote

Jvi -J -23 •Ja ••'•fn-i,n {^) i

then U'i' (z) = z.

For JJ is the substitution which reproduces the polygon with the angle

^1 at J-i ; and this substitution is easily seen, after the preceding explanation,

to be periodic of order p. Moreover, this substitution U is elliptic.

288. The following characteristics of the fundamental region have now

been obtained

:

(i) It is a convex polygon, the edges of which arc either arcs

of circles with their centres on the axis of x or are portions

of the axis of x

:

(ii) The edges of the former kind are even in number and can be

arranged in conjugate pairs: there is a substitution for which

the edges of a conjugate pair are congruent; if this sub-

stitution change one edge a of the pair into a', it changes

the given region into the region on the other side of a :

(iii) The corners of the polygon can be arranged in cycles of one or

other of three categories :

(iv) The angles at corners in a cycle of the second category are zero

:

each of the angles at corners in a cycle of the third category

is right : the sum of the angles at corners in a cycle of the

first category is a submultiple of 27r.

Let there be an infinite discontinuous group of substitutions, such that its

fundamental substitutions are characterised by the occurrence of the fore-

going properties in the edges and the angles of the geometrically associated

region : and let the whole group of substitutions be applied to the region.

Then the half-plane on the positive side of the axis of x is covered : no

part is covered more than once, and no part is unassigned to regions. It is

easy to see in a general way how this given condition is satisfied by the

various properties of the regions. Since the edges of the first kind in

the initial region can be arranged in conjugate pairs, it is so with those

edges in every region : and the substitution, which makes them congruent,
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makes one of them to coincide with the homologue of the other for the

neighbouring region, so that no part is unassigned. No part is covered

twice, for the initial region is a normal convex polygon and therefore every

region is a normal convex polygon : the edges are homologous from region to

region, and form a common boundary. The angle of intersection with a

given arc is sufficient to fix the edge of the consecutive polygon : for an arc

of a circle, making on one side an assigned angle with a given arc and having

its centre on the axis, is unique. At every comer of any polygon, there will

be a number of polygons : the corners which coincide there are, for the

dififerent polygons, the corners homologous with a cycle in the original

region : and the angles belonging to those corners fill up, either alone or

after an exact number of repetitions, the full angle round the point.

We have seen that the substitution, which passes from a polygon at a

point to the same polygon, after n polj'gons, reproduces the angular point

at the same time as it reproduces the polygon ; the point is a fixed point

of an elliptic substitution. Similarly, if the point belong to a cycle of the

second category, n is infinite and the substitution does not change the point,

which is therefore a fixed point of the substitution ; as the fixed point is on

the axis, the substitution is parabolic (§ 292).

The preceding are the essential properties of the regions, which are

sufficient for the division of the half-plane when a group is given, and

therefore by reflexion through the axis of x, they are sufficient for the

division of the other half-plane.

The position of corners of the first category, and the orientation of edges

meeting in those corners, are determinate when the group is supposed

given : wdthin certain limits, half of the corners of the third category can

be arbitrarily chosen.

289. In the preceding investigation, the group has been supposed given

:

the problem was the appropriate division of the plane. The converse problem

occurs when a fundamental region, with properties appropriate for the

division of the half-plane, is given : it is the determination of the group.

The fundamental substitutions of the group are those which transform an

edge into its conjugate, and they are to be real—conditions which, by

§ 2-58, are sufficient for their construction. The whole group of substitu-

tions is obtained by combining those that are fundamental. The complete

division of the half-plane is efifected, by applying to each polygon in suc-

cession the series of fundamental substitutions and of their first inverses.

It is evident that a given division of the plane into regions determines

the group uniquely : but, as has already been seen in the general ex-

planation, the existence of a group wdth the requisite properties does not

imply a unique division of the plane.



289.] EXAMPLE GOl

As an example, let the fundamental substitutions be required when a quadrilateral as
in Fig. 112, having 1, 2; 3, 4 for the conjugate pairs of edges, is given as a fundamental
region. The cycles of the corners are B ; D; A, C; so that

7 ' „„ :

A^C= Stt

where I, m, n are integers.

The simplest case has already been treated, ^ 284 : there, ^= 2, ?«= x , 7i = 3 A = C • the

region is a triangle, really a quadrilateral with two

edges as conterminous arcs of the same circle. We
shall therefore suppose this case excluded ; we take the

case next in point of simplicity, viz. ^= 2, A = C. Then
AB and BC are conterminous arcs of one circle : we
shall take the centre of this circle to be the origin, its

radius unity and B on the axis of y ; then B is a fixed

point of the substitution, which changes AB into BC.

The substitution is

1

it is one of the two fundamental substitutions.
Fig. 117.

Evidently A = -, ADB-- Let E be the centre of the circle AD, and p its radius

then OAE=~ , ODE=l - , and so
n 2 TO

pH 1 - 2p cos ~^0E^-= p2 cos2

whence p sm'^ — = cos - + I cos — SHI'' — ,

the negative sign of the radical corresponding to the case when D lies below ABC. The
radius p must be real and therefore

1 1 ,

n m^ ^

we omit the case of m= (Xi, and therefore «>2.

The fundamental substitution, which changes AD into CD, has D and the complex con-

jugate to D for its fixed points: these points are+ipsin — . The argument of the

27r
multiplier is — , being the angle ADC: hence the substitution is

w - ip sm ; - ip sin - Sru

which reduces to

w+ iuHiu — £-fipsin —
in m

2 cos -l-psin-

—h cos -
p ?«.

where p has the value given by the above equation.
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This substitution, and the substitution w= — - , are the fundamental substitutions of

the group. The special illustration in § 284 gives

7)1 = 00, p = x, 01=3, p sin-~ = 2cos - = 1
;

the special form therefore is

w= z+l.

Taking cos-=a, cos-= 6, A = (a-+ b'^-l)% we have p (1 -(72) = ?> + A; the second fun-

damental substitution is

az+ A+ b
w=Sz--

'{A-h)z+ a'

It is easy to see that
Ti=\^ ^'"= 1, {TSY = \,

where Tz= — ; the complete figure can be constructed as in § 284.

An interesting figure occurs for «i = 4, « = 6.

In the same way it may be proved that, if an elliptic substitution have re'~ ' for its

common points and 26 for the argument of its multiplier, its expression is

Az+B

, sin (^ - e) n sin e „ 1 sin 9 r> sin (6 + 9)
where A =—^

—

.-^
, B = r ^—

-, , 6= — —.—-
, iJ= —^

—

-—
.

sm 6 sin 6 r sm 6 sm 6

Takinsr now the more general case where B=^-, D= — , A + C= — , let B (in

figure 112) be the point he^\ and A the point ac'^'^. Then the substitution which transforms

AB into BC \ii the above, when 6= ^, r= b, Q = B, so that, if C be ce^',

-,,• asin(i3-5)^"' + ^»sin5
ce' = -^-^^—^-—^^——

,

-- sin Be"' + sin (13+ B)

giving two relations among the constants.

Similarly two more relations will arise out of the substitution which transforms CD
into DA. And three relations are given by the conditions that the sum of the angles at

A and C is an aliquot part of 27r, and that each of the angles B and D is an aliquot part

of 2n-.

290. All the substitutions hitherto considered have been real : we now

pass to the consideration of those which have complex coefficients. Let

yz + 8

be such an one, supposed discontinuous: then the effect on a point is obtained

by displacing the origin, invtatiug with respect to the new position, reflecting

through a line inclined to the axis of a: at some angle, and again displacing

the origin. The displacements of the origins do not alter the character of

relations of points, lines and curves : so that the essential parts of the

transformation are an inversion and a reflexion.
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Let a group of real substitutions of the character considered in the

preceding sections be transformed by the foregoing single complex substitu-

tion : a new group

az -{ p >yz -\- 6

'yz + b

will thus be derived. The geometrical representation is obtained through

transforming the old geometrical representation by the substitution

.yz+6

so that the new group is discontinuous.

The original group left the axis of x unchanged, that is, the line z = Zo

was unchanged ; hence the substitutions

ccz +
,

,

az + p 'yz + 6

ryz+8' ^az + /3
_^^

yz + B

will leave unchanged the line which is congruent with z = z^ by the

substitution
( ^, ^). This line is
\yz + b I

-^8z + /3 __-8oZ, + ^,

ryz-a y^,, - tto
'

or it may be taken in the form

^ „ -8z + /3 ^
imaginary part or — = 0.

It is a circle, being the inverse of a line ; it is unaltered by the substitutions

of the now group, and it is therefore called* the fundamental circle of this

group. The group is still called Fuchsian (p. 606, note).

The half-planes on the two sides of the axis of x are transformed into the

two parts of the plane which lie within and without the fundamental circle

respectively: let the positive half-plane be transformed into the part within

the circle.

With the group of real substitutions, points lying above the axis of x
are transformed into points also lying above the axis of x, and points below

into points below : hence with the new group, points within the fundamental

circle are transformed into points also within the circle, and points without

into points without.

* Klein nses the word Haitpthreh.
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The division of the half-plane into curvilinear polygons is changed into a

division of the part within the circle into curvilinear polygons. The sides of

the polygons either are circles having their centres on the axis of x, that is,

cutting the axis orthogonally, or they are parts of the axis of x : hence the

sides of the polygons in the division of the circle either are arcs of circles

cutting the fundamental circle orthogonally or they are arcs of the funda-

mental circle.

The division of the part of the plane v^^ithout the circle is the trans-

formation of the half-plane below the axis of x, which is a mere reflexion

in the axis of x of the half-plane above : thus the division is characterised by

the same properties as characterise the division of the part within the

fundamental circle. But when the division of the part within the circle

is given, the actual division of the part without it can be more easily

obtained by inversion with the centre of the fundamental circle as centre

and its radius as radius of inversion.

This process is justified by the proposition that conjugate complexes are

transformed by the substitution z] into points which are the in-

verses of one another with regard to the fundamental circle. For a system

of circles can be drawn through two conjugate complexes, cutting the real

axis orthogonally : when the transformation is applied, we have a system of

circles, orthogonal to the fundamental circle and passing through the two

corresponding points. The latter are therefore inverses with regard to

the fundamental circle.

This proposition can also be proved in the following elementary manner.

Let OC, the axis of x, be inverted, with A as the centre of inversion, into a circle :

P and Q be two conjugate complexes, and

let AP cut axis of x in C: let CQ cut the

diameter of the circle in R. Since OC bisects

PQ, it bisects AR ; and therefore the centre

of the circle is the inverse of R.

Let p and q be the inverses of P and Q

:

]ompq,qr. 'V\iQut\\eSi\\^epqQ= CPQ=CQP,
and Aqr= CRO: thxvi pqr is a straight line.

Also
qr^ _QR_AP__Ar
Aq~TR~'AR~Ap'
pr _PR_ AQAr
Ap~ AR~ AR~A^'

rp. rq= Ar^.

and

so that

Thus jo and q are inverses of each other, relative to r and with the radius of the funda-

mental circle as radius. Transference of origin and reflexion in a straight line do not alter

these properties: and therefore jo and q, the transformations of the conjugate /' and (^>, are

inverses of one another with roffiird to the fundamental circle.
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Hence with the present group, constructed from an infinite discontinuous

group of real substitutions transformed by a single complex substitution, the

fundamental circle has the same importance as the axis of real quantities

in the group of real substitutions. It is of finite radius, which will be taken

to be unity : its centre will be taken to be the origin. The area within it is

divided into regions congruent with one another by the substitutions of the

group : the whole of the area is covered by the polygons, but no part is

covered more than once.

All the points, homologous with a given point z within the circle, lie

within the circle : each polygon contains only one of such a set of homologous

points.

The angular points of a polygon can be arranged in cycles which are

of three categories. The sum of the angles at points in a cycle of the first

category is unchanged by the substitution ; it is equal to an aliquot part of

27r. At points in a cycle of the second category each angle is zero : at points

in a cycle of the third category each angle is right.

In fact, all the properties obtained for the division of the plane into

polygons now hold for the division of the circle into polygons associated

with the group

az + p yz + 6

y^y ^-^^ a
<yz -\-o

provided we make the changes that are consequent on the transformation of

the axis of x into the fundamental circle.

The form of the substitution

yz+y
which secures that the fundamental circle in the z<J-plane shall he of radius unity and

centre the origin, is easily obtained.

It has been proved that inverse points with respect to the circle correspond to conjugate

complexes; hence w= and w= <x> correspond to two conjugate complexes, say X and Xy,

and therefore

z-\

where |k| = 1 because the radius of the fundamental circle is to be unity. The presence of

this factor k is equivalent to a rotation of the w'-plane about the origin. As the origin

is the centre of the fimdamental circle, the circle is unaltered by such a cliange

:

and therefore, without alTecting the generality of the substitution, we may take k = \,

so that now
z-\

where X is an arbitrary complex constant. The substitution is not in its canonical form,

which however can at once be deduced.

291. It has been seen, in § 2G0, that, when any real substitution is para-

bolic or hyperbolic, then practically an infinite number of points coinci<le with
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the fixed point of the substitution when it is repeated indefinitely, whatever

be the point z initially subjected to the transformation ; this fixed point lies

on the axis of x, and is called an essential singularity of the substitution.

When we consider such points in reference to automorphic functions, which

are such as to resume their value when their argument is subjected to

the linear substitutions of the group, then at such a point the function

resumes the value which it had at the point initially transformed ; that is,

in the immediate vicinity of such a fixed point of the substitution, the

function acquires any number of diiferent values : such a point is an essential

singularity of the function. Hence the essential singularities of the group

are the essential singularities of the coi-responding function.

Now all the essential singularities of a discontinuous group lie on the

axis of X when the group is real ; the line may be or may not be a con-

tinuous line of essential singularity. If, for example, x be any such point

for the group of §§ 283, 284 which is characteristic of elliptic modular-

functions, then all the others for that group are given by

ax -vh

ex + d'

where a, b, c, d are integers, subject to the condition ad — hc = \: and

therefore all the essential singularities are given by rational linear trans-

formations. For points on the real axis, this group is improperly dis-

continuous : and therefore for this group the axis of x is a continuous line

of essential singularity.

Hence when we use the transformation ( ^ , z] to deduce the division
\^z -\-6 J

of the fundamental circle into regions, the essential singularities of the new

group are points on the circumference of the fundamental circle : the cir-

cumference is or is not a continuous line of essential singularity for the

function or the group*, according as the group is properly or improperly

discontinuous for the circle.

292. It is convenient to divide the groups into families, the discrimin-

ation adopted by Poincare being made according to the categories of cycles of

angular points in the polygons into which the group divides the plane. The

group is of the

1st family, if the polygon have cycles of the 1st category only,

2nd 2nd ,

3rd 3rd ,

4th 2nd and 3rd ,

* Poincar6 calls the group Fuchsian, both when all the coefficients are real and when they

arise from the transformation of such an infinite group by a single substitution that has imaginary

coefficients. A convenient resume of his results is given by him in a paper, Math. Ann., t. xix,

(1882), pp. 553—564.
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5th family, if the polygon have cycles of the Ist and 3rd categories only,

6th 1st and 2nd
,

7th all three categories.

Thus in the polygons, associated with groups of the 1st, the 2nd, and the (Jth

families, all the edges are of the first kind ; in the polygons associated with

groups of the remaining families, edges of the second kind occur.

A subdivision of some of the families is possible. It has been proved that

the sum of the angles in a cycle of the first category is a submultiplc of 27r.

If the sum is actually 27r, the cycle is said to belong to the first sub-category:

if it be less than 27r (being necessarily a submultiple), the cycle is said to

belong to the second sub-category. And then, if all the cycles of the polj'gon

belong to the first sub-category, the group is said to belong to the first order

in the first family : if the polygon have any cycle belonging to the second

sub-category, the group is said to belong to the second order in the first

family.

It has been proved in § 288 that a corner belonging to a cycle of the

second category is not changed by the substitution which gives the conti-

guous polygons in succession ; the corner is a fixed point of the substitution,

so that the substitution is either parabolic or hyperbolic. In his arrange-

ment of families, Poincare divided the cycles of the second category into

cycles of two sub-categories, according as the substitution is parabolic or

hyperbolic : but Klein has proved* that there are no cycles for hyperbolic

substitutions, and therefore the division is unnecessary. The families of

groups, the polygons associated with which have cycles of the second

category, are the second, the fourth, the fifth and the seventh.

There is one very marked difference between the set of families, con-

sisting of the first, the second and the sixth, and the set constituted by

the remainder.

No polygon associated with a real group in the former set has an edge of

the second kind : and therefore the only points on the axis taken account of

in the division of the plane are the essential singularities of the group.

The domain of any ordinary point on the axis in the vicinity of each of the

essential singularities is infinitesimal : and therefore the axis of iv is taken

account of in the division of the plane only in so far as it contains essential

singularities of the group and the functions. This, of course, applies equally

to the transformed configuration in which the conserved line is the funda-

mental circle : and therefore, in the division of the area of the circle, its

circumference is taken account of only in so far as it contains essential

singularities of the groups and the functions.

But each polygon associated with a real group in the second set of

families has an edge of the second kind : the groups still have all their

* Math. Ann., t. xl, (1892), p. 132.
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essential singularities on the axis of x (or on the fundamental circle)

and at least some of them are isolated points ; so that the domain of an

ordinary point on the axis is not infinitesimal. Hence parts of the axis of

X (or of the circumference of the fundamental circle) fall into the division of

the bounded space.

293. There is a method of ranging groups which is of importance in

connection with the automorphic functions determined by them.

The upper half of the plane of representation has been divided into

curvilinear polygons ; it is evident that the reflexion of the division, in the

axis of real quantities, is the division of the lower half of the plane. Let the

polygon of reference in the upper half be R^ and in the lower half be R^,

obtained from R^ by reflexion in the axis of real quantities. Then, if the

group belong to the set, which includes the first, the second and the sixth

families, -Ro and R^ do not meet except at those isolated points, which are

polvgonal corners of the second category. But if the group belong to the

set which includes the remaining families, then Rq and R^ are contiguous

along all edges of the second kind, and they may be contiguous also at

isolated points as before.

In the former case Rq and R^' may be regarded as distinct spaces,

each fundamental for its own half-plane. Let R^ have 27i edges which can

be arranged in n conjugate pairs, and let q be the number of cycles all

of which are closed ; each point in one edge corresponds to a single point in

the conjugate edge. Let the surface included by the polygon Rq be deformed

and stretched in such a manuer that conjugate edges are made to coincide by

the coincidence of corresponding points. A closed surface is obtained. For

each pair of edges in the polygon there is a line on the surface, and for each

cycle in the polygon there is a point on the surface in which lines meet ; and

the lines make up a single curvilinear polygon occupying the whole surface.

The process is reversible ; and therefore the connectivity of the surface is an

integer which may properly be associated with the fundamental polygon.

When two consecutive edges are conjugate, their common corner is a

cycle by itself. The line, made up of these two edges after the deformation,

ends in the common corner which has become an isolated point ; this line

can be obliterated without changing the connectivity. The obliteration

annuls two edges and one cycle of the original polygon : that is, it diminishes

n by unity and q by unity. Let there be r such pairs of consecutive edges.

The deformed surface is now occupied by a single polygon, with n — r sides

and q — r angular points; so that, if its connectivity be 2iV+l, we have

(§ 165)
2iV=2 + (n-r)-l-(g-r)

= 71 + 1—5'.

The group may be said to be of class N.
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In tho latter case, the combination of 11^ and Ro may be regarded as

a single region, fundamental for the whole plane. Let Rq have 2n edges of

the first kind and m of the second kind, and let q be the number of closed

cycles : the number of open cycles is m. Then RJ has 2n edges of the first

kind and q closed cycles; it has, in common with R^, the m edges of the

second kind and the m open cycles. The correspondence of points on the

edges of the first kind is as before. Let the surface included by Ro and

Ra taken together be deformed and stretched in such a manner that con-

jugate edges coincide by the coincidence of corresponding points on those

edges. A closed surface is obtained. As the process is reversible, the

connectivity of the surface thus obtained is an integer which may properly

be associated with the fundamental polygon.

This integer is determined as before. For each pair of edges of the first

kind in either polygon, a line is obtained on the surface ; so that 2n lines are

thus obtained, n from Ro and n from Rq. Each of the common edges of the

second kind is a line on the surface, so that m lines are thus obtained. The

total number of lines is therefore 2n + in. For each of the closed cycles

there is a point on the surface in which lines, obtained through the defor-

mation of edges of the first kind, meet : their number is Iq, each of the

polygons providing q of them. For each of the open cycles there is a point

on the surface in which one of the m lines divides one of the n lines arising

through Rq from the corresponding line arising through R^ : the number of

these points is m. The total number of points is therefore 2q -\- m.

The total number of polygons on the surface is 2. Hence, if the con-

nectivity be 2N -{ 1, we have (§ 165)

2i\^ = 2 -1- 2?i + m - {2q + m) - 2

= 2n - 2q.

The group may be said to be of class N.

Thus for the generating quadrilateral in figure 112 (p. 596), the class of

the group is zero when the arrangement of the conjugate pairs is 1,2; 3, 4 :

and it is unity when the arrangement of the pairs is 1,3; 2, 4. For the

generating hexagon in figure 113 (p. 597), the class of the group is zero when

the arrangement of the conjugate pairs is 1, 6 ; 2, 5 ; 3, 4 : and it is unity

when the arrangement of the pairs is 1, 4 ; 2, 5 ; 3, 6. For the generating

pentagon in figure 114 (p. 597), the class of the group is zero when the

arrangement of the conjugate pairs is 1, 3 ; 4, 5 : and it is two, when the

arrangement of the pairs is 1, 4; 3, 5. For a generating polygon, bounded

by 2n semi-circles each without all the others and by the portions of the

axis of X, the number of closed cycles is zero : hence N = n.

294. In all the groups, which lead to a division of a half-plane or of a

F. 39
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circle into polygons, the substitutions have real coefficients or are composed

of real substitutions and a single substitution with complex coefficients

:

and thus the variation in the complex part of the coefficients in the group is

strictly limited. We now proceed to consider groups of substitutions

7^ + S>

in which the coefficients are complex in the most general manner : such

groups, when properly discontinuous, are called Kleinian, by Poincare.

The Fuchsian gi'oups conserve a line, the axis of x, or a circle, the funda-

mental chicle : the Kleinian groups do not conserve such a line or circle,

common to the group. Every substitution can be resolved into two dis-

placements of origin, an inversion and a reflexion, as in § 258. The inversion

has for its centre the point — B/y, being the origin after the first displace-

ment ; the reflexion is in the line through this point making with the real

axis an angle tt — 2 arg. 7. The only line left unaltered by these processes is

one which makes an angle ^tt — arg. 7 with the real axis and passes through

the point ; and the final displacement to the point ci/y will in general displace

this line. Moreover, arg. 7 is not the same for all substitutions ; there is

therefore no straight line thus conserved common to the group.

Similar considerations shew that there is no fundamental circle for the

group, persisting untransformed through all the substitutions.

Hence the Kleinian groups conserve no fundamental line and no funda-

mental circle : when they are used to divide the plane, the result cannot be

similar to that secured by the Fuchsian groups. As will now be proved,

they can be used to give relations between positions in space, as well as

relations between positions merely in a plane.

The lineo-lineai' relation between two complex variables, expressed as a

linear substitution, has been proved (§ 261) to be the algebraical equivalent

of any even number of inversions with regard to circles in the plane of the

variables : this analytical relation, when developed in its geometrical aspect,

can be made subservient to the correlation of points in space.

Let spheres be constructed which have, as their equatorial circles, the

circles in the system of inversions just indicated; let inversions be now carried

out with regard to these spheres, instead of merely with regard to then-

equatorial circles. It is evident that the consequent relations between points

in the plane of the variable z are the same as when inversion is carried out

with regard to the circles : but now there is a unique transformation of points

that do not lie in the plane. Moreover, the transformation possesses the

character of conformal representation, for it conserves angles and it secures

the similarity of infinitesimal figures: points lying above the plane of z
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invert into points lying above the plane of z, so that the plane of z is

common to all these spherical inversions and therefore common to the sub-

stitutions, the analytical expression of which is to be associated with the

geometrical operation ; and a sphere, having its centre in the plane of the

complex z is transformed into another sphere, having its centre in that plane,

so that the equatorial circles correspond to one another.

Through any point P in space, let an arbitrary sphere be drawn, having

its centre in the plane of the complex variable, say, that of the coordinates

^, 7). It will be transformed, by the various inversions indicated, into another

sphere, having its centre also in the plane of |^, t] and passing through the

point Q obtained from P as the result of all the inversions; and the equatorial

planes will correspond to one another.

Let the sphere through Q be

(r-a)^+(V-Z')=+r— r'^

or f- + 7?'- + r- - 2af - 267?' + ^ = 0.

Hence, if Q be determined by

Z =^ +%7), Zo =^ -11], p'=^-+V-+^' = 2 2, +^',

this equation is p'^ _(_ j^^^' ^ j^^^' ^ ^, _ q^

where — h, —ho — a+ ib, a — ih respectively. The equatorial circle of this

sphere is evidently given by ^' = 0, so that its equation is

z'z^ + h^' + hzo + />; = ;

this circle can be obtained from the equatorial circle of the sphere through P

by the substitution z = ^ . Hence the latter circle, by § 258, is given by

zz^ (awo + /'ua7o + Aa«7 + k^'y^) + Zo {oiS + /'o^7o + ha^^ + ky^^)

+ z (a/3o + h,aK + h^,y + kyh,) + I3i3, + h^^, + A/3oS + khh, = :

and therefore the equation of the sphere through P is

p" (awo + /^oOTo + ^'"07 + ^^"770) + ^0 {^S + hSlo + /ittoS + ^'^70^)

+ z {a^o + /'o«So + h/3,y + kyB,) + /3/3o + Ii,l3Bo + h/3,8 + kSS, = 0.

The quantities h, Iiq, k are arbitrary quantities, subject to only the single

condition that the sphere passes through the point Q : there is no other

relation that connects them. Hence the equation of the sphere through P
must, as a condition attaching to the quantities h, ho, k, be substantially the

equivalent of the former condition given by the equation of the sphere

through Q. In order that these two equations may be the same for h, h„, k,

the variables p'-, z' , z^ of the point Q and those of P, being p", z, z^, must give

89—2
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practically the same coefficients of /t, h„, k in the two equations, and therefore

p" : p-acio + z^a.,^ + za^o + ^^o

= z' : p"ay^ + z^^y^ + zah^ + ^80

= V : p-ao7 + z^a^h + z^^y + jB^h

= 1 : p-770 + ^'oYuS + ^7^0 + ^K-

These are evidently the equations which express the variables of a point Q in

space in terms of the variables of the point P, when it is derived from P by

the generalisation of the linear substitution

aw + ^w =
7W + h'

they may be called the equations of the substitution. It is easy to deduce

that

r^ 1
^

K p"jyo + Zojo^ + zySo + B80
'

which may be combined with the preceding equations of the substitution.

Also, the magnification for a single inversion is dsi/ds, or Vi/r, where r^

and r are the distances of the arcs from the centre of the sphere relative to

which the inversion is effected. But rjr = ^j/^, where ^j and ^ are the

heights of the arcs above the equatorial plane ; hence the magnification is

^1/^, for a single inversion. For the next inversion it is ^2/^1, and therefore it

is ^j/^ for the two together; and so on. Hence the final magnification m
for the whole transformation is

m = r= 1

t ?'77o + (7^ + ^) (70^0 + So)

^'\yf + \yz + S\''

a quantity that diminishes as the region recedes from the equatorial plane.

It is justifiable to regard the equations obtained as merely the generalisa-

tion of the substitution : they actually include the substitution in its original

application to plane variables. When the variables are restricted to the plane

of ^, 77, we have p^ — zz^^, and therefore

zz^arya + zS'io + zaSo + /3So az + 13
z =-

^•3^o77o + ^o7oS + ^780 + 8S0 72' + S
'

on the removal of the factor 'y^z^ + So common to the numerator and the

denominator; and ^' vanishes when f=0. The uniqueness of the result is

an a posteriori justification of the initial assumption that one and the same

point Q is derived from P, whatever be the inversions that are equivalent to

the linear substitution.
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Ex. 1. Let an elliptic substitution have u and v as its fixed points.

Draw two circles in the plane, passing through u and v and intersecting at an angle

equal to half the argument of the multiplier. The transformation of the plane, caused by

the substitution, is equivalent to inversions at these circles ; the corresponding transforma-

tion of the space above the plane is equivalent to inversions at the spheres, having these

circles as equatorial circles. It therefore follows that every point on the hne of intersection

of the spheres remains unchanged : hence token a Kleinian substitution is elliptic, every

point on the circle, in a plane perpendicular to the plane of x, y and having the line joining

the common points of the substitution as its diameter, is unchanged by the substitution.

Poincard calls this circle C the double (or fixed) circle of the elliptic substitution.

Ex. 2. Prove that, when a Kleinian substitution is hyperbolic, the only points in space,

which are vmchanged by it, are its double points in the plane o{ x, y ; and shew that

it changes any circle through those points into itself and also any sphere through those

points into itself.

Ex. 3. Prove that, when the substitution is loxodromic, the circle C, in a plane

perpendicular to the plane x, y and having as its diameter the line joining the common
points of the substitution, is transformed into itself, but that the only points on the

circumference left unchanged are the common points.

Ex. 4. Obtain the corresponding properties of the substitution when it is parabolic.

(All these results are due to Poincard)

295. The process of obtaining the division of the ^•-plane by means of

Kleinian groups is similar to that adopted for Fuchsian groups, except

that now there is no axis of real quantities or no fundamental circle

conserved in that plane during the substitutions : and thus the whole

plane is distributed. The polygons will be bounded by arcs of circles as

before : but a polygon will not necessarily be simply connected. Multiple

connectivity has already arisen in connection with real groups of the third

family by taking the plane on both sides of the axis.

As there are no edges of the second kind for polygons determined by

Kleinian groups, the only cycles of corners of polygons are closed cycles

;

let ^0. ^1, "•> -4„_i in order be such a cycle in a polygon Ro. Round A^

describe a small curve, and let the successive polygons along this curve be

Ra, Ri, ..., Rn~i, Rn,--- The corner A„ belongs to each of these polygons:

when considered as belonging to R^, it will in that polygon be the homologue

of Am as belonging to R^, if m< n ; but, as belonging to R,i, it will, in that

polygon, be the homologue of A^ as belonging to 7?o. Hence the substitution,

which changes Rq into R^, has A^ for a fixed point.

This substitution may be either elliptic or parabolic, (but not hyperbolic,

§ 292): that it cannot be loxodromic may be seen as follows. Let /ae'" be

the multiplier, where (§ 259) p is not unity and w is not zero : and let

So denote the aggregate of polygons ii!„, R^, ..., Rn-i, ^i the aggregate

Rn, ..., R-2n--i, ''ind so on. Then So is changed to S,, Si to 2._,, and so on.

by the substitution. Let /) be an intc^gei- such that p(o^27r; then, when



614 DIVISION OF SPACE [295.

the substitution has been applied p times, the aggregate of the polygons

is Sp, and it will cover the whole or part of one of the aggregates 2o, Sj,....

But, because pP is not unity, S^ does not coincide with that aggregate or the

part of that aggregate : the substitution is not then properly discontinuous,

contrary to the definition of the group. Hence there is no loxodroraic

substitution in the group. If the substitution be elliptic, the sum of the

angles of the cycle must be a submultiple of 27r ; when it is parabolic, each

angle of the cycle is zero.

In the generalised equations whereby points of space are transformed

into one another, the plane of .r, y is conserved throughout : it is

natural therefore to consider the division of space on the positive side of

this plane into regions P^, Pj,..., such that Po is changed into all the

other regions in turn by the application to it of the generalised equations.

The following results can be obtained by considerations similar to those

before adduced in the division of a plane*.

The boundaries of regions are either portions of spheres, having their

centres in the plane of x, y, or they are portions of that plane : the

regions are called polyhedral, and such boundaries are called faces. If the

face is spherical, it is said to be of the first kind: if it is a portion of

the plane of cc, y, it is said to be of the second hind. Faces of the

second kind, being in the plane of x, y and transformed into one another,

are polygons bounded by arcs of circles.

The intersections of faces are edges. Again, an edge is of the first

kind, when it is the intersection of two faces of the first kind : it is of

the second kind, when it is the intersection of a face of the first kind

with one of the second kind. An edge of the second kind is a circular

arc in the plane of ^, y: an edge of the first kind, being the intersection

of two spheres with their centres in the plane of x, y, is a circular arc,

which lies in a plane perpendicular to the plane of x, y and has its

centre in that plane.

The extremities of the edges are corners of the polyhedra. They are

of three categories

:

(i) those which are above the plane of x, y and are the common
extremities of at least three edges of the first kind

:

(ii) those which lie in the plane of x, y and are the common extremities

of at least three edges of the first kind :

(iii) those which lie in the plane of x, y and are the common extremities

of at least one edge of the first kind and of at least two edges of

the second kind.

* See, in particular, Poiucar6, Acta Math., t. iii, pp. 66 et seq.
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Moreover, points at which two faces touch can be regarded as isolated corners,

the edges of which they are the intersections not being in evidence.

Faces of a polyhedron, which are of the first kind, are conjugate in pairs

:

two conjugate faces are congruent by a fundamental substitution of the group.

Edges of the first kind, being the limits of the faces, arrange themselves

in cycles, in the same way as the angles of a polygon in the division of the

plane. If Eq, E^, ..., En-i be the n edges in a cycle, the number of regions

which have an edge in E^ is a multiple of n : and the sum of the dihedral

angles at the edges in a cycle (the dihedral angle at an edge being the

constant angle between the faces, which intersect along the edge) is a

submultiple of 27r.

The relation between the polyhedral divisions of space and the polygonal

divisions of the plane is as follows. Let the group be such as to cause the

fundamental polyhedron Pq to possess n faces of the second kind, say F^,l,

Ffyi, ..., Fon- Every congruent polyhedron will then have n faces of the

second kind; let those of Pg be F^^, Fg., ..., F,n- Every point in the plane

of X, y belongs to some one of the complete set of faces of the second kind

:

and, except for certain singular points and certain singular lines, no point

belongs to more than one face, for the proper discontinuity of the group

requires that no point of space belongs to more than one polyhedron.

Then the plane of x, y is divided into n regions, say D^, D„, ..., Dn', each

of these regions is composed of an infinite number of polygons, consisting of

the polygonal faces F. Thus Z), is composed of F(,r, Fir, F.,r, ... ; and these

polygonal areas are such that the substitution Sg transforms F^r into Fgy.

Hence it appears that, by a Kleinian group, the whole plane is divided into

a finite number of regions ; and that each region is divided into an infinite

number of polygons, which are congruent to one another by the substitutions

of the group.

296. The preceding groups of substitutions, that have complex co-

efficients, have been assumed to be properly discontinuous.

Ex. Prove that, if any group of substitutions with complex coefficients be improperly

discontinuous, it is improperly discontinuous only for points in the plane of x, y.

(Poincare.)

One of the simplest and most important of the improperly discontinuous

groups of substitutions, is that compounded from the three fundamental

substitutions

z' =-8z = z-^\, z'=Tz = --, z' = Vz = z + i,

z

where i has the ordinary meaning. All the substitutions are easily proved to

be of the form

yz+S'
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where aS — /3y — l, and a, /3, 7, S are complex integers, that is, are represented

by m + ni, where m and n are integers. This is the evident generalisation of

the modular-function group : consequently there is at once a suggested

generalisation to a polyhedron of reference, bounded by

which will thus have one spherical and four (accidentally) plane faces.

The following method of consideration of the points included by the

polyhedron of reference differs from that which was adopted for the polygon

of reference in the plane.

If possible, let a point (^, 7], ^) lying within the above region be transformed

by the equations generalised from some one substitution of the group, say

from ^ , into another point of the region, say ^', tj', ^'. Then we have

From the last, it follows that ^ > --
: and similarly for ^', 77', ^', by the

hypothesis that the point is in the region. Now

f' 1 1

and therefore 1/(^D = 1 7 P + 1^ 1

7'2^ + ^
I"-

Hence, as ^ and ^' are both > 7^, we have |7|-<2: so that, because 7 is

a complex integer, we have

7 = 0, ±1, ±i
as the only possible cases.

If 7=0, then since ah — ^'y = \, we have aS = l and a, S are complex

integers : thus either

a = — ll a = i] oi = — i
, or 5, ^ , or .y , or

For the first of these sub-cases we have, from the equations of the substitu-

tion,

where /3 is a complex integer: if the new point lie within the region, then

/3 = 0, and we have

which is merely an identity.

For the second, we have zf = z — ^ : leading to the same result.

For the third, we have, since So = i,

z = — z + i^.
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But as
l^'l,

\r}'\, 111, \ri\ are all less than ^, we have /S = 0, and so

I' = - I, V =-v; and ^ = ^.

For the fourth case, we have

z' = -z-i^,

leading to the same result as the third. Hence, if 7 = 0, the only point lying

within the region is given by

1' = -?. v' = -v, K' = ^'-

111)

determined by the substitution «/=—
.

, which is TVT~^V~^TV.
•' —I

If |<y| = 1, that is, 77o = 1, then

p = p- 4- -^o7oS + Z'yho + SSo.

Of the two quantities ^ and ^', one will be not greater than the other : we

choose ^ to be that one and consider the accordingly associated substitution *

:

thus ^/^'=^l,/j^>l, and so

zjy^h + zr^ho + S5o < 0,

h 80 8 So _
say ^0 - + ^ — + - " < 0.

7 7o 7 7o

Now
I7I
= 1, SO that - is of the form r> + iq, where p and q are integers : thus

7
we have

p'+q^^ 2p^ + 2qr] < 0,

which is impossible because 2f < 1, 2t)<l.

Hence it follows that within the region there are only two equivalent

points, derived by the generalised equations from the substitution

, iw

and that all points within the region can be arranged in equivalent pairs

I, 7), ^ and -^,-v, ^

If the region bo symmetrically divided into two, so that the boundaries of

a new region are

then no point within the new region is equivalent to any other point in the

region-f-. As in the division of the plane by the modular group, it is easy

to see that the whole space above the plane of |, rj is divided by the group

:

therefore the region is a polyhedron 0/ referencefor the (/roup composed of the

fundamental substitutions 8, T, V.

* Were it f, all that would be necessary would be to take the inverse substitution,

t Bianchi, Math. Ann., t. xxxviii, (1891), pp. 313—324, t. xl, (1S!)2), pp. 332—U2; Picard, ib.,

t. xxxix, (1891), pp. 142—144; Mathews, Quart. Joimi. Math., vol. xxv, (1891), pi>. 289—29(>.
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The preceding substitutions, with complex integers for coefficients, are of use in appli-

cations to the discussion of binary quadratic forms in the theory of numbers. The special

division of all space corresponds, of course, to the character of the coefficients in the

substitutions : other divisions for similar groups are possible, as is proved in Poincare's

memoir already quoted.

These di\'isions all presuppose that the group is infinite : but similar divisions for only

finite groups (and therefore with only a finite number of regions) are possible. These are

considered in detail in an interesting memoir by Goursat* ; the transformations conserve

an imaginary sphere instead of a real plane as in Poincare's theory.

Ex. Shew that, for the infinite group composed of the fundamental substitutions

1

_ 5
-z+l, ^ = z+ ,,

where e is a primitive cube root of unity, a fimdamental region for the division of space

above the plane of z, corresponding to the generalised equations of the group, is a sym-

metrical third of the polyhedron extending to infinity above the sphere

^2+ ^2+ ^2=1^

and bounded by the sphere and the six planes

2|=+1, ^ + -ns.'^=±\, ^-77s/3=±l. (Bianchi.)

* " Sur les si;bstitutions ortbogoiiales et les divisions reguli^res de I'espace," Ann. de VEc.

Norm. Sup., 3™ Ser., t. vi, (1889), pp. 9—102. See also Schonflies, Math. Ann., t. xxxiv, (1889),

pp. 172—203 : other references are given in these papers.



CHAPTER XXII.

AuTOMORPHic Functions.

297. As was stated in the course of the preceding chapter, we are

seeking the most general form of the arguments of functions which secures

the property of periodicity. The transformation of the arguments of trigo-

nometrical and of elliptic functions, which secures this property, is merely a

special case of a linear substitution : and thus the automorphic functions to

be discussed are such as identically satisfy the equation

F{Siz)=f{z),

where Si is any one of an assigned group of linear substitutions of which only

a finite number are fundamental.

Various references to authorities will be given in the present chapter, in connection

with illustrative examples of automorphic functions : but it is, of course, beyond the scope

of the present treatise, dealing only with the generalities of the theory of functions, to

enter into any detailed development of the properties of special classes of automorphic

functions such as, for instance, those commonly called polyhedral and those commonly

called elliptic-modular. Automorphic functions, of types less special than those just men-

tioned, are called Fuchsian functions by Poincard, when they are determined in association

with a Fuchsian group of substitutions, and Kldnian functiotis, when they are determined

in association with a Kleinian group : as our purpose is to provide only an introduction

to the theory, the more general term automorphic will be adopted.

The establishment of the general classes of automorphic functions is effected by

Poincard in his memoirs in the early volumes of the Acta Mathematica, and by Klein in his

memoir in the 21st volume of the Mathematische Annalen : these have been already quoted

(p. 583 note) : and Poincard gives various historical notes* on the earlier scattered occur-

rences of automorphic functions and discontinuous groups. Other memoirs that may be

consulted with advantage are those of Von Mangoldtf, Weber |, Schottky§, Stahl|!,

* Acta Math., t. i, pp. 61, 62, 293 : ib., t. iii, p. 92. Poincare's memoirs occur in the first,

third, fourth and fifth volumes of this journal : a great part of the later memoirs is devoted to

their application to linear differential equations.

t Gott. Nachr., (1885), pp. 313—319 ; ib., (1886), pp. 1—29.

t Gott. Nachr., (1886), pp. 359—370.

§ Grelle, t. ci, (1887), pp. 227—272.

II
Math. Ann., t. xxxiii, (1889), pp. 291—309.
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Schlesinger* and Rittcrt : and there are two by Burnside|, of special interest and

importance in connection with the third of the seven famihes of groups (§ 292).

298. We shall first consider functions associated with finite discrete

groups of linear substitutions.

There is a group of six substitutions

1 , 1 2-1 Z
z, -, \-z.

z' ' \-z' z ' z-V
which (§ 283) is complete. Forming expressions z — x, z , z — {\ — x),

1 ^ ~— 1 00

z — , z —
, z and multiplying them together, we can express

X ^~'
tAJ xfj *f^ JL

their product in the form

V^ ^>
\ {z"'-zf {x^-xf J

'

so that A{z) = ^']~/'^}/
{z^ — zy

is a function of z which is unaltered by any of the transformations of its

variable given by the six substitutions of the group. The function is well

known, being connected with the six anharinonic ratios of four points in a

line which can all be expressed in terms of any one of them by means of the

substitutions.

Another illustration of a finite discrete group has already been furnished

in the periodic elliptic transformation of § 258, whereby a crescent of

the plane with its angle a submultiple of 27r was successively transformed,

ultimately returning to itself: so that the whole plane is divided into portions

equal in number to the periodic order of the substitution.

If a stereographic projection of the plane be made with regard to any

external point, we shall have the whole sphere divided into a number of

triangles, each bounded by two small circles and cutting at the same angle.

By choice of centre of projection, the common corners of the crescents can be

projected into the extremities of a diameter of the sphere : and then each of

the crescents is projected into a lune. The effect of a substitution on the

crescent is changed into a rotation round the diameter joining the vertices

of a lune through an angle equal to the angle of the lune.

299. This is merely one particular illustration of a general correspondence

between spherical rotations and plane homographies, as we now proceed to

shew. The general correspondence is based upon the following proposition

due to Cayley:

—

* CrelU, t. cv, (1889), pp. 181—232.

t Math. Ann., t. xli, (1892), pp. 1—82.
+ JauuI. Math. Soc. Proc, vol. xxiii, (1892), pp. 48—88, lb., pp. 281—295.
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When a sphere is displaced hij a rotation round a diameter, the variables of

the stereographic projections of any point in its onginal position and in its dis-

placed position are connected by the relation

,
_{d + ic) z — {b— ia)

~
(6 + ia) z + {d- ic)

'

ivltere a, b, c, d are real quantities.

Rotation about a given diameter through an assigned angle gives a

uni(|ue position for the displaced point : and stereographic projection, which

is a conformal operation in that it preserves angles, also gives a unique point

as the projection of a given point. Hence taking the stereographic projec-

tion on a plane of the original position and the displaced position of a point

on the sphere, they will be uniquely related : that is, their complex variables

are connected by a lineo-linear relation, which thus leads to a linear substitu-

tion for the plane-transformation corresponding to the spherical rotation.

Now the extremities of the axis are unaltered by the rotation ; hence the

projections of these points are the fixed points of the substitution. If the

points be ^, 77, ^ and — ^, —rj, — ^, on a sphere of radius unity, and if the

origin of projection be the north pole of the sphere, the fixed points of the

substitution are

t±lV and -?+!''•

so that the substitution is of the form

^ + i7)
, I + *'?

1-? 1-r
To determine the multiplier K, we take a point P very near C, one extremity

of the axis : let P' be the position after the rotation, so that CP' = CP. Then,

in the stereographic projection, the small arcs which correspond to CP and

CP' are equal in length, and they are inclined at an angle a. Hence the

multiplier K is e** : for when 2, and therefore z', is nearly equal to — -r- jr , a

fixed point of the substitution, the magnification is \K\ and the angular

displacement is the argument of if, which is a.

Inserting the value of K, solving for z' and using the condition

^" + 7;^ -I- ^- = 1, we have

, _{d + ic) z — (b — ia)
~ {b+ ia) z + (d - ic)

'

where a = | sin ^a, b = rj sin ^01, c = ^ sin ^a, d = cos ^a,

so that a''+b''+c- + d'=l,

the equivalent of the usual condition to which the four coefficients in any
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linear substitution are subject : it is evident that the substitution is elliptic.

The proposition* is thus proved.

When the axis of rotation is the diameter perpendicular to the plane, we

have, by § 256,

so that z' = ze'"-,

agreeing with the above result by taking ^ = = t;, ^= 1 so that a = = h,

c = sin 2 a, d — cos hoc.

It should be noted that the formula gives two different sets of coefficients

for a single rotation : for the effect of the rotation is unaltered when it is

increased by 27r, a change in a which leads to the other signs for all the

constants a, b, c, d.

It thus appears that the rotation of a sphere about a diameter interchanges

pairs of points on the surface, the stereographic projections of which on the

plane of the equator are connected by an elliptic linear substitution : hence,

in the one case as in the other, the substitution is periodic when a, the

argument of the multiplier and the angle of rotation, is a submultiple of 27r.

In the discussion of functions related in their arguments to these linear

substitutions, it proves to be convenient to deal with homogeneous variables,

so that the algebraical forms which arise can be connected with the theory of

invariants. We take ZZ2 = z^ : the formulfe of transformation may then be

represented by the equations

Zi = K (a^i + /3z.), z.' = K (7^1 + Sz„)

for the substitution z' = {az + ^)/{jz + 8). As we are about to deal with

invariantive functions of position dependent upon rotations, it is important

to have the determinant of homogeneous transformation equal to unity.

This can be secured only if /c = + 1 or if /c = - 1 : the two values correspond

to the two sets of coefficients obtained in connection with the rotation.

Hence, in the present case, the formulae of homogeneous transformation are

Zi = id + ic) Zi— (b — ia) z^, zJ = (6 -f ia) z^-\-{d— ic) z.^,

where a" + 6- + c^ + (Z-, being the determinant of the substitution, = 1 ; every

rotation leads to two pairs of these homogeneous equations •{•. Each pair of

equations will be regarded as giving a homogeneous substitution.

Moreover, rotations can be compounded : and this composition is, in the

analytical expression of stereographically projected points, subject to the same

algebraical laws as is the composition of linear substitutions. If, then, there

* Cayley, Math. Ann., t. xv, (1879), pp. 238—240 ; Klein's Vorlesungen ilber das Ikosaeder,

pp. 32—34.

t The succeeding account of the polyhedral functions are based on Klein's investigations,

which are collected iu the first section of his VorJeaungen iiher das Ikosaeder (Leipzig, Teubner,

1884) : see also Cayley, Camb. Phil. Trans., vol. xiii, pp. 4—68.

It will be seen that the results are intimately related to the results obtained in §§ 271—279,

relative to the conformal representation of figures, bounded by circular arcs, on a half-plane.
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be a complete group of rotations, that is, a group such that the composition

of any two rotations (including repetitions) leads to a rotation included in the

group, then there will be associated with it a complete group of linear

homogeneous substitutions. The groups are finite together, the number of

members in the group of homogeneous substitutions being double of the

number in the group of rotations : and the substitutions can be arranged in

pairs so that each pair is associated with one rotation.

300. Such groups of rotations arise in connection with the regular solids.

Let the sphere, which circumscribes such a solid, be of radius unity : and let

the edges of the solid be projected from the centre of the sphere into arcs of

gi^eat circles on the surface. Then the faces of the polyhedron will be repre-

sented on the surface of the sphere by closed curvilinear figures, the angular

points of which are summits of the polyhedron. There are rotations, of proper

magnitude, about diameters properly chosen, which displace the polyhedi-on

into coincidence (but not identity) with itself, and so reproduce the above-

mentioned division of the surface of the sphere : when all such rotations have

been determined, they form a group which may be called the group of the

solid. Each such rotation gives rise to two homogeneous substitutions, so

that there will thence be derived a finite group of discrete substitutions:

and as these are connected with the stereographic projection of the sphere,

they are evidently the group of substitutions which transform into one

another the divisions of the plane obtained by taking the stereographic

projection of the corresponding division of the surface of the sphere. For

the construction of such groups of substitutions, it will therefore be sufficient

to obtain the groups of rotations, considered in reference to the surface of

the sphere.

I. The Dihedral Grou}). The simplest case is that in which the solid,

hardly a proper solid, is composed of a couple of coincideut regular polygons

of n sides* : a reference has already been made to this case. We suppose the

polygons to lie in the equator, so that their corners divide the equator into

n equal parts : one polygon becomes the upper half of the spherical surface,

the other the lower half. The two poles of the equator, and the middle

points of the n arcs of the equator, are the corners of the corresponding solid.

Then the axes, rotations about which can bring the surface into such

coincidence with itself that its partition of the spherical surface is topo-

graphically the same in the new position as in the old, arc

(i) the polar axis,

(ii) a diameter through each summit on the equator,

(iii) a diameter through each middle point of an edge

:

the last two are the same or are different according as n is odd or is even.

* The solid may also be regarded as a double pyramid.
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For the polar axis, the necessary angle of rotation is an integral multiple

27r
of— . Thus we have 1 = 0=?;, ^-1 and therefore

n

a = = h, c = sin - , d = cos - :

n n
the substitutions are

inr inr

Zi = e"* z^, zJ = e '^ Z.2,

for ?• = 0, 1, ... , ?i - 1, and

^/ = -e"2-i, zJ = -e '^ z.,

for the same values of r. These are included in the set

z^' = e» 2-1, z„' = e~ ^ z„,

for ?' = 0, 1, 2, ..., In — 1, being 2n in number: the identical substitution is

included for the same reason as before, when we associated a region of

reference in the z-plane with the identical substitution.

For each of the axes lying in the equator, the angle of rotation is

evidently it. Let an angular point of the polygon lie on the axis of ^, say at

1 = 1, r; = 0, ^=0. Then so far as concerns (ii) in the above set, if we take

the axis through the (r + l)th angular point, we have ^ = cos
'—

, t] = sin
,

^= ; hence, as a is equal to tt, we have, for the corresponding substitutions,

2nri 2rni

Zj' = ie ^ Z2, z.2=ie " Zj,

for r = 0, 1, ..., ?i — 1, and „ . „ .

Z^ —— ~~ X& ^2) 2
— ^ Ij

for the same values of r.

And so far as concerns (iii) in the above set, if we take an axis through

the middle point of the ?"th side, that is, the side which joins the rth and the

/ , ivk , ,u t
(2r-l)7r . (2r-l)7r ^ ^ .

(r + l)tn pomts, then ^ = cos ^^ —
, tj =sm ^

,
g= : hence as a

is equal to tt, we have, for the corresponding substitutions,

(2r-l)irt (2r-l )7rz

Zj' = ie « z^, Z2'

for r = 0, 1, ..., n — 1, and
(2r-l)7rt

^1' = — ie " z.., z.' = — ie

for the same values of r.

If ?i be even, the set of substitutions associated wath (ii) are the same in

pairs, and likewise the set associated with (iii) : if n be odd, the set associated

with (ii) is the same as the set associated wdth (iii). Thus in either case there

are 27i substitutions : and they are all included in the form
iirT tirr

Zi = ie " Z.2, zl = ie ^ z^,

for r=0, 1,..., 2;i-l.



300.] TETRAHEDRAL GROUP 625

Thus the whole group of ^n substitutions, in their homogeneous form, is

tnr V
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(ii) the three lines joming the middle points of the opposite edges of

the tetrahedron.

The latter pass through the centre of the cube and are perpendicular to

pairs of opposite faces. When the sphere circumscribing the cube is drawn,

the three axes in (ii) intersect the sphere in six points which are the angles

of a regular octahedron. Thus, tJiough the axes of rotation for the three

solids are not the same, the tetrahedron, the cube, and the octahedron may-

be considered together: in fact, in the present arrangement whereby the

surface of the sphere is considered, the cube is merely the combination of the

tetrahedron and its polar.

For each of the diagonals of the cube, the necessary angle of rotation

for the tetrahedron is or |7r or ^tt : the first of these gives identity, and

the others give two rotations for each of the four diagonals of the cube, so

that there are eight in all.

For each of the diagonals of the octahedron, the angle of rotation for

the tetrahedron is tt : there are thus three rotations.

With these we associate identity. Hence the number of rotations for the

tetrahedron is (8 + 3 + 1 =) 12 in all.

There are two sets of expressions for the tetrahedron according to the

position of the coordinate axes of the sphere. One set arises when these are

taken along Ox, Oy, Oz, the diagonals of the octahedron ; the other arises,

when a coordinate plane is made to coincide with a plane of symmetry of the

tetrahedron such as B'DBD'.

Let the axes be the diagonals of the octahedron. The results are

obtainable just as before, and so may now merely be stated

:

For OB', ^ = ^ = ^ = -7K ; when a = ftt, the substitution is

,
_z + i

z — i'

and when a = jtt, the substitution is

z + 1
Z =1

z-1

For OA, ^ = — V — ^— ^/o'^
when a. = Itt, the substitution is

.2+1

and when a = |7r, the substitution is

,
_z ~i

z -}- i'
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For OG, -^ = v = ^= T^i when a = |7r, the substitution is

Y O

Z =1 z
,Z+l'

and when a = ftt, the substitution is
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If then Z be the variable of the projection of the undisplaced point and Z'

that of the projection of displaced point with the present axes, and z and z'

be the corresponding variables for the older axes, we have

that is, ^'=7^-*^'' '^^^-
Taking now the twelve substitutions in the form of the last set and substi-

tuting, we have a group of tetrahedral non-liomogeneous suhstitittions in the

form

Z'-^Z +' ^^ Z^/2-{l + i) Z^/2 + (l + i)

- ' -z' -\i-i)z+^2' -'or^z~-^'
. ZV2 + (1 -i) . Z^2-(l-i)

-*(l + ^)^-V2' -\l+i)Z+^2'
when one of the coordinate planes is a jjlane tJi rough one edge of tite

tetrahedron bisecting the opposite edge: each of these gives rise to two

liomogeneous substitutions, making 24 in all.

301. The explanations, connected with these groups of substitutions,

implied that certain aggregates of points remain unchanged by the operations

corresponding to the substitutions. These aggregates are (i) the summits of

the tetrahedron, (ii) the summits of the polar tetrahedron—these two sets

together make up the summits of the cube: and (iii) the middle points of the

edges, being also the middle points of the edges of the polar tetrahedron

—

this set forms the summits of an octahedron.

When these points are stereographically projected, we obtain aggregates

of points which are unchanged by the substitutions. We therefore project

stereographically with the extremity z of the axis Oz for origin of projection :

and then the projections of sc, as', y, y , z, z' are \, -\,i,— i, 00
, 0, which are

the variables of these points.

Instead of taking factors z—\, z + 1, ..., we shall take homogeneous

forms Zj^ — Zi, z^ + z.,, z^ — iz.^, z^ + iz^, z.^, z^; the product of all these factors

equated to zero gives the six points. This product is

t = ZiZ., (2^1^ - z^*).

For the tetrahedron ABGD, the summits A, B,G, D are —- , -7^, -r^
;

V" v'o YO
_J_ _J_ _J_ ]_ JL J: _L J_ ^

V3' V3' V3' V3' \/3' V3' V3' V3' V3 ' ^^^P^^^^^^^^ = ^^^

therefore the variables of the points in the stereographic projection are

of^, ^^- of5, :^S ofC, ~^; ofi), -;-^ .

Vs-i V3 + 1 V3-1 Vs + i
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Forming homogeneous factors as before, the product of the four equated to

zero gives the stereographic projections of the four summits of the tetra-

hedron ABCD. This product is

Similarly for the tetrahedron A'B'C'D' ; the product of the factors

corresponding to the stereographic projections of its four summits is

4> = ^/ + 2V^ z,-zi + z^\

And the product of the eight points fur the cube is tj)"^, that is,

W = z,^+ Uz,%* + z.l

All these forms t, ^, ^ are, by their mode of construction, unchanged

(except as to a constant fjxctor, which is unity in the present case) by the

homogeneous substitutions : and therefore they are invariantive for the group

of 24 linear homogeneous substitutions, derived from the group of 12 non-

homogeneous tetrahedral substitutions. If ^ be taken as a binary quartic,

then <I> is its Hessian and t is its cubicovariant : the invariants are numerical

and not algebraical : and the syzygy which subsists among the system of

concomitants is

^^ -yiri = 12 s/^t^

a relation easily obtained by reference merely to the expressions for the forms

^, "i^, t.

The object of this investigation is to form Z, the simplest rational

function of z which is unaltered by the group of substitutions : for this

purpose, it will evidently be necessary to form proper quotients of the

foregoing homogeneous forms, of zero dimensions in z^ and z... Let R
bo any rational function of z, which is unaltered by the tctrahedi-al

substitutions. These substitutions give a series of values of z, for which

Z has only one value : hence R and Z, being both functions of z and

therefore of one another, are such that to a value of Z there is only one

value of R, so that i^ is a rational function of Z.

In particular, the relation between R and Z may be lineo-linear : thus Z
is determinate except as to linear transformations. This unessential indeter-

minateness can be removed, by assigning three particular conditions to

determine the three constants of the linear transformation.

The number of substitutions in the ^^-group is 12: hence as there will

thus be a group of 12 ^^-points interchanged by the substitutions, the simplest

rational function of Z will be of the 12th degree in z, and therefore the

numerator and the denominator of the fraction for Z, in their homogeneous

forms, are of the 12th degree. The conditions assigned will be

(i) Z must vanish at the summits of the given tetrahedron :

(ii) Z must be infinite at the summits of the polar tetrahedron :

(iii) Z must be unity at the middle points of the sides.
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Then Z, being a fractional function with its numerator and its denominator

each of the 12th degree and composed of the functions O, ^ , t, must, with

the foregoing conditions, be given by

Vp3

by means of the syzygy, we have

Z:Z -1:1=^' -.-12 V^t" : <t>^

which is Klein's result. Removing the homogeneous variables, we have

Z:Z-1: l^(z'-2^/^Sz-+iy : -12\/^z^' (z' -If : (2'+2'^^z^- + 1)';

and then Z is a function of z which is unaltered by the group of 12 tetra-

hedral substitutions of p. 627. And every such function is a rational function

of Z.

This is one form of the result, depending upon the first position of the

axes : for the alternate form it is necessary merely to turn the axes through

an angle of ^tt round the ^-axis, as was done in § 300 to obtain the new

groups. The result is that a function Z, unaltered by the group of 12

substitutions of p. 628, is given by

Z:Z-1 : 1 =(^-2^3^2-1)3: - 12 \^S z'- {z" + 1)- : (^+ 2 V^^^- 1)^.

It still is of importance to mark out the partition of the plane corre-

sponding to the groups, in the same manner as was done in the case of the

infinite groups in the preceding chapter. This partition of the plane is the

stereographic projection of the partition of the sphere, a partition eflfected by

the planes of symmetry of the tetrahedron. Some idea of the division may
be gathered from the accompanying figure, which is merely a projection on

the circumscribing sphere from the centre of the cube. The great circles

Fig. 120.
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meet by threes in the summits of the tetrahedron and its polar, being the

sections by the three planes of symmetry, which pass through every such

summit, and the circles are equally inclined to one another there : they meet

by twos in the middle points of the edges and they are equally inclined to

one another there. They divide the sphere into 24 triangles, each of which

has for angles ^tt, ^tt, ^tt. (See Case II., § 278.)

The corresponding division of the plane is the stercogi'aphic projection of

this divided surface. Taking A as the pole of projection, which is projected

Fig. 121.

to infinity, then A' is the origin : the three great circles through A' become

three straight lines equally inclined to one another ; the other three great

circles become three circles with their centres on the three lines concurrent

in the origin. The accompanying figure shews the projection: the points in

the plane have the same letters as the points on the sphere of which they

are the projections : and the plane is thus divided into 24 parts. There are,

in explicit form, only 12 non-homogeneous substitutions: but each of these

has been proved to imply two homogeneous substitutions, so that we have

the division of the plane corresponding to the 24 substitutions in the group.

The fundamental polygon of reference is a triangle such as CA'x'.

302. It now remains to construct the function for the dihedral group.

The sets of points to be considered are :

—

(i) the angular points of the polygon : in the stereographic projection,

these are

e "
, for s = 0, 1, .... M — 1

;
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(ii) the middle points of the sides : in the stereographie projection,

these are
ni(2g+ l)

e "
, for s = 0, 1, . . ., 71 — 1 ; and

(iii) the poles of the equator which are unaltered by each of the

rotations : in the stereographie projection, these are and ao

.

Forming the homogeneous products, as for the tetrahedron, we have, for (i),

for(ii), F=^i" + ^o'^

and, for (iii), W = z^z^\

these functions being connected by a relation

Because the dihedral group contains 2w non-homogeneous substitutions,

the rational function of z, say Z, must, in its initial fractional form, be of

degree In in both numerator and denominator ; and it must be constructed

from U, V, W.

The function Z becomes fully determinate, if we assign to it the following

conditions

:

(i) Z must vanish at points corresponding to the summits of the

polygon,

(ii) Z must be infinite at points corresponding to the poles of the

equator,

(iii) Z must be unity at points corresponding to the middle points of

the edges

:

and then we find

Z -.Z-l :l={^(z''- 1)}- : {^ (^" + 1)}- : - z'\

which gives the simplest rational function of z that is unaltered by the

substitutions of the dihedral group.

The discussion of the polyhedral functions will not be carried further here : sufficient

illustration has been provided as an introduction to the theory which, in its various

bearings, is expounded in Klein's suggestive treatise already quoted.

Ux. 1. Shew that the anharmonic group of § 298 is substantially the dihedral group

for n= 3 ; and, by changing the axes, complete the identification. (Klein.)

Bx. 2. An octahedron is referred to its diagonals as axes of reference, and a partition

of the surface of the sphere is made with reference to planes of symmetry and the axes of

rotations whereby the figure is made to coincide with itself.

Shew that the number of these rotations is 24, that the sphere is divided into 48

triangles, that the non-homogeneous substitutions which transform into one another the

partitions of the plane obtained from a stereographie projection are

., z*
.i,2+ l -8.2- 1 u^-'i •t2+ *

' 2' 2-1' 2+ 1' 2+ ^' 2-l'

where ^=0, 1, 2, 3 ; and that the corresponding octahedral function is

^ : Z- 1 : 1 = (28+ 142*+ 1 )-^ : (2^2 - 3828 - 332*+ 1 )2 : IO82'' {f - 1
)"». (Klein.

)
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303. We now pass from groups that are finite in number to the

consideration of functions connected with groups that are infinite in

number. The best known illustration is that of the elliptic modular-

functions ; one example is the form of the modulus in an elliptic integral

as a function of the ratio of the periods of the integral. The general

definition of a modular-function* is that it is a uniform function such that

an algebraical equation subsists between y^r f
-^ j

and i/r (w), where a, ^,

y, B are integers subject to the relation aS — /By = 1. The simplest case is

that in which the two functions yjr are equal.

The elliptic quarter-periods K and iK' are defined by the integrals

2K= r[z(l-z)(l-k'z)]-^ch=r {z(l-z)(\ -cz)]-idz,
Jo Jo

2K' = f {^(1 - ^) (1 - k''z)}-^dz =r {z(l-z){l- c'z)]~i dz,
Jo Jo

where c + c' =1. The ordinary theory of elliptic functions gives the equation

dc dc 4!cc'

'

whatever be the value of c. To consider the nature of these quantities as

functions of c, we note that c = 1 is an infinity of K and an ordinary point of

K', and that c = is a similar infinity oi K' and an ordinary point of K: and

these are all the singular points in the finite part of the plane. The value

c = GO must also be considered. All other values of c are ordinary points for

K and K'.

For values of c, such that |c| < 1, we have

so that, in the vicinity of the origin,

_^ (^\ _ _ '^^

dc\K)~ llOcc

= ]- + ^ + positive integral powers of cL

Hence in the vicinity of the origin

K' 1

K log c + P (c),
TT

where P (c) is a uniform series converging for sufficiently small values of \c\:

and therefore, still in the vicinity of the origin,

K' = --\ogc+KP(c).
TT

* This is the definition of a modular-function which is adopted by Hermite, Dedekind, Klein.

Weber and others.
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Now let the niodiilus c describe a contour round the origin and return to

its original value. Then K is unchanged, for the c-origin is not a singularity

of K.

The new value of K' is evidently

-- (27ri + log c) + /rP(c),
TT

that is, iK' changes into 2K + iK'. Hence, when c describes positively a

small contour roimd the or^igin, the quarter-pei'iods K and iK' become K and

2K + iK' respectively.

In the same way from the equation

„, dK „ dK' _ TT

do' dc' ^cc'

'

and from the expansion of K' in powers of c' when |c'| < 1, we infer that

when c describes positively a small contour round its origin, that is, when c

describes positively a small contour round the point c = l, then iK' is unchanged

and K changes to K — 2iK'.

It thus appears that the quantities K and iK', regarded as functions of

the elliptic modulus c, are subject to the linear transformations

U {K) = K ) V(K) =K- 2iK'\

U {iK) = 2K + iK'\ ' V {iK') = iK']
'

without change of the quantity c ; and the application of either substitution

is equivalent to making c describe a closed circuit round one or other of the

critical points in the finite part of the plane, the description being positive if

the direct substitution be applied and negative if the inverse be applied.

When these substitutions are applied any number of times—the index

being the same and composed in the same way for K as for iK'—then,

denoting the composite substitution by P, we have results of the form

PK = 8K + yiK'

PiK' = ^K + aiK

where /3 and 7 are even integers, a and 8 are odd integers of the forms

1 + 4'p, 1 + 4^/, say = 1 (mod. 4), and, because the determinant of U and that

of V are both unity, we have a8 — /3y= 1 by § 282. These equations give

the partially indeterminate form of the values of the quarter-periods for an

assigned value of the modulus c.

iK'
Conversely, we may regard c as a function of tv = -77. , the quotient of

the quarter-periods. The quotient is taken, for various reasons : thus it

enables us to remove common factors, it is the natural form in the passage

to fy-series, and so on. The function is unaltered, when lu is subjected
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to the infinite groujD of substitutions derived from tlie fundamental

substitutions

Uiu = w + 2, Vw

:

1 - 2w

'

Denoting the function c by </> (tu), we have

We have still to take account of the relation of iK'jK to c, when the latter has

infinitely large \-alues. For this purpose, we compare the differential expressions

k{x{l-x){\-k-'x))-Ux, {y{l-y){l-l''y)}-^dy,

which are equal to one another if h^x=y and 1cl—\. As x moves from to 1, ?/ moves

from to F, that is, from to 1/^^ ; integrating between these limits, we have

/t/t = A + iA',

where A and A' are quarter-periods with modulus l= \lk. As y moves from to 1, ;r

moves from to IjB ; integrating between these limits, we have

k{K+iK')= \,

so that kiK'= —lA.'.

In order to obtain the effect on K and iK' of an infinitely large circuit described

positively by c, we make I describe a very small circuit round its origin negatively. By
what has been proved, the effect of the latter is to change A and i\' into A and

iA'-2A respectively. Hence the new value of kiK' is

- iA' + 2A= ^ {ZiK'+ 2K);
and the new value of kK is

A+ 1A' - 2A= - ^ (2iA''

+

K).

Hence if w' denote the new value of w, consequent on the description of the infinitely

large circuit by c, we have
3«>+ 2

w = - = (J 1 V '^w.
2w+ l

No new fundamental substitution is thus obtained ; and therefore U, V are the only

fundamental substitutions of the group for c, regarded as a modular-function.

Again, c' is a rational function of c and is therefore a modular-function :

consequently also cc is a modular-function. Being a rational function of

c, it is subject to the two substitutions U and V, which are characteristically

fundamental for (w). Now cc' is unchanged when we interchange c and c',

that is, when we interchange 7i and K' ; so that, if Ki and iKj' be new
quarter-periods for a modulus cc', we have

K, = K', iK,' = iK,

and therefore w, = .

w
Thus cc as a modular-function must be subject to the substitution

w
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But TUTw = -^^,^^ = -^^^ = ^-^^=Vv.,

so that V is compounded of T and U. Hence the substitutions for cc'

,

regarded as a modular-function, are the infinite group, derived from the

fundamental substitutions

Uw = w + 2, Tiu = .

w
Denoting the modular-function cc' by ^ (w), we have

cc' = x{w) = %(w + 2) = X (
-
^j

To obtain the change in w caused by changing c into cjc, we use the

dififerential expression

{y{l-y){\-Pyrr'^dy.

When the variable is transformed by the equation* {\ — y){\ — k-x) = \ — x,

where k'-l- — — k'-, the expression becomes

k' [x (1 — A') (1 — k-x)] '^ dx.

When y describes the straight line from to 1 continuously, x also

describes the straight line from to 1 continuously. Integrating between

these limits, we have
A = k'K,

where A is a quarter-period. When y describes the straight line from

to l/l continuously, x describes the straight line from to go continuously

or, say, the line from to 1/^- and the line from l/k" to x continuously.

Integrating between these limits, w^e have

A 4- lA' = k' (K + iK') + i^•' f [x (1 ~x){l- ¥x)] -idx

= k'{K + iK') + k'K,

on using the transformation k-xu = 1 and taking account of the path described

by the variable u : and therefore

tA' = k' {K + iK').

Hence the change of modulus from k to ik/k', which changes c to — c/c', gives

the changes of quarter-periods in the form

A = k'K, lA' = k'(K + iK');

and therefore the new value of tu, say Wi , is

Wi = w + 1 = Sw.

It therefore follows that, when c — c/c' is regarded as a modular function

of the quotient w of the quarter-periods K and iK', it must be subject to

the substitutions

8{iu) = iu + l, U(w) = w + 2, V(iu) =
w

l-2w
This is the equation expressing elliptic functions of k'li in terms of elliptic functions of n.



303.] AUTOMORPHIC FUNCTIONS 637

Evidently S- = U, and U may therefore be omitted ; V and S are the

fundamental substitutions of the infinite group of transformations of w,

the argument of the modular-function c^/c'.

As a last example, we consider the function

{c'-c + iy

(0=* - cy '

It is a rational function of cc', and therefore is a modular-function having the

substitutions Tw and Uw. By § 298, it is unaltered when we substitute

c—"- for c. It has just been proved that this change causes a change of w
C — JL

into w + 1, and therefore J, as a modular-function, must be subject to the

substitution

Sw = w + l.

Evidently S-w = w + 2= Uio, so that U is no longer a fundamental substitution

when S is retained. Hence we have the result that J\s unaltered, when w is

subjected to the infinite group of substitutions derived from the fundamental

substitutions

Sw = w + \, Tw = ,

to

so that we may write

c^{c — ly \ wj

This is the group of substitutions considered in § 284 : they arc of the

form ^, where a, (3, j, S are real integers subject to the single relation

aS-/3y = l.

These illustrations, in connection with which the example in § 298 should be con-

sulted, suffice to put in evidence the existence of niodvilar-functions, that is, functions

periodic for infinite groups of linear substitutions, the coefficients of which are real

integers. The theory has been the subject of many investigations, both in connection

with the modular equations in the transformation of elliptic functions and also as a

definite set of functions. The investigations are due among others to Hermite, Fuchs,

Dedekind, Hurwitz and esi)ecially to Klein*; and reference must be made to their

memoirs, or to Klein-Fricke's treatise on elliptic modular-functions, or to Weber's

Elliptische Functionen, for an exposition of the theory.

304. The method just adopted for infinite groups is very special, being

suited only to particular classes of functions : in passing now to linear

substitutions, no longer limited by the condition that their coefficients are

real integers, we shall adopt more general considerations. The chief

purpose of the investigation will be to obtain expressions of functions

characterised by the property of reproduction when their argument is

subjected to any one of the infinite group of substitutions.

* Some rcfeieucus are given in Euueper's Elliptische Functiunen, ('i'^' Aufl.), p. 482.
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The infinite gi-oiip is supposed of the nature of that in § 290 : the

members of it, being of the form

(XiZ + /^A

are such that a circle, called the fundamental circle, is unaltered by any of the

substitutions. This cii'cle is supposed to have its centre at the origin and

unity for its radius.

The interior of the circle is divided into an infinite number of curvilinear

polygons, congruent by the substitutions of the group : each polygon contains

one, and only one, of the points in the interior associated by the substitutions

with a given point not on the boundary of the polygon. Hence corresponding

to any point within the circle, there is one and only one point within the

fundamental polygon, as there is only one such point in each of the polygons

:

of these homologous points the one, which lies in the fundamental polygon

of reference, will be called the irreducible point. It is convenient to speak of

the zero of a function, implying thereby the irreducible zero : and similarly

for the singularities.

The part of the plane, exterior to the fundamental circle, is similarly

divided : and the division can be obtained from that of the internal area by

inversion with regard to the circumference and the centre of the fundamental

circle. Hence there will be two polygons of reference, one in the part of the

plane within the cii'cle and the other in the part without the circle : and

all terms used for the one can evidently be used for the other. Thus the

irreducible homologue of a point without the circle is in the outer, polygon

of reference : for a substitution transforms a point within an internal polygon

to a point within another internal polygon, and a point within an external

polygon to a point within another external polygon.

Take a point z in the interior of the circle, and round it describe a small

contour (say for convenience a circle) so as not to cross the boundary of the

polygon within which z lies : and let zi be the point given by the substitution

fi{z). Then corresponding to this contour there is, in each of the internal

polygons a contour which does not cross the boundary of its polygon : and as

the first contour (say C^) does not occupy the whole of its polygon and as the

congruent contours do not intersect, the sum of the areas of all the contours

Ci is less than the sum of the areas of all the polygons, that is, the sum is

less than the area of the circle and so it is finite.

If yu-i be the linear magnification at Zi , we have

^ dzi

\yiZ + Bi\~ dz

and therefore, if nii be the least value of the magnification for points lying

within Co, we have

1
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The point is the homologuc o( z = co by the substitution

[2, — k] , and therefore — Si/ji lies without

the circle : though, in the limit of % infinite, it

may approach indefinitely near to the circum-

ference *.

Let this point be G: and through G and

0, the centre of the fundamental circle, draw

straight lines passing through the centre of

the circular contour. Then evidently

^it = l7t| GP^'

and, if Mi be the greatest magnification, then

1

Fig. 122.

so that
TTli GQ-

'

GQ'

Now G is certainly not inside the circle, so that GQ is not less than RA :

thus

GP^PQ_ AB AB RB
GQ '^ GQ~ '^ GQ^ ^ RA^ EA'

which is independent of the point G, that is, of the particular substitution

-n-j) by K, we have
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It has been seen that S Gi is less than the area of the fundamental circle and
i =

is therefore finite : hence the quantity

00

i=0
00

is finite. It therefore follows that 2 fif is an absolutely converging series.
2 =

CO

Similarly, it follows that S ytij'" is an absolutely converging series for all

i =

values of m that are greater than unity*. This series is evidently

i =

and the absolute convergence is established on the assumption that z lies

-within the fundamental circle.

Next, let z lie without the fundamental circle. If z coincide with some

one of the points — Si/ji , then the corresponding term of

the series

i Ijiz + Bii-'""

is infinite.

If it do not coincide with any one of the points

— Si/yi, let c be its distance from the nearest of them, so

that

|7i^ + 8ii--'"<|7i|--"'c--'«'.

Let z' be any point within the fundamental circle : then

\ryiz' + Sj-j--"^ = (Gz')--'" i7i|--"\

I
?>

Now Gz' < 1 + OG < 1 + — , for any point within the circle, so that
I

7t
I

Fig. 123.

Hence I7i'iZ + ^il

\yiz' + Bi\-'^

Only a limited number of the points — Bi/yi can be at infinity. Each of

the corresponding substitutions gives the point at infinity as the homologue

of — Bi/yi ; and therefore, inverting with regard to the fundamental circle, we

have a number of homologues of the origin coinciding with the origin, equal

to the number of the points — 8i/y; at infinity. The origin is not a singularity

of the group, so that the number of homologues of the origin, coincident with

it, must be limited.

* A completely general inference as to tlie convergence of the series, when m = l, cannot be

made : the convergence depends upon the form of the division of the plane into polygons, and

Burnside (I.e., p. 620) has proved that there is certainly one case in which S /Mi is an absolutely
i=

converging series.
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Omitting the corresponding terms from the series, an omission which does

not affect its convergence, we can assign a superior limit to — : let it be

C-1. Then

Thus
? = \.C/

2 =

l^iz' + Bil-'"^ \cj

?=0 \C/ 2=0

which is a finite quantity by the preceding investigation, for / is a point

within the circle.

Lastly, let z lie on the fundamental circle. If it coincide with one of the

essential singularities of the group, then there is an infinite number of points

— Si/ji which coincide with it : and so there will be an infinite number of

terms in the series infinite in value. If it do not coincide with any of the

essential singularities of the group, then there is a finite (it may be small,

but it is not infinitesimal) limit to its distance from the nearest of the points

— SJyi : the preceding analysis is applicable, and the series converges.

Hence, summing up our results, we have :

—

00

The series S \yiZ + Bi\~-'"'

i=

is mi absolutely converging series for any point in the plane, which is not

coincident with any one of the points — Bj/yi {which all lie ivithout the funda-

mental circle) or with any one of the essential singularities of the assigned

group {which all lie on the circumference of the fundamental circle)*.

305. Let H {z) denote a rational function of z, having a number of

accidental singularities «],..., a^, no one of which lies on the fundamental

circle ; and let it have no other singularities. Consider the series

'aiz + I3i^

the group being the same as above. If z do not coincide with any of the

points ttj, ..., Up, or with any of the points homologous with ai, ..., a^ by the

substitutions of the group, there is a maximum value, say M, for the modulus

of// with any of the arguments -^
^\ Then

1©(^)|<J/ £ hi^ + Bt"^,
i=0

* The coefficients a, /3, y, 3 of the substitutions of the group depend upon the coefficients of

the fundamental substitutions, wliich may be regarded as parameters, arbitrary witliin limits.

The series is proved by Poincar6 to be a continuous function of these parameters, as well

as of the variable z : this proposition, however, belongs to the development of the theory and can

be omitted here as we do not propose to establish the general existence of all tiie functions.

F. 41
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and the right-hand side is finite, if in addition z do not coincide with any of

the points —^i'ji or with any of the essential singularities of the group.

Hence (z) is an absolutely converging series for any value of z in the plane

which does not coincide with (i) an accidental singularity of H (z), or one of

the points homologous with these singularities by the substitutions of the

group, or with (ii) any of the points —S;;yi, which are the various points

homologous "\^dth z—x by the substitutions of the group, or with (iii) any of

the essential singularities of the gi'oup, which are points lying on the funda-

mental circle.

All these points are singularities of @ (z).

If z coincide -wdth/^ (a) and if fi {fk (z)] = z, then the term H f-* ^'

j

is infinite, the point being an accidental singularity of H.
[

— ^ \ . The

rest of the series is then of the same nature as {£) in the more general

case, and therefore converges. Hence the point is an accidental singularity

of the function {£) of the same order as for H, that is, the series of points,

given by the accidental singularities of Ii{z) and by the points homologous

with them through the substitutions of the group, are accidental singularities

of the function {£).

In the same way it is easy to see that the points — 8,77; are either

ordinary points or accidental singularities of (2) ; and that the essential

singularities of the group are essential singularities of {£). Hence we
have the result :

—

The series (^) = I (yiZ + S,)-^H (
^^ "^ ^A ,

j = V/iZ + Oil

ivhere the summation extends over the infinite number of members of an assigned

discontinuous group, is a function of z, provided the integer m be >1 and H{z)

he a rational function of z. The singularities of Q are:—
(i), the accidental singularities of H{z) and the points homologous luith

them by the substitutions of the group : all these points are acci-

dental singularities of © {z)

;

(ii), the points —Bi/yi, which are the points homologous luith z = cc by

the substitutions of the group : all these points, if not ordinary

points of%{z), are accidental singularities ; and

(iii), the essential singularities of the group : these lie on the fundamental

circle and they are essential singularities of S (z).

If H (z) had any essential singularity, then that point and all points homo-

logous with it by substitutions of the group would be essential singularities

of 0(^). The function &(z), thus defined, is called* Thetafuchsian by

Poincare.
* Acta Math., t. i, p. 210.
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If the group belong to the first, the second or the sixth family,

it is known that the circumference of the fundamental circle enters into

the division of the interior of the circle (and also of the space exterior to

the circle) only in so far as it contains the essential singularities of the

group. But if the group belong to any one of the other four families,

then parts of the circumference enter into the division of both spaces.

In the former case, when the group belongs to the set of families,

made up of the first, the second, and the sixth, the circumference of the

fundamental circle is a line over which the series cannot be continued : it

is a natural limit (§81) both for a function existing in the interior of the

circle and for a function existing in the exterior of the circle : but neither

function exists for points on the circumference of the fundamental circle.

The series represents one function within the circle and another function

without the circle.

It has been proved that the area outside the fundamental circle can

be derived from the area inside that circle, by inversion with regard to

its circumference. Hence a function of z, existing only outside the funda-

mental circle, can be transformed into a function of , and therefore also

of - , existing for points only within the circle. When, therefore, a group
z

belongs to the first, the second or tJie sixth family, it is sufficient to consider

only the function defined by the series for points witJiin the fundamental

circle: it will be called the function 0(^).

In the latter case, when the group belongs to the third, the fourth, the

fifth or the seventh families, then parts of the circumference enter into the

division of the plane both without and within the circle. Over these parts

the function can be continued : and then the series represents one (and only

one) function in the two parts of the plane: it will be called the function ®{z).

306. The importance of the function {z) lies in its pseudo-automorphic

character for the substitutions of the group, as defined by the property now

to be proved that, if ^ be any one of the substitutions of the group, then

Let -Ii±i = "^"'-f„
7i—r 5^ + ^i

<yz -\- b

which is, of course, another substitution of the infinite group : then

j! -r; + Oi = -^ .

yz + JZ +

41—2
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Hence B(^) = I (^^T'"' ^("^')

=(yz + 8r"'e{z),

thus establishing the pseudo-automorphic character.

This function can evidently be made subsidiary to the construction of

functions, which are automorphic for the group of substitutions, in the same

manner as the tr-function in Weierstrass's theory of elliptic functions and

the so-called Theta-functions in the theory of Jacobian and of Abelian

transcendents. But before we consider these automorphic functions, it is

important to consider the zeros and the accidental singularities of a pseudo-

automorphic function such as (z).

On the supposition that the function H, which enters as the additive

element into the composition of ©, has only accidental singularities, it has

been proved that all the essential singularities of © lie on the circumference

of the fundamental circle ; and that the accidental singularities of © are,

(i) the points homologous with the accidental singularities of H, and

(ii) the points - Si/yi, which all lie without the circle.

When the function H (z) has one or more accidental singularities ^\^thin

the fundamental circle, then there is an irreducible point for each of them,

which is an irreducible accidental singularity of © (z). Hence in the case of

a function which exists only within the circle, the number of irreducible

accidental singidarities is the same as the number of (non-homologous) accidental

singularities of H (z) lying icithin the fundamental circle. If, then, all the

infinities of the additive element H {z) lie without the fundamental circle, and

if the function © {z) exist only within the circle, then © (z) has no irreducible

accidental singularities : but, in particular cases, it may happen that © {z) is

then evanescent.

When the function H {z) has one or more accidental singularities without

the fundamental circle, then there is an irreducible point for each of them,

this point lying in the fundamental polygon of reference in the space outside

the circle : and this point is an irreducible accidental singularity of © {z),

when © {z) exists both -svithin and without the circle. Further, the point

— hijyi is an infinity of order 2w : there is a homologous iiTcducible point

Avithin the polygon of reference without the circle, being, in fact, the

irreducible point which is homologous with z= ^ . Hence taking the two

fundamental polygons of reference—one within, for the internal division, and

one without, for the external division,—it follows that in the case of a function,

lohich exists all over the -plane, the number (f irreducible accidental singularities
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is equal to the whole number of accidental singularities of the additive element

H{z), increased by 2m.

307. To obtain the number of irreducible zeros we use the result of

§ 43, Cor. IV., combined with the result just obtained as to the number of

irreducible accidental singularities. A convention, similar to that adopted

in the case of the doubly-periodic functions (§ 115), is now necessary: for if

there be a zero on one side of the fundamental polygon, then the homologous

point on the conjugate side of the polygon is also a zero and of the same

degree : in that case, either we take both points as irreducible zeros and of

half the degree, or we take one of them as the irreducible zero and retain

its proper degree. Similarly, if a comer be a zero, every corner of the cycle

is a zero : so that, if the cycle contain A, points and the sum of its angles be

27J-— , then the corner is common to X/x polygons ; we may regard each of the

corners of the fundamental polygon in that cycle as an irreducible zero, of

degree equal to its proper degree divided by \/j,, or we may take only one of

them and count its degree as the proper degree divided by /x—the just

distribution of zeros common to contiguous polygons being all that is

necessary for the convention—so that the number of zeros to be associated

with the area of each polygon is the same, while no zero is counted in more

than its proper degree. A similar convention applies to the singularities.

With this convention, the excess of the number of ii-reducible zeros

over the number of irreducible accidental singularities, each in its proper

degree, is the value of

27ri] (f^(zr^'

taken positively round the fundamental polygon within the circle when the

function (8t(z) exists only within the circle, and round the two fundamental

polygons, within and without the circle respectively, when the function &{z)

exists over the whole plane.

But should an infinity of -r^)—! lie on the curve along which integration

extends, (it will arise through either a zero or a pole of B), then, in order

to avoid the difficulty in the integration and preserve the above convention,

methods must be adopted depending upon the family of the group.

When all the cycles belong to the first sub-category (§ 292), we can

proceed as follows : the general result can be proved to hold in every case.

If an infinity occur on a side, another will occur on the conjugate side, the

two being homologous by a fundamental substitution. A small semicircle is

drawn with the point for centre and lying without the polygon, so that, when

the element of the side is replaced by the semi-circumference, the point

lies within the polygon : the homologous point on the conjugate side is

excluded from the polygon when the element there is replaced by the
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homologous semi-circumference. The subject of integration is then finite

along the modified sides.

A similar process is adopted when a corner is an infinity of „ . A

small circular arc is drawn so as to have the point included in the polygon

when the arc replaces the elements of the .sides at the point : the homologous

circular arcs at all the points in the cycle of the corner will exclude all those

points, also poles, when they replace the elements of the sides at the point.

The subject of integration is then finite everywhere along the modified path

of integration.

First, let the function exist only within the circle. Let AB he any side

of the polygon, A'B' the conjugate side

;

and let

^ jz + B

be the corresponding fundamental substi-

tution which transforms AB into A'B',

so that ^ may be regarded as the variable

alongf A'B'.

Fig. 124.

Then we have

and therefore

0(f) = (7-- + S)»'0(^),

dz.0(0"* yz + 8 ' e(z)

But as z moves from A to B, ^ moves from A' to B' (§ 287) : and the latter

is the negative direction of description. Hence, with the given notation, the

sum of the parts of the integi^al, which arise through the two sides AB
and B'A'. is

— 771
•^—T- dz, taken along AB

;

2 + -
7

so that, if E denote the required excess, we have

dz

B'TTl
Z +

the new integral being taken along those sides of the polygon which are

transformed into their conjugates b}- the fundamental substitutions of the

group.

Consider the term which arises through the integration along AB : it is

evidently

TTl
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Now we have
Jz^J^yi^^-'

so that, if M be the magnification in transforming from A to A', and if ^„ be

the angle through which a small arc is turned, we have at A

Evidently </>„ is the excess of the inclination of A'P', that is, of A'C to the

line of real quantities over the inclination of AP, that is, of J.C^ to that line :

and therefore at A
log (yz + 8) = - 1- log M - ^i4>a.

Since the whole integral must prove to be a real quantity, we omit the

parts — -— . log M as in the aggregate constituting an evanescent (imaginary)

quantity : hence we have
m
2^ (- 9a + 9i>)

as the part corresponding to the side AB. In this expression, </>„ is the angle

required to turn AG into a direction parallel to A'C, and ^^ i« the angle

required to turn QB, that is, GB into a direction parallel to Q'B', that is,

G'B', both rotations being taken positively. Thus

<^a = iiAcl- ^'G' — incl. AG,

cl>o = 27r- incl. BG + incl. B'G'
;

and therefore

cf>a
-

(f>b
= - ^'rr + incl. A'G' - incl. B'G' + incl. BG - incl. AG
= -27r + c/ + Ci,

where Ci and c/ are the angles AGB, A'G'B' respectivel}'. Hence, if we take

c and c' to be the external angles AGB, A'G'B' as in the figure, we have

c + Ci = 27r = c' + c/,

and therefore
(f)t,

—
(f)a

= c + c' — 27r.

The part corresponding to the arc AB in the above integral is therefore

g- (c + c - 27r).

There are no sides of the second kind in the path of integration, because the

function is supposed to exist only within the circle. Therefore the whole

excess is given by

E='!y:i(c + c-27r),

the summation extending over those sides of the polygon, being in number
half of the sides of the first kind, which are transformed into their conjugates

by the fundamental substitutions of the group.
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Draw all the pairs of tangents at the extremities of the bounding arcs

of the fundamental polygon of reference :

then the angles, such as c and c' above,

are internal angles of the rectilinear

polygon formed by the straight lines.

The remaining internal angles of this

new polygon are the angles at which

the arcs cut, which are the angles of

the curvilinear polygon : and therefore

their sum is the sum of the angles in

the cycles, that is, the sum is equal to

where — is the sum of the angles in ^^8- '^^•

one of the cycles. Now let 2?i be the number of sides of the first kind in

the curvilinear polygon, so that n is the number of fundamental substitutions

in the group : hence the number of terms in the above summation for E is

n, and therefore

E=- mn + —- S (c + c').

Moreover the rectilinear polygon has 4?i sides : and therefore the sum of the

27r
internal angles is (4/1 — 2) tt. But this sum is equal to 2 (c + c') + 2 ,

Mi

where the first summation extends to the different conjugate pairs and

the second to the different cycles : thus

(4/1 - 2) TT = 2 (c + c') + 27r2 —

.

Therefore E = — mn + m (2n — 1) — mS —

Hi/

where the summation extends over all the different cycles in the fundamental

polygon. Hence foi- a function, wliich is constructed from the additive

element H(z) and exists only within the fundamental circle of the group, the

excess of the number of its irreducible zeros over the number of its irreducible

accidental singularities is

min — \ —% —
]

,

where vi is the parameti-ic integer of the function constructed in series . 2n is

the number of sides of the first kind in the fundamental polygon, — is the sum
A*i
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of the angles in a cycle of the first kind of corners and the summation extends

to all these cycles.

The number of irreducible accidental singularities has already been

obtained ; it is finite, and thus the number of irreducible zeros is finite.

Secondly, let the function exist all over the plane : then the irreducible

points are (i) points lying within (or on) the boundary of the fundamental

polygon of reference within the fundamental circle and (ii) points lying

within (or on) the boundary of the fundamental polygon of reference without

the fundamental circle, the outer polygon being the inverse of the inner poly-

gon with regard to the centre. For such a function the excess of the number
of irreducible zeros over the number of irreducible accidental singularities is

the integral

1 [@'{z)
dz

27riJ e(z) '

taken positively round the boundaries of both polygons. We shall assume

that there are no zeros and no infinities on the path of integration ; the

result can, however, be shewn to be valid in the contrary case.

For the sides of the internal polygon that are of the first kind the value

of the integral is, as before, equal to

min — 1 — S

and for the sides of the external polygon that are of the first kind, the value

is also

Let the value of the integral along the sides of the second kind in

the internal polygon be /. Those lines are also sides of the second kind

in the external polygon ; but they are described in the sense opposite to

that for the internal polygon, the integral being always taken positively:

hence the value of the integral along the sides of the second kind in the

external polygon is — /.

Hence the excess of the number of irredticihle zeros over the number of

irreducible accidental singularities of a function © {z), luhich is constructed

from the additive element H{z) and eaUsts all over the plane, is

2m (n- I -:£-

ivhere the summation extends over all the cycles of tJie first category of either

{but not both) of the fundatnental polygons of reference.

As before, the number of irreducible zeros of such a function is finite,

because the number of irreducible accidental singularities is finite.
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In every case, this excess depends only upon

(i) the parametric integer m, used in the construction of the series

:

(ii) the number of sides, In, of the first kind in the polygon of

reference

:

(iii) the sum of the angles in the cycles of the first category.

Ex. Prove that a corner belonging to a cycle of the first category is in general a zero

of order p, such that

p= -7)1 (mod. /i),

where 27r//i is the sum of the angles in the cycle : and discuss the nature of the corners

which belong to cycles of the remaining categories. (Poincar^.)

308. We are now in a position to construct automorphic functions, using

as subsidiary elements the pseudo-automorphic functions which have just

been considered.

For, if we take a couple of these functions, ©i and H.,, associated with a

given infinite group, characterised by the same integer m, and arising through

different additive elements H (z), then we have

where " _ is any one of the substitutions of the ffroup : and therefore
yz+ 8

"^ & r

.

\yz + 8j ®i(z)

f^Jciz + 0\ ®,{z)

Kyz + 8 >

that is, the quotient of two such functions is automorphic. Denoting the

quotient by Pn(z)*, we have

p faz + /3\ p^^
I .^ , g J

^Pn{z),
\yz + 8,

the automorphic property being possessed for each of the substitutions.

It thus appears that such functions exist : their essential property is

that of being reproduced when the independent variable is subjected to any

of the linear substitutions of the infinite group.

The foregoing is of course the simplest case, adduced at once to indicate

the existence of the functions. The construction can evidently be general-

ised : for, if we have any number of functions ©i, ..., 0^, Oi, ..., ^g with

characteristic integers m^^, ..., vi,., n^, ..., n, and all associated with one group

* Poincar^ calls such functions Fitchf'ian functions : as already indicated (§ 297), I have

preferred to associate the general name automorphic with them. But, because Poincare himself

has constructed one class of such functions by means of series as in the foregoing manner, his

name, if any, should be associated with this class : the symbol Pn {z) is therefore used.
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while constructed from different additive elementary functions H (z), then,

denoting

^i{^) ^s(2)

by Fn (z), we evidently have

SO that, provided only S n^ = S m^,
q=l q=\

the function is automorphic. If we agree to call m, the integer characteristic

of a pseudo-automorphic function, the degree of that function, then the quotient

of two products of pseudo-automorphic functions is automorphic, provided the

products he of the same degree.

There are evidently two classes of automorphic functions : those which

exist all over the plane, and those which exist only within the fundamental

circle. The classes are discriminated according to the composition of the

functions from the subsidiary pseudo-automorphic functions.

When the pseudo-automorphic functions, which enter into the composi-

tion of the function, exist all over the plane, then the automorphic function

exists all over the plane. But when the pseudo-automorphic functions, which

enter into the composition of the function, exist only within the fundamental

circle, then the automorphic function exists only within the circle.

309. It is evident that all the essential singularities of an automorphic

function, thus constructed, lie on the fundamental circle. For whether the

pseudo-automorphic functions exist only within that circle or over the whole

plane, all their essential singularities lie on the circumference : so that,

whatever be the constitution of the various subsidiary pseudo-automorphic

functions, all the essential singularities of the automorphic function lie on

the fundamental circle.

Next, the number of irreducible zeros of an automorphic function is equal

to the number of its irreducible accidental singularities. For an irreducible

zero of an automorphic function is either (i) an irreducible zero of a factor

in the numerator or (ii) an irreducible accidental singularity of a factor in

the denominator ; and similarly with the irreducible accidental singularities

of the function. The numerator and the denominator may have common
zeros ; this will not affect the result.

First, let the automorphic function exist only within the circle : then

each of its factors exists only within the circle. The space without the circle
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is not significant for any of the factors of the function, because they do not

there exist. Let tj, ..., e^., ej', ..., e/ be the excesses of zeros over accidental

singularities for the pseudo-automorphic functions within the fundamental

circle : then

eg = mqln -1 -S

where n and S — are the same for all these functions, and

€q' = n,. (n — l—X —
V ^,

Now the excess of zeros over poles in the denominator becomes, after the

above explanation, an excess of poles over zeros for the automorphic

function : hence, for this automorphic function, the excess of zeros over

accidental singularities is

r s

^ 1 €q- % €q
5=1 7=1

n-l \
'^

f^i / ^-7 = 1 7 = 1

0,

by the condition S viq — S iiq. Hence the number of irreducible zeros of
7=1 7=1

the automorphic function is equal to the number of irreducible accidental

singularities.

Secondly, let the automorphic function exist all over the plane ; then

all its factors exist all over the plane. For the present purpose, the sole

analytical difference from the preceding case is that each of the quantities e

now has double its former value : and therefore the excess of the number of

zeros over the number of poles is

2
f

,; _ 1 - V IV f ^,^ _ I ,,^^

V f^i/ \q = l 7 = 1

which, as before, vanishes. Hence the number of irreducible zeros of the

automorphic function is equal to the number of its irreducible accidental

singularities.

It follows, as an immediate Corollary, that the number of irreducible

points for which an automorphic function assumes a given value is equal to

the member of its irreducible accidental singularities. For

Pn(z)-A,

where J. is a constant, is an automorphic function : the number of its

irreducible accidental singularities is etiual to the number of its irreducible

zeros, that is, it is equal to the number of irreducible points for which

Pn{z) assumes an assigned value.
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Moreover, each of these numhers is finite: for the nuinber of irreducible

zeros and the number of irreducible accidental singularities of each of the

component pseudo-automorphic factors is finite, and there is only a finite

number of these factors in the automorphic function. The integer, which

represents each number, will evidently be as characteristic of these functions

as the corresponding integer was of functions with linear additive periodicity.

Note. The preceding method, due to Poincart^, of expressing the pseudo-

automorphic functions as converging infinite series of functions of the

variable, is not the only method of obtaining such functions. It was

shewn that uniform analytical functions can be represented either as

converging scries of powers or as converging series of functions or as

converging products of primary factors, not to mention the (less useful)

forms intermediate between series and products. The representation of

automorphic functions as infinite products of primary factors is considered

in the memoirs of Von Mangoldt and Stahl, already referred to iu § 297.

310. Let Fnj{z), Piu{z), say Pj and F^, be two automorphic functions

with the same group, constructed with the most general additive elements :

and let the number of irreducible zeros of the former be k^, and of the

latter be k^-

Then for an assigned value of P^ there are /Cj irreducible points : P., has a

single value for each of these points, and therefore it has «:, values altogether

for all the points, that is, it has Ki values for each value of Pj. Similarly, P,

has /Cg values for each value of Po. Hence there is an algebraical relation

between Pj and P^ of degree k., in P^ and of degree k^ in P.^, which may be

expressed in the form

Let Pn{z), say P, be any other uniform automorphic function, having the

same group as Pj and Pg : and let k be the number of its irreducible zeros.

Then we have an algebraical equation

F,{P,P,) = 0,

which is of degree /Cj in P and of degree k in P^ ; and another equation

P,(P, P,) = 0,

which is of degree k^ in P and of degree k in P.. The last two equations

coexist, in virtue of the relation

F,,{F„P,)^0

satisfied by Pj and P^. Since Pj = = F. coexist, the ordinary theory of

elimination leads to the result that the uniform function P can be expressed

rationally in terms of P, and P.,, so that we have the theorem that every

automorphic function associated with a given group can be expressed rationally

in terms of two general automorphic functions associated with that group : and

between these two functions there exists an irreducible algebraical relation.
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The class (§ 178) of this algebraical relation can be obtained as follows.

Let N denote the class of the group, determined as in § 293 : then the funda-

mental polygon of reference, if functions exist only within the circle, or the

two fundamental polygons of reference, if functions exist over the whole

plane, can be transformed into a surface of multiple connectivity 2iV^ + 1. The

automorphic functions are functions of uniform position on this surface ; and

hence, as in Riemann's theory of functions, the algebraical relation between

two general uniform functions of position, that is, between tivo general auto-

morphic functions is of class N, where N is tlie class of the group*.

It is now evident that the existence-theorem and the whole of Riemann's

theory of functions can be applied to the present class of functions, whether

actually automorphic or only pseudo-automorphic. There will be functions

of the same kinds as on a Riemann's surface : the periods will be linear

numerical multiples of constant quantities acquired by a function when its

argument moves from any position to a homologous position or returns to its

initial position. There will be functions everywhere finite on the surface,

that is, finite for all values of the variable 2 except those which coincide with

the essential singularities of the group. The number of such functions,

linearly independent of one another, is N ; and every such function, finite for

all values of z except at the essential singularities, can be expressed as a

linear function of these N functions with constant coefficients and (possibly)

an additive constant. And so on, for other classes of functions ['.

311. Because Pn{z) is an automorphic function, we have

and therefore, as ah — ^y = 1,

Hence, if ® (z) be a pseudo-automorphic function with m for its character-

istic integer, so that

© faz + /3\

yz+ 8 J ®(z)

p^^f^l+A\r' [Pn'iz)}-^'
we have

* It may happen that, just as iu the general theory of algebraical functions, the class of the

equation between two particular automorphic functions may be less than N : thus one might

be expressed rationally in terms of the other. The theorems are true for functions constructed

in the most general manner possible.

t The memoirs by Burnside, quoted in § 297, develop this theory in full detail for the group

which has its (combined) polygons of reference bounded by 2/j circles with their centres on the

axis of real quantities, the group being such that the pseudo-automorphic functions exist over the

whole plane.
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that is, S(z)\Pn' (z)]~^^ is an automorphic function. Such a function can be

expressed rationally in terms of Pn (z) and some other function, say of P and

Q : hence the general type of a pseudo-automorphic function with a charac-

teristic integer m is

(f)"/<-.«).

where / is a rational function.

Corollary. Two autoinorpkic functions P and Q, belonging to the same

group, are connected by the equation

For evidently unity is the characteristic integer of the first derivative of an

automorphic function.

This equation can be changed to

fp=f{P,Q),

where y is a I'ational function : moreover P and Q are connected by an

equation

F{P,Q) = 0,

which is an algebraical rational equation, and can evidently be regarded as

an integral of the above differential equation of the first order, all trace of

the variable z having disappeared. Evidently the form of /is given by

dF dF

Again, denoting — ^ by ^, and Pn ( - j by 11 (^), we have
az + ^ faz-\- ^'—

,. by c, and Pn
yz+ b "^ \yz

U'{0 = {j^ + SyPn{z),

U' = (yz + 8yP'.

Then
n
n, = (ryz + By-

27 P'

_yz + 8
"^

P'

so that

n' n'

n' in'

and therefore

whence

^- TT- =(7^ + ^)=

= 2y{yz+S)+(yz + By-j^,

2r + 27 (yz + S) p, + {yz + By
I jy -

p
W"

n^T=(7^"+s)
P'V

P' ^ 1 P'

where [P, z] is the Schwarzian derivative. It thus appears that, if P be an
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automorphic function, then [P, z] P'~- is a function antomorphic for the same

group.

But between two automorphic functions of the same group, there subsists

an algebraical equation : hence there is an algebraical equation between P
and [P, z] P'~-, that is, P (z), an automorpJnc function of z, satisfies a

differential equation of tJie third order, the degree of which is the integer

representing the number of irreducible zeros of P and the coefficients of ivliich,

where they are not derivatives of P, are functions of P only and not of the

independent variable.

This equation can be differently regarded. Take

y.^P'K y. = zP^,

then it is easy to prove that

\dry,_\dry,_^\P,z\
y,dP-' y,dP' 2 p'2 •

The last fraction has just been proved to be an automorphic function of z:

and therefore it is rationally expressible in terms of P and any other general

function, say Q, automorphic for the group. Then y^ and ^o are independent

integrals of the equation

where Q and P are connected by the algebraical equation

FiP,Q) = 0.

Conversely, the quotient of two independent integrals of the equation

where Q and P are connected by the algebraical equation

F{P,Q) = 0,

can be taken as an argument of which P and Q are automorphic functions

:

the class of the equation jP= is the class of the infinite group of substitutions

for which P and Q are automorphic*.

Ex. One of the simplest set of examples of automorphic fmictions is fmniished by

the class of homoperiodic functions (§ 116). Another set of such examples arises in the

triangidar functions, discussed in § 275 ; they are automorphic for an infinite gi'oup, and

the triangles have a circle for their natural limit. A third set is furnished by the polyhedral

functions (§§ 276—279).

As a last set of examples, we may consider the modiUar-functions which were

obtained by a special method in § 303.

* Klein remarks (Math. Ann., t. xix, p. 1-13, note 4) that the idea of uniform automorphic

functions occurs in a posthumous fragment by Eiemann {Ges. Werke, number xxv, pp. 413—416).

It may also be pointed out that the association of such functions with the linear differential

equation of the second order is indicated by Eiemann.
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First, we consider them in illustration of the algebraical relations between functions

automorphic for the same group. It follows, from the construction of the group and the

relation of c to w, that, in the division of the plane by the group with Uw and Vrc for its

fundamental substitutions, where

rr ;^ Tr W
lw= W+% Vw= - ^r-,

1 - 2w

there is only a single point in each of the regions for which c has an assigned value ; hence,

regarding c as an automorphic function of ic, the number k (§ 310) is unity. If there be

any other function C of w, automorphic for this group, then between C and c there is an

algebraical relation of degree in C equal to the number k for c, that is, of the first degree

in G. Hence every function automorpldc for the group, whose fundamental substitutions

are U and V, u-here

w
Uw=w+ 2, Vze= ^

—-—,
1 -2w

is a rational algebraical function of c.

In the same way, it can be inferred that ever}/ function automorphic for the group,

whose fundamental substitutions are

w'

is a rational, algebraical, function of cd ; and 'Ci\-dX everyfunction automorphic for the group,

whose fundamental substit^itions are

Sw= w-\-\, Tw=--,
w

that is, aiitomorphic for all sid)stitutions of the form , ivhere a, b, c, d are real

(c^ — c-\-l)^
integers, such that ad-bc= \, is a rational algebraical function of J=^-^, r^- .

c''{c-\y

Secondly, in illustration of the general theorem relating to the differential equation

of the third order which is characteristic of an automorphic function, we consider the

iK'
quantity c as a function of the quotient of the quarter-periods. Let z denote -^^ : then

A
because every function automorphic for the same group of substitutions as c is a rational

function of c, we have

—Vr = rational function of c :

and therefore, by a property of the Schwarzian derivative,

{z, c} = - same rational function of c.

By known formula; of elliptic functions, it is easy to shew that

^ ' ^ 2c2(l-c)2'
thus verifying the general result.

Similarly, it follows that \ jy , 6\, where 6= cc', is a rational function of cc', the actual

value being given by
{iK^ 1 1-5^+ 16^2

K ' ]~ 2^2 (i_ 4(9)2
;

and that \ -j^ , J \ is a rational function of ,/, the actual value being given by

16J'2_i23J'-330

{x.4 2J2 (4J-_ 27)2

In this connection a memoir by Hurwitz* may be consulted.

* Math. Ann., t. xxxiii, (1889), pp. 345—352.

F. 42
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The preceding application to differential equations is only one instance

in the general theory which connects automorphic functions with linear

differential equations having algebraical coefficients. This development

belongs to the theory of differential equations rather than to the general

theory of functions: its exposition must be reserved for another place.

Here my present task comes to an end. The range of the theory of

functions is vast, its ramifications are many, its development seems illimit-

able : an idea of its freshness and its magnitude can be acquired by noting

the results, and appreciating the suggestions, contained in the memoirs of

the mathematicians who are quoted in the preceding pages.
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Abbildung, conforme, 11.

Absoluter Betrag, 3.

Accidental singularity, 16, 53.

Addition-theorem, algebraical, 297.

Adelphic order, 317.

Algebraical addition-theorem, 297.

Algebraical function, rational, 70.

Algebraical function determined by an equation,

161.

Amplitude, 3.

Analytical curve, 409, 423, 530.

Analytic function, monogenic, 56.

Argument, 3.

Argument and parameter, interchange of, 451.

Arithmetic mean, method of the, 408.

Ausserwesentliche singuldre Stelle, 53.

Automorphic functions, 582, 619.

Betrag, absoluter, 3.

Bien defini, 161.

Bifacial surface, 325.

Boundary, 322.

Branch, 15.

Branch-line, 339.

Branch-point, 15, 154.

Branch-section, 339.

Canonical resolution of surface, 355.

Categories of corners, cycles, 592, 596.

Circle, discriminating. 111.

Circuit, 327.

Class (of connected surface), 324.

Class of doubly-periodic function of second

order, 223.

Class of equation, 349.

Class of group, 60s.

Class of singularity, 147.

Class of tertiary-periodic function, 288.

Class of transcendental integral functions, 89.

Combination of areas, 425.

Compound circuit, 327.

Couformal representation, 11.

Conforme Abbildung, 11.

Congruent figures, 517, 591.

Conjugate edges, 592.

Connected surface, 312.

Connection, order of, 317.

Connectivity, 317.

Constant moduhis for cross-cut, 377.

Contiguous regions, .591.

Continuation, 55.

Continuity, region of, 55.

Continuous substitution, 584.

Convergence, uniform unconditional, 127.

Convexity of normal polygon, 594.

Corner of region, 591.

Coupure, 140, 186.

Critical point, 15.

Cross-cut, 314.

Cross-line, 339.

Cycles of corners, 593.

Deficiency, 356.

Deformation of loop, 857.

Deformation of surface, 333.

Degree of pseudo-automorphic function, 651.

Derivative, Schwarzian, 529.

Dihedral group, 623.

Diramnzio)ie, punto di, 15.

Diriclilet's principle, 408.

Discontinuity, polar, 16.

Discontinuous groups, 584.

Discontinuous substitution, 584.

Discrete substitution, 584.
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Discriminating circle, 111.

Domain, 52.

Double (or fixed) circle of elliptic substitu-

tion, 613.

Doubly-periodic function of first, second, third,

kind, 273, 271.

Edge of region, 591.

Edges of cross-cut, positive and negative, 375.

Eindndrig, 15.

Eindeutig, 15.

Einfach zusainmenluingend, 313.

Element, 56.

Element of doubly-periodic function of third

kind, 291, 293.

Elementary integral of the second kind, third

kind, 396, 402.

Elliptic substitution, 517.

Equivalent homoperiodic functions, 220.

Essential singularity, 17, 53.

Existence-theorem, 369, 405.

Factor, primary, 82.

Factorial functions, 464.

Families of groups, 606.

Finite groups, 586.

First kind, doubly-periodic function of the,

273.

First kind of Abelian integrals, 394.

Fixed (or double) points of substitution, 514.

Fortsetzung, 55.

Fractional factor for potential function, 422.

Fractional part of doubly-periodic function,

220.

Fuchsian functions, 619.

Fuchsian groups, 606.

Fundamental circle for group, 603.

Fundamental loops, 360.

Fundamental parallelogram, 200.

Fundamental polyhedron (of reference for

space), 615.

Fundamental region (of reference for plane),

591.

Fundamental substitutions, 583.

Gattung (kind of integral), 394.

Genere, 89.

Genere (class of connected surface), 324.

Geschlecht, 324.

Genre (applied to singularity), 148.

Genre (applied to transcendental integral

functions), 89.

Genre (class of connected surface), 324.

Giramento, punto di, 15.

Gleichmdssig unhedingt convergent, 127.

Gleichverzweigt, 371.

Grenze, natiirliche, 129.

Grenzkreis, 111.

Group of substitutions, 582.

Grundzahl, 317.

Hauptkreis, 603.

Holomorphic. 15.

Homogeneous substitutions, 622.

nomographic transformation, or substitution,

512.

Homologous (points), 200.

Homoperiodic, 224.

Hyperbolic substitution, 517.

Improperly discontinuous groups, 585.

Infinitesimal substitutiou, 522.

Infinity, 16.

Integrals of the first kind, second kind, third

kind, Abehan, 394, 396, 400.

Interchange of argument and parameter, 451.

Invariants of elliptic functions, 250.

Inversion-problem, 455.

Irreducible circuit, 327.

Irreducible (point), 199, 200.

Isothermal, 576.

Kleinian functions, 619.

Kleinian groups, 610.

Lacet, 153.

Lacunary functions, 141.

Ligne de passage, 339.

Limit, natural, 129.

Limitrophe, 591.

Linear substitution, 512.

Loop, 153.

Loop-cut, 315.

Losodromic substitution, 517.

Mehrdeutig, 15.

Mehrfach zusammenhangend, 314,

Meromorphic, 16.

Modular-function, 633.

Modular group, 587.

Modulus, 3.

Modulus for cross-cut, constant, 377.

Modulus of periodicity (cross-cut), 377.

Monadelphic, 313.

Monodromic, 15.

Monogenic, 14.

Monogenic analytic function, 56.

Monotropic, 15.

Multiform, 15.

Multiple circuit, 327.
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Multiple connection, 314.

Multiplicateurs, fonctions a, 464.

Multiplier of substitution, 515.

Natural limit, 129.

Naturliche Grenze, 129.

Negative edge of cross-cut, 375.

Niveaupunkle (points where a function acquii'es

any, the same, value, 227).

Non-essential singularity, 53.

Normal (connected) surface, 334.

Normal form of linear substitution, 582.

Normal function of first kind, second kind,

third kind, 446, 448, 450.

Normal polygon for substitutions, 594.

Order of a doubly-periodic function, 220.

Order, of connection, adelphic, 317.

Ordinary point, 52.

Orthomorphosis, 11.

Parabolic substitution, 517.

Parallelogram, fundamental or primitive, 200,

206.

Path of integration, 18.

Period, 198.

Periodicity for cross-cut, modulus of, 377.

Polar discontinuity, 16.

Pole, 16, 53.

Polyadelphic, 314.

Polyhedral functions, 575.

Polytropic, 15.

Positive edge of cross-cut, 375.

Potential function, 407.

Primary factor, 82.

Primfunction, 82.

Primitive parallelogram, 206.

Properly discontinuous groups, 585.

Pseudo-periodicity, 256, 259, 273, 274.

Querschnitt, 314.

Ramification (of Riemann's surface), 349.

Ramification, point de, 15.

Rational algebraical function, 70.

Rational points, 141.

Rational transcendental function, 70.

Real substitutions, 517.

Reconcileable circuits, 327.

Reducible circuit, 327.

Reducible (point), 199, 200.

Region of continuity, 55.

Regular, 16, 52.

Regular singularities, 163.

Representation conforme, 11.

Residue, 42.

Resolution of surface, canonical, 355.

Retrosection, 315.

Riemann's surface, 336.

Root, 16.

Rilckkehrschnitt, 315.

Schleife, 153.

Schwarzian derivative, 529.

Second kind, doubly-periodic function of the,

274.

Second kind of Abelian integrals, 396.

Secondary-periodic functions, 275.

Section, 140, 186.

Section (cross-cut), 314.

Sheet, 336.

Simple branch-points, 174.

Simple circuit, 327.

Simple connection, 313.

Simple curve, 21.

Simple cycle of loops, 360.

Simple element of positive class for tertiary-

periodic function, 291.

Singular point, 16.

Singularity, accidental, 16, 53.

Singularity, essential, 17, 53.

Species of singularity, 148.

Sub-categories of cycles, 607.

Substitution, homogeneous, 622,

Substitution, linear or homographic, 512.

Synectic, 15.

Taglio trasversale, 314.

Tertiary-periodic functions, 275.

Tetrahedral group, 625.

Thetafuchsian function, 642.

Third kind, doubly-periodic function of the, 274.

Third kind of Abelian integral, 400.

Transcendental function, rational, 70.

Trasversale, 314.

Umgebimg, 52.

Unifacial surface, 325.

Uniform, 15.

Verzweigungsclinitt, 339.

Verzweigungspunkt, 15.

Wesentlichc singulare Stelle, 53.

Winding-point, 346.

Winding-surface, 346.

Windungspunkt, 15.

Zero, 16.

Zusammcnhilngend, einfach, melirfach, 313, 314.
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Abelian transcendental functions, arising by

inversion of functions of the first kind on

a Eiemaun's surface, 455
;

Weierstrass's form of, 456.

Accidental singularities, 16, 53, 64

;

must be possessed by uniform function,

64;

form of function in vicinity of, 64

;

are isolated points, 65
;

number of, in an area, 67, 68, 72

;

if at infinity and there be no other

singularity, the function is algebraical

polynomial, 69;

if there be a finite number of, and no

essential singularity, the uniform

function is rational, algebraical and

meromorijhic, 71.

Addition-theorem, for uneven doubly-periodic

function of second order and second class,

247;

for Weierstrass's ^-function, 262
;

partial form of, for the (r-function and

the f-function, 261

;

definition of algebraical, 297

;

algebraical, is possessed by algebraical

functions, 297

;

by simply-periodic functions, 298
;

by doubly-periodic functions, 299
;

function which possesses an algebraical, is

either (i) algebraical, 300
;

or (ii) simply-periodic, 303, 305
;

or (iii) doubly-periodic, 307 ;

satisfies a differential equation be-

tween itself and its first derivative,

308;

condition that algebraical equation be-

tween three variables should express,

310;

form of, when function is uniform, 311

;

reference to binomial differential equa-

tions, 490.

Algebraic equation between three variables

should express an addition-theorem, condi-

tion that, 310

;

Algebraic equation, defining algebraic multi-

form functions, 161 (see algebraic function)

;

class of, 349
;

for any uniform function of position on

a Eiemann's surface, 371.

Algebraic function, rational integral, 70.

Algebraic (multiform) functions defined by

algebraical equation, 161

;

branch-points of, 162

;

infinities of, are singularities of the

coefficients, 163
;

graphical method for determination

of order of, 164
;

branch-points of, 168

;

cyclical arrangements of branches round

a branch-point, 171

;

when all the branch-points are simple,

174;

in connection with Eiemann's surface,

338.

Algebraic function on a Eiemann's surface,

integrals of, 387
;

integrals of, everywhere finite, 388
;

number of, in a special case, 388
;

when all branch-points are simple, three

kinds of integrals of, 389
;

infinities of integrals of, 390, 393 ;

branch-points of integrals of, 393.

Algebraic functions on a Eiemann's surface,

constructed from normal elementary func-

tions of second kind, 457 ;

smallest number of arbitrary infinities

to render this construction possible,

457;

Eiemann-Roch's theorem on, 459 ;

smallest number of infinities of, which,

except at them, is everywhere uniform

and continuous, 460

;
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which arise as first derivatives of func-

tions of first kind, 460

;

are infinite only at branch-points,

460;

number of infinities of, and zeros

of, 461

;

most general form of, 461

;

determined by finite zeros, 462
;

determine a fundamental equation for a

given Riemann's surface, 462
;

relations between zeros and infinities of,

468.

Algebraic isothermal curves, families of, 576

et seq. (see isothermal curves).

Algebraic relation between functions automor-

phic for the same infinite group, 653
;

class of, in general, 654.

Analytic function, monogenic, 56.

Analytical curve, 409, 423, 530

;

represented on a circle, 423

;

area bounded by, represented on a half-

plane, 530

;

consecutive curve can be chosen at

wiU, 531.

Analytical test of a branch-point, 157.

Anchor-ring conformally represented on plane,

501.

Anharmonic group of linear substitutions, 620.

Anharmonic function, automorphic for the an-

harmonic group, 620.

Appell's factorial functions, 464 (see factorial

functions).

Area, simply connected, can be represented

conformally upon a circle with unique cor-

respondence of points, by Riemann's theorem,

526;

form of function for representation on a

plane, 528, 540

;

form of function for representation on a

circle, 529

;

bounded by analytical curve represented

on half-plane, 530

;

bounded by cardioid on half-plane, 536
;

of convex rectilinear polygon, 537 et

seq. (see rectilinear polygon)

;

bounded by circular arcs, 549 et seq. (see

curvilinear polygon).

Areas, combination of, in proof of existence-

theorem, 425.

Argument (or amplitude) of the variable, 3.

Argument of function possessing an addition-

theorem, forms of, for a value of the function,

300 et seq.

Argument and parameter of normal elementary

function of third kind, 453.

Automorphic function, 619
;

constructed for infinite group in pseudo-

automorphic form, 638 et seq. (see

thetafuchsian functions)

;

expressed as quotient of two theta-

fuchsian functions, 651

;

its essential singularities, 651

;

number of irreducible zeros of, is the

same as the number of irreducible

accidental singularities, 651;

different, for same group are connected

by algebraical equation, 653
;

class of this algebraical equation in

general, 654

;

connection between, and general linear

differential equations of second order,

656;

modular-functions as examples of, 657.

Barriers, impassable, in connected surface, 313

;

can be used to classify connected sur-

faces, 314

;

changed into a cut, 314.

Bifacial Surfaces, 325, 333.

Binomial differential equations of first order

when the integral is uniform, with the

various classes of integrals, 482 et seq.

Boundary of region of continuity of a function

is composed of the singularities of the

function, 57.

Boundary, defined, 322

;

assigned to every connected surface, 314,

322, 329 ;

edges acquired by cross-cut and loop-

cut, 315

;

of simply connected surface is a single

hne, 323
;

effect of cross-cut on, 323
;

and of loop-cut on, 324.

Boundary conditions for potential function,

410 (see potential function).

Boundary values of potential function for a

circle, 414

;

may have limited number of finite dis-

continuities, 417

;

include all the maxima and the minima

of a potential function, 422.

Boundaries of connected surface, relation be-

tween number of, and connectivity, 324.

Branch-lines, are mode of junction of the sheets

of Riemann's surfaces, 339 ;

properties of, 340 et seq.

;

free ends of, are branch-points, 340 ;

sequence along, how affected by branch-

points, 341

;
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system of, for a surface, 341

;

sjDecial form of, for two-sheeted surface,

•dU;

when all branch-points are simple,

356;

number of, when branch-points are

simple, 364.

Branches of a function, defined, 15
;

affected by branch-points, 151 et seq.

;

obtained by continuation, 151

;

are uniform in continuous regions where

branch-points do not occur, 155

;

which are affected by a branch-point,

can be arranged in cycles, 156;

restored after number of descriptions of

circuit round branch-point, 157
;

analytical expression of, in vicinity of

branch-point, 158

;

number of, considered, 159

;

of an algebraic function, 161 (see alge-

braic function)

;

a function which has a limited number

of, is a root of an algebraic equation,

175.

Branch-points, defined, 15, 154

;

integral of a function round any curve

containing all the, 37
;

effect of, on branches, 149, 151, et seq.;

analytical test of, 157
;

expression of branches of a function in

vicinity of, 158

;

of algebraic functions, 162, 168
;

simple, 174, 355;

number of simple, 175
;

are free ends of branch-lines, 340

;

effect of, on sequence of interchange

along branch-lines, 341

;

joined by branch-lines when simple, 344

;

deformation of circuit on Eiemann's

surface over, is impossible, 350 ;

circuits round two, are irreducible, 350
;

number of, when simple, 356

;

in connection with loops, 357 (see

loops)

;

canonical arrangement of, when simple,

364.

Canonical form of complete system of simple

loops, 361

;

Eiemann's surface, 365
;

resolved, 366.

Canonical resolution of Eiemann's surface, 355.

Cardioid, area bounded by, represented on strip

of plane, 535

;

on a circle, 536.

Categories of corners, 592 (see corners).

Cauchy's theorem on the integration of a holo-

morphic function round a simple curve, 23
;

and of a meromorphic function, 27
;

on the expansion of a function in the

vicinity of an ordinary point, 43.

Circle, areas of curves represented on area of :

exterior of ellipse, 501

;

interior of ellipse, 504
;

interior of rectangle, 502, 544
;

interior of square, 503, 545 ;

exterior of square, 545
;

exterior of parabola, 505
;

intei-ior of parabola, 506
;

half-plane, 506

;

interior of semicircle, 507
;

infinitely long strip of plane, 508 ;

any circle, by properly chosen linear

substitution, 514

;

any simply connected area, by Eiemann's

theorem, 526

;

interior of cardioid, 536 ;

interior of regular polygon, 548 (Ex.).

Circuits, round branch-point, effect of, on

branch of a function, 153, 155
;

restore initial branch after number of

descriptions, 157
;

on connected surface, 327

;

reducible, irreducible, simple, multiple,

compound, reconcileable, 327

;

represented algebraically, 328

;

complete system of, contains unique

number of circuits, 328
;

drawn on a simply connected surface are

reducible, 329

;

number in complete system for multiply

connected surface, 330

;

cannot be deformed over a branch-point

on a Eiemann's surface, 350.

Circular functions obtained, by integrating

algebraical functions, 191 ;

on a Eiemann's surface, 380.

Class of, algebraic equation associated with a

Eiemann's surface, 349
;

between automorphic functions, 654

;

connected surface, 324
;

essential singularity, 147 ;

Fuchsian group, 608

;

Laguerre's criterion of, 91

;

Eiemann's surface, 349

;

simple function of given class, 91

;

tertiary-periodic function, positive, 288
;

negative, 291

;

transcendental integral function, as de-

fined by its zeros, 89.
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Classes of doubly-periodic functions of the

second order are two, 223.

Closed cycles of corners in normal polygon for

division of plane, 596 (see corners).

Combination of areas, in determination of

potential function, 425.

Complex variable defined, 1

;

represented on a plane, 2
;

and on Neumann's sphere, 4.

Compound circuits, 327.

Conditions that one complex variable be a func-

tion of another, 7.

Conformal representation of planes, established

by functional relation between variables, 11

;

magnification in, 11

;

used in Schwarz's proof of existence-

theorem, 423
;

most general form of relation that secures,

is relation between complex variables,

496;

examples of, 501 et seq.

Conformal representation of surfaces is secured

by relation between complex variables in the

most general manner, 492 ;

obtained by making one a plane, 495
;

of surfaces of revolution on plane, 496

;

of sphere on plane, 497 ;

Mercator's and stereographic projec-

tion, 498

;

of oblate spheroid, 500
;

of ellipsoid, 500
;

of anchor-ring, 501
;

Riemanu's general theorem on, 526
;

form of function for, on a plane, 528
;

on a circle, 529.

Congruent regions by linear substitutions, 517,

591.

Conjugate edges of a region, 592 (see edges).

Connected surface, supposed to have a boundary,

314, 822, 329

;

to be bifacial, 325
;

divided into polygons, Lhuihcr's theorem

on, 325
;

geometrical and physical deformation of,

333;

can be deformed into any other connected

surface of the same connectivity having

the same number of boundaries, if both

be bifacial, 334

;

Klein's normal form of, 334.

Connection of surfaces, defined, 312
;

simple, 313
;

definition of, 315

;

multiple, 314

;

definition of, 315
;

affected by cross-cuts, 319 ;

by loop-cuts, 320

;

and by slit, 321.

Connectivity, of surface defined, 317
;

affected by cross-cuts, 319 ;

by loop-cuts, 320

;

by slit, 321
;

of spherical surface with holes, 321 ;

in relation to irreducible circuits, 330

;

of a Riemaun's surface, with one boun-

dary, 347 ;

with several boundaries, 350.

Constant, uniform function is, everywhere if

constant along a line or over an area, 59.

Constant difference of integral, at opposite

edges of cross-cut, 375
;

how related for cross-cuts that meet, 376 ;

for canonical cross-cuts, 377 (see

moduli of periodicity).

Contiguous regions, 591.

Continuation, of function by successive domains,

54;

Schwarz's symmetric, 57
;

of function with essential singularities,

99;

of multiform function to obtain branches,

151.

Continuity of a function, region of (see region

of continuity).

Continuous Group, 584.

Contraction of areas in conformal representation,

537.

Convex curve, area of, represented on half-

plane, deduced as the limit of the representa-

tion of a rectilinear polygon, 548.

Convex normal polygon for division of plane, in

connection with an infinite group, 595
;

angles at corners of second category and

of third category, 597 ;

sum of angles at the corners in a cycle

of the first category is a submultiple

of four right angles, 598
;

when given leads to group, COO ;

changed into a closed surface, 608.

Corners, of regions, 591

;

three categories of, for Fuchsian group,

592;

cycles of homologous, 593

;

how obtained, 596 ;

closed, and open, 596 ;

categories of cycles, 596
;

of first category are fixed points of

elliptic substitutions, 600

;

of second and third categories are fixed

points of parabolic substitutions, 600

;
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sub-categories of cycles of, 607 ;

open cycles of, do not occur with Klein-

ian groups, 613.

Crescent changed into another of the same

angle by a linear substitution, 514 ;

represented on a half-plane, 554.

Criterion of character of singularity, 66 ;

class of transcendental integral function,

91.

Critical integer, for expansion of a function in

an infinite series of functions, 124.

Cross-cuts, defined, 314

;

effect of, on simply connected surface, 316

;

on any surface, 316
;

on connectivity of surface, 319
;

on number of boundaries, 323

;

and irreducible circuits, 330
;

on Eiemann's surface, 351
;

chosen for resolution of Riemann's sur-

face, 352

;

in canonical resolution of Eiemann's

surface, 354

;

in resolution of Riemann's surface in its

canonical form, 366
;

difference of values of integral at opposite

edges of, is constant, 375 ;

moduli of periodicity for, 377 ;

number of independent moduli, 379 ;

introduced in proof of existence-

theorem, 430 et seq.

Curvilinear polygon, bounded by circular arcs,

represented on the half-plane, 549 et seq.

;

function for representation of, 550
;

equation which secures the representa-

tion of, 553

;

connected with huear differential

equations, 553
;

bounded by two arcs, 554
;

bounded by three arcs, 555 (see curvi-

linear triangle).

Curvilinear triangles, equation for representa-

tion of, on half-plane, 555
;

connected with solution of differential

equation for the hypergeometric series,

555;

when the orthogonal circle is real, 557 ;

any number of, obtained by inver-

sions, lie within the orthogonal

circle, 558

;

equation is transcendental, 559
;

discrimination of cases, 559, 560

;

particular case when the three arcs

touch, 561

;

when the orthogonal circle is imaginary,

561;

stereographic projection on sphere

so as to give spherical triangle

bounded by great circles, 562

;

connected with division of spherical

surface by planes of symmetry of

inscribed regular solids, 564 et

seq.

;

cases when the relation is algebraical

in both variables and uniform

in one, 564

;

equations which establish the

representation in these cases,

567 et seq.

;

cases when the relation is algebraical

in both variables but uniform in

neither, 574 et seq.

Cycles of corners, 593 (see corners).

Cyclical interchange of branches of a function

which are affected by a branch-point, 156

;

when the function is algebraic, 171.

Deficiency of a curve, 356;

is an invariant for rational transforma-

tions, 367.

Deformation, of a circuit on a Riemann's surface

over branch-point impossible, 350

;

connected surfaces, geometrical and phy-

sical, 333

;

can be effected from one to another

if they be bifacial, be of the same

connectivity, and have the same

number of boundaries, 334

;

to its canonical form of Eiemann's sur-

face with simple winding-points, 365

;

of loops, 358 et seq.

;

of path of integration, of holomorphic

function does not affect value of the

integral, 26;

over pole of meromorphic function

affects value of the integral, 34

;

of multiform function (see integral

of multiform function)

;

form of, adoi^ted, 190;

effect of, when there are more

than two periods, 208;

on Riemann's surface (see path of

integration)

;

of i^ath of variable for multiform

functions, 152;

how far it can take place without

affecting the final branch, 152,

153—155.

Derivative, Schwarzian, 529 (see Schwarzian

derivative).

Derivatives, a holomorphic function possesses
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anynumber of, at points within its region, 32;

superior limit for modulus of, 33
;

do not necessarily exist along the boun-

dary of the region of continuity, 32,

133;

of elliptic functions with regard to the

invariants, 265.

Description of closed curve, positive and nega-

tive directions of, 3.

Differential eijuation of first order, satisfied by

uniform doubly-periodic functions, 237;

in particular, by elliptic functions, 238

;

satisfied by function which possesses an alge-

braic addition-theorem, 309

;

not containing the independent variable, 470

;

conditions that integral of, is a uniform

function, 471 et seq.

;

when the integral is uniform, it is

either a rational, a simply-period-

ic, or a doubly-periodic, function,

476;

application of general results to bino-

mial, 482 et seq.

;

discrimination of solutions into the

three classes, 484 et seq.

;

example of integral that is two-valued,

490;

reference to functions which possess ad-

dition-theorem, 490.

Dihedral function, automorphic for dihedral

group, 632 (see polyhedi-al functions).

Dihedral group, of rotations, 623;

of homogeneous substitutions, 624;

of linear substitutions, 625

;

function automorphic for, 632.

Directions of description of closed curve, 3.

Discontinuous, groups, 584

;

properly and improperly, 585

;

all finite groups are, 586

;

division of plane associated with, 591

(see regions).

Discrete group, 584.

Discriminating circle for uniform function. 111.

Discrimination between accidental and essen-

tial singularities, 53, 66.

Discrimination of branches of a function ob-

tained by various paths of the variable, 152

—155.

Division of surface into polygons, Lhuilier's

theorem on, 325.

Domain of ordinary point, 52.

Double points of linear substitution, 514.

Double-pyramid, division of surface of circum-

scribed sphere by planes of symmetry, 564
;

equation giving the conformal represen-

tation on a half-plane of each triangle

in the stereographic projection of the

divided spherical surface, 567.

Doubly-infinite system of zeros, transcendental

function having, 84.

Doubly-periodic functions, 198;

graphical representation, 199;

those considered have only one essential

singularity which is at infinity, 218,

227;

fundamental properties of uniform, 219

et seq.

;

order of, 220

;

equivalent, 220;

integral of, round parallelogram of

periods, is zero, 221;

sum of residues of, for parallelogram, is

zero, 222

;

of first order do not exist, 223

;

of second order consist of two classes,

223;

number of zeros equal to number of

infinities and of level points, 226;

sum of zeros congruent with the sum of

the infinities and with the sum of the

level points, 228

;

of second order, characteristic equation

of, 231

;

zeros and infinities of derivative of,

232;

can be expressed in terms of any

assigned homoperiodic function

of the second order with an ap-

propriate argument, 223;

of any order with simple infinities can

be expressed in terms of homoperiodic

functions of the second order, 234;

are connected by an algebraical equation

if they have the same pei-iods, 236;

differential ecjuation of first order satis-

fied by, 237;

in particular, by elliptic functions,

238;

can be expressed rationally in terms of

a homoperiodic function of the second

order and its first derivative, 239;

of second order, properties of (see second

order)

;

expressed in terms of the f- function, 256;

and of the o-function, 260;

possesses algebraical addition-theorem,

299.

Edges of cross-cut, positive and negative, 374,

438.
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Edges of regions in division of plane by an

infinite group, 591

;

two kinds of, for real groups, 592

;

congruent, are of the same kind, 592

;

conjugate, 592;

of first kind are even in number and can

be arranged in conjugate pairs, 593;

each pair of conjugate, implies a funda-

mental substitution, 593.

Elementary function of second kind, 4-i8 (see

second kind of functions).

Elementary functions of third kind, 449 (see

third kind of functions).

Elementary integrals, of second kind, 396;

determined by an infinity, except as to

additive integral of first kind, 398

;

number of independent, 399

;

connected with those of third kind, 403.

Elementary integrals of third kind, 402

;

connected with integrals of second kind,

403;

number of independent, with same loga-

rithmic infinities, 403.

Elements of analytic function, 56;

can be derived from any one when the

function is uniform, 56;

any single one of the, is sufficient for

the construction of the function, 57.

Ellipse, area without, represented on a circle,

501;

area within, represented on a rectangle,

504;

and on a circle, 505.

Ellipsoid conformally represented on plane,

500.

Elliptic functions, obtained by integrating mul-

tiform functions, in Jacobian form, 193;

in Weierstrassian form, 196, 249 et seq.;

on a Riemann's surface, 383 et seq.

ElUptic substitutions, 517, 519
;

are either periodic or infinitesimal,

521;

occur in connection with cycles of cor-

ners, 607, 613.

Equivalent homoperiodic functions, 220;

conditions of eqiiivalence, 225.

Essential singularities, 17, 53;

uniform function must assume any value

at, 54, 94;

of transcendental integral function at

infinity, 74

;

form of function in vicinity of, 96 ;

continuation of function possessing, 99;

form of function having finite number
of, as a sum, 100

;

functions having unlimited number of,

Chap. VII.

;

hneof, 140;

lacunary space of, 141

;

classification of, into classes, 146;

into species, 148

;

into wider groups, 148;

of pseudo-automorphic functions, 642;

of automorphic functions, 651.

Essential singularities of groups, 522, 606;

are essential singularities of functions

automorphic for the group, 606;

lie on the fundamental circle, 606

;

may be the whole of the fundamental

circle, 607.

Existence-theorem for functions on a given

Riemann's surface. Chap. xvii.

;

methods of proof of, 408

;

abstract of Schwarz's proof of, 409;

results of, relating to classes of functions

proved to exist under conditions, 436.

Expansion of a function in the vicinity of an

ordinary point, by Cauchy's theorem, 43

;

within a ring, by Laurent's theorem, 47.

Expression of uniform function, in vicinity of

ordinary point, 43;

in vicinity of a zero, 61

;

in vicinity of accidental singularity, 64

;

in vicinity of essential singularity, 96

;

having finite number of essential singu-

larities, as a sum, 100

;

as a product when without acciden-

tal singularities and zeros, 104

;

as a product, with any number of

zeros and no accidental singu-

larities, 108;

as a product, with any number of

zeros and of accidental singulari-

ties, 110;

in the vicinity of any one of an infinite

number of essential singularities, 113;

having an assigned infinite number of

singularities over the plane, 115;

generalised, 116;

having infinity as its single essential

singularity, 117;

having unlimited singularities distrib-

uted over a finite circle, 117.

Expression of multiform function in the vicin-

ity of branch-point, 158.

Factor, generalising, of transcendental integral

function, 81

;

primary, 82;

fractional, for potential-function, 422.
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Factorial functions, pseudo-periodic on a Rie-

mann's surface, 464;

their argument, 464;

constant factors (or multipliers) for cross-

cuts of, 465;

forms of, when cross-cuts are canon-

ical, 466;

general form of, 466

;

expression of, in terms of normal ele-

mentary functions of the third kind,

466 et seq.

;

zeros and infinities of, 468

;

cross-cut multipliers and an assigned

number of infinities determine a

limited number of independent, 470.

Factorial periodicity, 586.

Factors (or multipliers) of factorial functions

at cross-cuts, 465

;

forms of, when cross-cuts are canonical,

466.

Families of groups, seven, 606

;

for one set, the whole line conserved by

the group is a line of essential singu-

larity ; for the other set, only j^arts of

the conserved line are lines of es-

sential singularity, 607.

Finite groups of linear substitutions, 586, 620;

containing a single fundamental substi-

tution, 586
;

anharmonic, containing two elliptic

fundamental substitutions, 587.

Finite number of essential singularities, func-

tion having, expressed as a sum, 100.

First kind of pseudo-periodic function, 273.

First kind, of functions on a Riemann's surface,

436;

moduli of periodicity of functions of,

439 et seq.;

relation between, and those of a func-

tion of second kind, 442
;

when the functions are normal, 447

;

number of linearly independent functions

of, 443

;

normal functions of, 446

;

inversion of, leading to multiply periodic

functions, 453;

derivatives of, as algebraical functions,

461;

infinities and zeros of, 461.

First kind of integrals on Riemann's surface, 394

;

number of, linearly independent in

particular case, 395

;

are not uniform functions, 395
;

general value of, 396; (see first kind of

functions).

Fixed circle of elliptic Kleinian substitution,

when the equation is generalised, 618.

Fixed points of linear substitution, 514.

Form of argument for given value of function

possessing an addition-theorem, 300 et seq.

Fractional factor for potential function, 422.

Fractional part of doubly-periodic function,

220.

Fuchsian functions, 619 (see automorphic

functions).

Fuchsian group, 591, 606;

if real, conserves axis of real quantities,

591;

when real, it is transformed by one

complex substitution and then con-

serves a circle, 603

;

division of plane into two portions

within and without the fundamental

circle, 603

;

families of, 606;

class of, 608.

Function, Riemann's general definition of, 8

;

relations between real and imaginary

parts of, 9

;

equations satisfied by real and imaginary

parts of, 11

;

monogenic, defined, 14;

uniform, multiform, defined, 15;

branch, and branch-point, of a, defined,

15;

holomorphic, defined, 15

;

meromorphic, defined, 16;

continuation of a, 55

;

region of continuity of, 55

;

element of, 56

;

monogenic analytic, definition of, 56;

constant along a line or area, if uniform,

is constant everywhere, 59

;

properties of uniform, without essential

singularities, Chap. iv.

;

integral algebraical, 70

;

integral transcendental, 70;

having a finite number of branches is a

root of an algebraical equation, 175;

potential, 407 (see potential function).

Function possessing an algebraic addition-

theorem, is either algebraic, or algebraic

simply-periodic, or algebraic doubly-periodic,

300;

has only a finite number of values for

one value of the argument, 308

;

if uniform, then either rational, or

simply- periodic or doubly-periodic, 308

;

satisfies a diiferential ccjuation between

itself and its first derivative, 309.
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Functional dependence of complex variables,

form of, adopted, 7

;

analytical conditions for, 7 ;

establishes conformal representation, 11.

Functionality, monogenic, not coextensive with

arithmetical expression, 139.

Functions, expression in series of (see series of

functions).

Fundamental circle of Fuchsian group, 603

;

divides plane into two parts which are

inverses of each other with regard to

the circle, 604

;

essential singularities of the group lie

on, 606.

Fundamental equation for a Eiemann's surface

is determined by algebraical functions that

exist on the surface, 462.

Fundamental parallelogram for double period-

icity, 200, 206

;

is not unique, 206.

Fundamental region (or polygon) for division

of plane associated with a discontinuous

group, 591

;

can be taken so as to have edges of the

first kind cutting the conserved line

orthogonally, 594, 604

;

in this case, called a normal polygon,

594;

which can be taken as convex,

595 ;

angles of, 597 (see convex normal

polygon)

;

characteristics of, 599.

Fundamental set of loops, 360.

Fundamental substitutions of a group, 583;

relations between, 584, 593, 599;

one for each pair of conjugate edges of

region, 593.

Fundamental systems of isothermal curves, 579

;

given by a uniform algebraic function,

or a uniform simply-periodic function,

or a uniform doubly-periodic function,

579;

all families of algebraic isothermal curves

are derived from, by algebraic equa-

tions, 580.

General conditions for potential function, 410

(see potential function).

Generalised equations of Kleinian group, 612

(see Kleinian group)

;

polyhedral division of space in connec-

tion with, 614

;

connected with polygonal division

of plane by the group, 615.

Generalising factor of transcendental integral

function, 81.

Graphical determination of, order of infinity of

an algebraic function, 164;

the leading term of a branch in the

vicinity of an ordinary point of the

coeflicients of the equation, 167;

the branches of an algebraic function in

the vicinity of a branch-point, 170.

Graphical representation of periodicity of func-

tions, 198, 199.

Group of linear substitutions, 582

;

fundamental substitutions of, 583

;

relations between, 584

;

continuous, and discontinuous (or discrete),

584;

inoperly and improperly discontinuous, 585 ;

finite, 586 (see finite groups)

;

modular, with two fundamental substitu-

tions, 587

;

division of plane into polygons associated

with, 588 et seq.

;

relation between the fundamental

substitutions, 590;

division of plane for any discontinuous group,

591 (see region)

;

fundamental region for, 591

;

Fuchsian, 591, 606 (see Fuchsian group);

when real, conserves axis of real quantities,

591;

fundamental substitutions of, connected with

the pairs of conjugate edges of a region, 593

;

seven families of, 606;

conserved line in relation to the essential

singularities, 607;

Kleinian, 610 (see Kleinian group)

;

dihedral, 625

;

tetrahedral, 627.

Grouping of branches of algebraical function

at a branch-point, 171.

Half-plane represented on a circle, 506 ;

on a semicircle, 506
;

on a sector, 507

;

on an infinitely long strip, 508
;

on a rectilinear polygon, 538 et seq. (see

rectilinear polygon)
;

on a curvilinear polygon, bounded by cir-

cular arcs, 549 et seq. (see curvilinear

polygon, curvilinear triangle).

Hermite's sections for integrals of uniform

functions, 185.

Hole in surface, effect of making, on connec-

tivity, 320.

Holomorphic function, defined, 15 ;
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integral of, round a simple curve, 23 ;

along a line, 24
;

when line is deformed, 26 ;

when simple curve is deformed, 27 ;

has a derivative for points within, but

not necessarily on the boundary of,

its rej^ion, 32
;

superior limit for modulus of derivatives

of, 33

;

expansion of, in the domain of an ordi-

nary point, 43, 52

;

within a ring of convergence by

Laurent's theorem, 47.

Homogeneous form of linear substitutions, 622.

Homogeneous substitutions, 622

;

two derived from each linear substi-

tution, 622
;

dihedral group of, 624.

nomographic substitution connected with sphe-

rical rotation, 620.

Homographic transformation, or substitution,

512 (see linear substitution).

Homologous points, 200, 591.

Homoperiodic functions, 224
;

when in a constant ratio, 224
;

when equivalent, 225

;

are connected by an algebraical equation,

236.

Hyperbolic substitutions, 517, 519
;

neither periodic nor infinitesimal, 522
;

do not occur in connection with cycles

of corners, 607, 614.

Hypergeometric series, solution of differential

equation for, connected with conformal repre-

sentation of curvilinear ti'iangle, 555 et seq.

;

cases of algebraical solution, 567 et seq.

Icosahedral (and dodecahedral) division of sur-

face of circumscribed sphere, 565
;

equation giving the conformal represent-

ation on a half-plane of each triangle

in the stereographic projection of the

divided surface, 573.

Identical substitution, 583.

Imaginary parts of functions, how related to

real parts, 9

;

equations satisfied by real and, 11.

Improperly discontinuous groups, 585
;

exami)le of, 615 et seq.

Index of a composite substitution, 583
;

not entirely determinate, 584.

Infinite circle, integral of any function round,

36.

Infinitesimal curve, integral of any function

round, 35.

F.

Infinitesimal substitution, 584.

Infinities, of a function defined, 16

;

of algebraic function, 163.

Infinities of doubly-periodic functions, irre-

ducible, are in number equal to the irreducible

zeros, 227

;

and, in sum, are congruent with their

sums, 228

;

of pseudo-periodic functions (see second

kind, third kind).

Infinities of potential function on a Biemann's

surface, 435.

Integral function, algebraical, 70
;

transcendental, 70.

Integral with complex variables, defined, 18

;

elementary properties of, 19, 20
;

over area changed into integral round

boundary, by Biemann's fundamental

lemma, 21

;

of holomorphic function round simple

curve is zero, 23

;

of holomorphic function along a line is

holomorphic, 24

;

of meromorphic function round simple

curve containing one simple pole, 27 ;

round simple curve, containing seve-

ral simple poles, 28

;

round curve containing multiple

pole, 32

;

of any function round infinitesimal circle,

35;

round infinitely great circle, 36
;

round any curve enclosing all the

branch-points, 37

;

of uniform function along any line, 184.

Integral of multiform function, between two

points is unaltered for deformation of path

not crossing a branch-point or an infinity, 181;

round a curve containing branch-points

and infinities is unaltered when the

curve is deformed to loops, 182

;

also when the curve is otherwise deformed

under conditions, 183

;

round a small curve enclosing a branch-

point, 183

;

round a loop, 189 ;

deformed path adopted for, 190
;

with more periods than two, can be

made to assume any value by modi-

fying the path of integration between

the Hmits, 208.

Integral of uniform function round parallelo-

gram of periods, is zero when function is

doubly-periodic, 221
;

general expression for, 222.

43
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Integrals, at opposite edges of cross-cut, values

of, differ by a constant, 375
;

when cross-cuts are canonical, 377 ;

discontinuities of, excluded on a Eie-

mann's surface, 878

;

general value of, on a Riemann's surface,

379;

of algebraic functions, 387 ;

when branch-points are simple, 389

;

infinities of, of algebraic functions, 390;

first kind of, 394
;

number of independent, of first kind,

395;

are not uniform functions of position,

395;

general value of, 396
;

second kind of, 396 (see second kind)
;

elementary, of second kind, 396 (see

elementary integrals)
;

third kind of, 400 (see third kind)

;

elementary, of third kind, 402 (see

elementary integral)

;

connected with integrals of second

kind, 403.

Integration, Riemann's fundamental lemma in,

21.

Interchange, cyclical, of branches of a function

affected by a branch-point, 156
;

of algebraical function, 171.

Interchange of argument and parameter in

normal elementary function of the third

kind, 453.

Interchange, sequence of, along branch-lines

determined, 341.

Interchangeable substitutions, 586.

Invariants, derivatives of elliptic functions with

regard to the, 265.

Inversion problem, 455

;

of functions of the first kind with several

variables leading to multiply periodic

functions, 453 et seq.

Inversions at circles, even number of, lead to

lineo-linear relation between initial and final

points, 523.

Irreducible circuits, 327 ;

complete system contains same number
of, 328

;

cannot be drawn on a simply connected

surface, 329

;

round two branch-points, 350.

Irreducible, points, 199, 200, 591, 638
;

zeros of doubly-periodic function are the

same in number as irreducible infini-

ties, 226 ;

likewise the number of level-points, 227;

also of automorphic functions, 651

;

sum of irreducible points is independent

of the value of the doubly-periodic

function, 228.

Isothermal curves, families of plane algebraical,

576;

form of equation that gives such families

as the conformal representation of

parallel straight lines, 579 ;

three fundamental systems of, 579
;

all, are conformal representations of

fundamental systems by algebraical

equations, 580

;

isolated may be algebraical by other

relations, 581.

Kinds of edges in region for Fuchsian group,

592
;

(see edges).

Kinds of pseudo-periodic functions, three prin-

cipal, 273, 274

;

examples of other, 295.

Kleinian functions, 619
;

(see automorphic

functions).

Kleinian group, 610

;

conserves no fundamental line, 610
;

generalised equations of, applied to space,

612;

conserve the plane of the complex

variable, 612
;

double (or fixed) circle of elliptic

substitution of, 613

;

polygonal division of plane by, 613
;

polyhedral division of space in connec-

tion with generalised equations of, 614

;

relation between polygonal division of

plane and polyhedral division of space

associated with, 615.

Lacunary functions, 141.

Laguei're's criterion of class of transcendental

integral function, 91.

Lame's differential equation, 281
;

can be integrated by secondary periodic

functions, 283

;

general solution for integer value of n,

284;

special cases of n= l and n—2, 285.

Laurent's theorem on the expansion of a func-

tion which converges within a ring, 47.

Leading term of a branch in vicinity of an

ordinary point of the coefficients of the

equation determined, 167.

Lhuilier's theorem on division of connected

surface into polygons, 325.

I



GENERAL INDEX 675

Limit, natural, of a power-series, 129.

Linear differential equations of the second

order, connected with automorphic functions,

656.

Linear substitution, 512

;

equivalent to two translations, a reflexion

and an inversion, 512
;

changes straight lines and circles into

circles in general, 513 ;

can be chosen so as to transform any

circle into any other circle, 514
;

changes a plane crescent into another of

the same angle, 514
;

fixed points of, 514 ;

multiplier of, 515

;

condition of periodicity, 515
;

parabolic, 517

;

and real, 518
;

elliptic, 517 ;

and real, 519

;

is either periodic or infinitesimal,

521;

hyperbolic, 517

;

and real, 519

;

loxodromic, 517, 521

;

can be obtained by any number of pairs

of inversions at circles, 523 ;

group of, 582 et seq. (see group)

;

normal form of, 582
;

identical, 583
;

algebraical symbols to represent, 583 ;

index of composite, 583
;

infinitesimal, 584
;

interchangeable, 586

;

in homogeneous form, 622.

Logarithmic infinities, integral of third kind

on a Riemann's surface must possess at

least two, 402.

Loop-cuts, defined, 315;

changed into a cross-cut, 320
;

effect of, on connectivity, 320
;

on number of boundaries, 324.

Loops, defined, 153

;

effect of a loop, is unique, 155
;

symbol to represent effect of, 857

;

change of, when loop is deformed,

358;

fundamental set of, 360
;

simple cycle of, 360
;

canonical form of complete system of

simple, 361.

Loxodromic substitutions, 517, 521

;

neither periodic nor infinitesimal, 522
;

do not occur in connection with cycles

of corners, 613.

Magnification in conformal representation, 11,

492;

in star-maps, 499.

Maps, 499.

Maximum and minimum values of potential

function for a region lie on its boundary, 422.

Mercator's projection of sphere, 498.

Meromorphic function, defined, 16 ;

integral unchanged by deformation of

simple curve in part of plane where

function is uniform, 27 ;

integral round a simple curve, containing

one simple pole, 27
;

round a curve containing several

simple poles, 28

;

round a curve containing multiple

pole, 32 ;

cannot, without change, be deformed

across pole, 34
;

is form of uniform function with a

limited number of accidental singu-

larities, 71

;

all singularities of uniform algebraical,

are accidental, 73.

Mittag-Leffler's theorems on functions having

an unlimited number of singularities, dis-

tributed over the whole plane, 112;

distributed over a finite circle, 117.

Modular-function defined, 633

;

connected with elliptic quarter-periods,

633;

(see modular group)
;

as automorphic functions, 657.

Modular group of substitutions, 587 ;

is improperly discontinuous for I'eal

variables, 585
;

division of plane into polygons, asso-

ciated with, 588 et seq.

;

relation between the fundamental sub-

stitutions of, 590

;

for modulus of elliptic integral, 635
;

for the absolute invariant of an elliptic

function, 637.

Moduli of periodicity, for cross-cuts, 377 ;

values of, for canonical cross-cuts, 377 ;

number of linearly independent on a

surface, 379 ;

examples of, 379 et seq.
;

introduced in proof of existence-theorem,

430 et seq.

;

of function of first kind on a Riemann's

surface, 439 et seq.

;

relation between, of a function of first

kind and a function of second kind,

442
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properties of, for normal fuuctiou of

first kind, 416
;

of normal elementary function of second

kind are algebraic functions of its

infinity, 449

;

of normal elementary function of third

kind are expressed as normal functions

of first kind of its two infinities, 451.

Modulus of variable, 3.

Monogenic, defined, 14

;

function has any number of derivatives,

14;

analytic function, 56.

Monogenic functionality not coextensive with

arithmetical expression, 139.

Multiform function, defined, 15
;

elements of, in continuation, 56 ;

expression of, in vicinity of a branch-

point, 158
;

defined by algebraic equation, 161 (see

algebraic function)

;

integral of (see integral of multiform

function)

;

is uniform on Eiemann's surface, 337, 343.

Multiple circuits, 327.

Multiple periodicity, 208

;

of uniform function of several variables,

209.

Multij^lication-theorem, 297.

Multiplicity of zero, 61

;

of pole, 65.

Multiplier of linear substitution, 515.

Multipliers of factorial functions at cross-cuts,

465;

forms of, when cross-cuts are canonical,

466.

Multiply connected surface, 314
;

defined, 315

;

connectivity modified by cross-cuts, 319

;

by loop-cuts, 320

;

and by slit, 321

;

boundaries of, affected by cross-cuts, 323
;

relation between boundaries of, and con-

nectivity, 324
;

divided into polygons, Lhuilier's theorem

on, 325

;

number of circuits in complete system

of circuits on, 330.

Multiply-periodic uniform functions of n vari-

ables, cannot have more than 2n periods, 209

;

obtained by inversion of functions of

first kind, 453 et seq.

Natural limit, of a power-series, 129
;

of part of plane, 558
;

for pseudo-automorphic function with

certain families of grouj^s, 643.

Negative edge of cross-cut, 374, 438.

Neumann's sphere used to represent the vari-

able, 4

;

used for multiform functions, 153.

Normal elementary function of second kind,

448 (see second kind of functions).

Normal elementary function of third kind, 450

(see third kind of functions).

Normal form of linear substitution, 582.

Normal functions of first kind, 446 (see first

kind of functions).

Normal polygon for division of plane, 594
;

can be taken convex, 595 (see convex

normal polygon).

Normal surface, Klein's, as a surface of refer-

ence of given connectivity and number of

boundaries, 334, 365.

Number of zeros of uniform function in any

area, 61, 63, 68, 72

;

of periodic functions (see doubly-periodic

functions, second kind, third kind)

;

of pseudo-automorphic functions (see

pseudo-automorphic functions).

Octahedral (and cubic) division of surface of

circumscribed sphere, 565

;

equation giving the conformal repre-

sentation on a half-plane of each

triangle in the stereographic projec-

tion of the divided surface, 570.

Open cycles of corners in normal polygon for

division of plane by Fuchsian group, 596

(see corners)

;

do not occur in division of plane by

Kleinian group, 613.

Order of doubly-periodic function, 220.

Order of infinity of a multiform function deter-

mined, 164.

Ordinary point of a function, 52

;

domain of, 52.

Parabola, area without, represented on a circle,

505;

area within, represented on a circle, 506.

Parabolic substitutions, 517, 518;

neither periodic nor infinitesimal, 522

;

occur in connection with cycles of cor-

ners, 607, 613.

Parallelogram for double periodicity, funda-

mental, 200, 206;

edges and corners in relation to zeros

and to accidental singularities of func-

tions, 218;
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is fundamental for a function of tiie

second order within it, 224.

Parametric integer of thetafuchsian functions,

650.

Path of integration, 18;

can be deformed in region of holomor-

phic function without affecting the

value of the integral, 2G

;

on a Kiemann's surface, can be de-

formed except over a discontinuity,

373;

and not over a branch-jDoint, 350.

Periodic linear substitutions, 515

;

are elliptic, 519.

Periodicity of uniform functions, of one variable,

198 et seq.

;

of several variables, 209.

Periodicity, modulus of, 377 (see moduli of

periodicity).

Periods of a function of one variable, 198
;

cannot have a real ratio when the func-

tion is uniform, 200

;

cannot exceed two in number indepen-

dent of one another if function be

uniform, 205.

Plane used to represent variation of complex

variable, 2.

Poles of a function defined, 16, 53.

Polyhedral division of space in connection with

generalised equations of group of Kleinian

substitutions, 614.

Polyhedral functions, connected with conformal

representation, 566 et seq.

;

for double-pyramid, 567, 632;

for tetrahedron, 568, 630;

for octahedron and cube, 570;

for icosahedron and dodecahedron, 573.

Position on Kiemann's surface, most general

uniform function of, 369;

their algebraical expression, 371;

has as many zeros as infinities, 372.

Positive edge of cross-cut, 374, 438.

Potential function, real, defined, 407;

conditions satisfied by, when derived

from a function of position on a Ilie-

mann's surface, 407;

general conditions assigned to, 410

;

boundary conditions assigned to, 410

;

Green's integral-theorems connected

with, 411 et seq.

;

is uniquely determined for a circle by

general conditions and continuous

finite boundary values, 414
;

integral expression obtained for,

satisfies the conditions, 417;

the boundary values for circle may
have finite discontinuities at a

limited number of isolated points,

418;

properties of, for a circle, 421

;

maximum and minimum values of, in a

region, lie on the boundary, 422;

is determined by general conditions and

boundary values, for area conformally

representable on area of a circle, 423

;

for combination of areas when it

can be obtained for each sepa-

rately, 425;

for area containing a winding-point,

428;

for any simply connected surface,

429;

introduction of cross-cut moduli for, on

a doubly connected surface, 430

;

on a triply connected surface, 433

;

on any multiply connected surface,

434;

number of linearly indejiendent, every-

where finite, 434, 445;

introduction of assigned infinities, 435

;

classes of, determined, 436;

classes of comijlex functions derived from,

with the respective conditions, 436.

Power-series, as elements of an analytical

function, 56 et seq.; 128 et seq.

;

region of continuity of, consists of one

connected part, 128;

may have a natural limit, 129.

Primary factor, 82.

Primitive parallelogram of periods, 206.

Product-form of transcendental integral func-

tion with infinite number of zeros over whole

plane, 80.

Pseudo-automorphic functions, 643 (see theta-

fuchsian functions).

Pseudo-periodic functions. Chap. xii.

;

of the first kind, 273

;

of the second kind, 274

;

properties of (see second kind)

;

of the third kind, 274

;

properties of (see third kind)

;

on a Kiemann's surface (see factorial

functions).

Pseudo-periodicity of the f-functiou, 255;

of the cr-function, 260.

Quadrilateral, area of, represented on half-

plane, 546;

determination of fourth angular point,

three being arbitrarily assigned, 547.
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Bamification of a Eiemauu's surface, 349.

Ratio of periods of uniform periodic function

cannot be real, 200.

Rational points in an area, 141.

Real and imaginary parts of fi;nctions, how

related, 9 ;

equations satisfied by, 11;

each can be deduced from the other, 12.

Real potential function, 407 (see potential

function).

Real substitutions, 591 (see Fuchsian group).

Reconcileable circuits, 327.

Rectangle, area within, represented on a circle,

502;

and on an ellipse, 504
;

on a half-plane, 544, 545.

Rectilinear polygon, convex, represented on

half-plane, 538 et seq.

;

function for representation of, 540 ;

equation which secures the representa-

tion of, 541
;

three angular points (but not more) may
be arbitrarily assigned in the repre-

sentation, 542
;

determination of fourth for quadri-

lateral, 547 ;

three sides, 543 (see triangle)

;

four sides, 544 (see rectangle, square,

quadrilateral)

;

limit in the form of a convex curve, 548.

Reducible circuits, 327.

Reducible points, 199, 200.

Region of continuity, of a uniform function,

55, 126

;

bounded by the singularities, 56

;

of a power-series consists of one con-

nected part, 128

;

may have a natural limit, 129
;

of a series of uniform functions, 132 et

seq.

;

of multiform function, 150.

Regions in division of plane associated with

discontinuous group

:

fundamental, 591

;

uniform correspondence between, 591

;

contiguous, 591

;

edges of, 591 (see edges)

;

corners of, 591 (see corners).

Regular in vicinity of ordinary point, function

is, 52.

Regular polygon, area of, conformally repre-

sented on a circle, 548 (Ex.).

Regular singularities of algebraical functions,

163.

Regular solids, planes of symmetry of, dividing

the surface of the circumscribed sphere, 564

et seq.

Representation, conformal, 11 (see conformal

representation).

Representation of complex variable on a plane,

2;

and on Neumann's sphere, 4.

Residue of function, defined, 42
;

when the function is doublj'-periodic, the

sum of its residues is zero, 223.

Resolution of Riemann's surface, 351 et seq.

;

how to choose cross-cuts for, 352

;

canonical, 355;

when in its canonical form, 366.

Revolution, surface of, conformally represented

on a plane, 496.

Riemann's definition of function, 8.

Riemann's fundamental lemma in integration,

21.

Riemann's surface, aggregate of plane sheets,

336;

used to represent algebraic functions, 338;

sheets of, joined along branch-lines, 339;

can be taken in spherical form, 346;

connectivity of, with one boundary, 347;

with several boundaries, 350;

class of, 349

;

ramification of, 349

;

irreducible circuits on, 350

;

resolution of, by cross-cuts into a simply

connected surface, 351 et seq.

;

canonical resolution of, 355

;

form of, when branch-points are simple,

364;

deformation to canonical form of,

365;

resolution of, in canonical form, 366;

uniform functions of position on, 369

;

their expression and the equation

satisfied by them, 371

;

have as many zeros as infinities,

372;

integrals of algebraic functions on a, 375

et seq.

;

existence-theorem for functions on a

given, 405;

functions on (see first kind, second kind,

third kind of functions, algebraic

functions on a).

Riemann-Roch's theorem on algebraic functions

having assigned infinities, 459.

Riemann's theorem on conformal representation

of any plane area, simply connected, on area

of a circle, 526.

Roots of a function, defined, 16.
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Eotations, counected with linear substitutions,

621;

groups of for regular solids, 623
;

dihedral group of, 623

;

tetrahedral group of, 625.

Schwarz's symmetric continuation, 57.

Schwarzian derivative, used in conformal re-

presentation, 529, 550 et seq.

Second kind of pseudo-periodic function, 274

;

Hermite's exj^ressiou for, 277, 279;

limiting form of, when function is

periodic of the first kind, 278, 280;

Mittag-LefHer's expression for, in inter-

mediate case, 279, 280;

number of irreducible infinities same as

the number of iiTeducible zeros, 280

;

difference between sum of irreducible

infinities and sum of irreducible zeros,

281;

expressed in terms of the c-function,

281;

used to solve Lame's differential equa-

tion, 281.

Second order of doubly-periodic functions, (see

also doubly-periodic functions), properties of,

Chap. XI.

;

of second class and odd, 243
;

connected with Jacobian elliptic

functions, 246;

addition-theorem for, 247

;

of first class and even, illustrated by

Weierstrassian elliptic functions, 249

et seq.;

of second class and even, 267 et seq.

Second kind, of functions on a Eiemann's sur-

face, 43G;

relation between moduli of periodicity of

functions of, and those of a function

of first kind, 442
;

elementary function of, is determined by

its infinity and moduli, 448

;

normal elementary function of, 448

;

moduli of periodicity of, 449 ;

used to construct algebraic functions

on a Eiemann's surface, 457.

Second kind, of integrals on a Eiemann's sur-

face, 396;

elementary integrals of, 396;

general value of, 398

;

elementary integrals of, determined by

its infinity except as to integral of

first kind, 398;

number of, 399

;

(see second kind of functions)

;

two distinct forms of characteristic

equation, 271

;

com^jared with elliptic functions,

272.

Secondary periodic functions, 275 (see second

kind).

Sections for integrals of uniform functions,

Hermite's, ls5.

Sector on a half-plane, 507 {Ex.).

Semicu-cle represented on a half-plane, 506

;

on a circle, 507.

Sequence of interchange along branch-lines

determined, 341.

Series of functions, expansion in, 115
;

region of continuity of, 132
;

represents the same function throughout

any connected part of its region of

continuity, 132
;

may represent different functions in dis-

tinct parts of its region of continuity,

137.

Series of powers, expansion in, 43 et seq.

;

function determined bj% is the same

throughout its region of continuity,

128;

natural limit of, 129.

Sheets of a Eiemann's surface, 336
;

relation between variable and, 338

;

joined along branch-lines, 339.

Simple branch-points for algebraic function,

174;

number of, 175, 856
;

in connection with loops, 357 ;

canonical arrangement of, 364.

Simple circuit, 327.

Simple curve, defined, 21

;

used as boundary, 322.

Simple cycles of loops, 360
;

number of independent, 361.

Simple element for tertiary periodic functions,

of positive class, 291

;

of negative class, 293.

Simply connected surface, 313 ;

defined, 315

;

effect of cross-cut on, 316
;

and of loop-cut on, 320
;

circuits drawn on, are reducible, 329

;

winding surface containing one winding-

point is a, 348.

Simply infinite system of zeros, function having,

83.

Simply periodic functions, 198 ;

graphical representation, 198, 211

;

properties of, with an essential singularity

at infinity, 212 et seq.;
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when uniform, can be expressed as series

of powers of an exponential, 213

;

of most elementary form, 215
;

limited class of, considered, 217
;

possess algebraical addition-theorem,

2'J8.

Singular line, 140.

Singular points, 10.

Singularities, accidental, 10 (see accidental

singularity)

;

essential, 17 (see essential singularity)
;

discrimination between, 53, 00

;

bound the region of continuity of the

function, 57
;

must be possessed by uniform functions,

U;
of algebraical functions, regular, 163.

Singularity of a coeflScient of an algebraic equa-

tion is an infinity of a branch of the function,

164.

Slit, effect of, on connectivity of surface,

321.

Species of essential singularity, 148.

Sphere conformally represented on a plane,

497;

Mercator's projection, 498

;

stereographic projection, 498.

Spherical form of Eiemann's surface, 346
;

related to plane form, 347 ;

is bounded, 347.

Spherical surface with holes, connectivity of,

321.

Spheroid, oblate, conformally represented on

plane, 500.

Square, area within, represented on a circle,

502, 545

;

on a half-plane, 544, 546

;

area without, represented on a circle,

545.

Stereograjthic projection of sphere on plane as

a conformal representation, 498
;

of curvilinear triangle on the surface of

a sphere, 502.

Straight line changed into a circle by a linear

substitution, 513.

Strip of plane, infinitely long, represented on
half-plane, 508

j

and on a circle, 508

;

on a cardioid, 530.

Subcategories of cycles of corners, 607.

Substitution, linear or homographic, 512 (see

linear substitution).

Sum of residues of doubly-periodic function,

relative to a fundamental parallelogram, is

zero, 222.

Surface, connected, 312;

has a boundary assigned, 314, 322, 329;

effect of any number of cross-cuts on, 316

;

connectivity of, 317;

affected by cross-cuts, 319

;

by loop-cuts, 320;

and by slit, 321

;

class of, 324

;

su^jposed bifacial, not unifacial, 325

;

Lhuilier's theorem on division of, into

polygons, 325

;

Eiemann's (see Eiemann's surface).

Symbol for loop, 357;

change of, when loop is deformed, 358.

Symmetric continuation, Schwarz's, 57.

System of branch- lines for a Eiemann's surface,

341.

System of zeros for transcendental function,

simply-infinite, 83;

doubly-infinite, 84;

cannot be triply-infinite arithmetical

series, 88;

used to define its class, 89.

Tannery's series of functions representing dif-

ferent functions in distinct parts of its region

of continuity, 137.

Tertiary periodic functions, 275 (see third

kind).

Test, analytical, of a branch-point, 157.

Tetrahedral division of surface of circumscribed

sphere, 504;

equation giving the conformal represent-

ation on a half-plane of each triangle

in the stereographic projection of the

divided surface, 508.

Tetrahedral function, automorphic for tetra-

hedral group, 030 (see polyhedral functions).

Tetrahedral group, of rotations, 625

;

of substitutions, 627

;

in another form, 628;

function automorphic for, 032.

Thetafuchsian functions, 642

;

exists either only within the fundamen-

tal circle, or over whole plane, accord-

ing to family of group, 643

;

their essential singularities, 042

;

pseudo-automorphic for infinite group,

044;

number of irreducible accidental singu-

larities of, 044;

number of irreducible zeros of, 048;

parametric integer for, 650;

quotient of two with same parametric

integer is automorphic, 651.
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Third kind, of functions on a Kiemann's sur-

face, 436
;

elementary functions of, 449 ;

normal elementary function of, 450
;

moduli of periodicity of, 451
;

interchange of argument and para-

meter in, 453

;

used to construct Appell's factorial

functions, 466 et seq.

;

Third kind, of integrals on a Eiemann's surface,

400;

sum of logarithmic peiiods of, is zero,

401;

must have two logarithmic infinities at

least, 402;

elementary integrals of, 402 (see third

kind of functions).

Third kind of pseudo-periodic function, 274

;

canonical fonn of characteristic equa-

tions, 275
;

relation between number of irreducible

zeros and number of irreducible infini-

ties, 286;

relation between sum of irreducible zeros

and sum of irreducible infinities, 287

;

expression in terms of c-function, 288
;

of positive class, 288

;

expressed in terms of simj^le ele-

ments, 290

;

of negative class, 291

;

expressed in terms of Ajipell's ele-

ment, 293;

expansion in trigonometrical series,

293.

Three principal classes of functions on a

Eiemann's surface, 436 (see first kind, second

kind, third kind, of functions).

Transcendental integral function, 70;

it has = 00 for an essential singu-

larity, 74;

with unlimited number of zeros over the

whole plane, in form of a product,

76 et seq.

;

most general form of, 80

;

having simply-infinite system of zeros,

83;

having doubly-infinite system of zeros,

84;

Weierstrass's product form of, 87;

cannot have triply-infinite arithmetical

series of zeros, 88 ;

class of, determined by zeros, 89

;

simple, of given class, 91.

Transformation, homographic, 512 (see linear

substitution).

F.

Triangle, rectilinear, represented on a half-

plane, 543;

separate cases in which representation is

complete and unifonn, 543

;

curvilinear, represented on a half-

plane, 555 (see curvilinear tri-

angle).

Trigonometrical series, expansion of tertiary

periodic functions in, 293.

Triply-infinite arithmetical system of zeros can-

not be possessed by transcendental integral

function, 91.

Triply-periodic imiform functions of a single

variable do not exist, 205;

example of this proposition, 386.

Two-sheeted surface, sjjecial form of branch-

lines for, 344.

Unifacial Surfaces, 325, 333.

Uniform function, defined, 15.

Uniform function, must assume any value at

an essential singularity, 54, 94
;

has a unique set of elements in continua-

tion, 56

;

is constant everywhere in its region if

constant over a line or area, 59 ;

number of zeros of, in an area, 63
;

must assume any assigned value, 64 ;

must have at least one singularity, 64 ;

is algebraical polynomial if only singu-

larity be accidental and at infinity,

69;

is rational algebraical and meromorphic

if there be no essential singularity and

a finite number of accidental singulari-

ties, 71

;

transcendental (see transcendental func-

tion)
;

Hermite's sections for integrals of, 185 ;

of one variable, that are periodic, 200 et

seq. ;

of several variables that are periodic,

208;

simply- periodic (see simply-periodic uni-

form functions)

;

doubly-periodic (see doubly-periodic uni-

form functions).

Uniform function of position on a Eiemann's

surface, multiform function becomes, 337,

343;

most general, 369

;

algebraic equation determining, 371

;

has as many zeros as infinities, 372.

Uniform function, conditions that a, be an

integral of a differential equation of first

44
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Older not containing the independent variable.

471 et seq.

;

when the conditions are satisfied, it is

either a rational, a simply-periodic, or

a doubly-periodic, function, 476.

Unlunited number of essential singularities,

functions possessing. Chap. vii.

;

distributed over the plane, 112 ;

over a finite circle, 117.

Weierstrass's ^-function, 2.51

;

is doubly-periodic, 2-52
;

is of the second order and the first class,

253;

its differential equation, 2.54
;

its addition-theorem, 262

;

derivatives with regard to the invariants

and the periods, 265.

Weierstrass's (r-function, 249 ;

its pseudo-periodicity, 259 ;

periodic functions expressed in terms of,

260
;

its quasi-addition-theorem, 261

;

differential equation satisfied by, 266 ;

used to construct secondary periodic

functions, 281

;

and tertiary periodic functions, 288.

Weierstrass's j"-fimction, 250 ;

its pseudo -periodicity, 255 ;

periodic functions expressed in terms of,

2.56 ;

relation between its parameters and

periods, 257
;

its quasi-addition-theorem, 261.

Weierstrass's product-form for transcendental

integral function, with infinite number of

zeros 0%'er the plane, 80
;

with doubly-infinite arithmetic series of

zeros, 87.

Winding-point, 346.

Winding surface, defined, 346
;

portion of, that contains one winding-

point is simply connected, 848.

Zeros of doubly-periodic function, irreducible,

are in number equal to the irreducible infini-

ties and the irreducible level points, 227 ;

and in sum are congruent with their

suras, 228.

Zeros of uniform function are isolated points,

60;

form of function in vicinity of, 61

;

in an area, number of, 61, 63, 68, 72
;

of transcendental function, when simply-

infinite, 83

;

when doubly-infinite, 84 ;

cannot form triply-infinite arith-

metical series, 88.
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